-
Notifications
You must be signed in to change notification settings - Fork 2
/
mole_grid.hpp
279 lines (239 loc) · 8.72 KB
/
mole_grid.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
//| This file is a part of the ERC ResiBots project.
//| Copyright 2015, ISIR / Universite Pierre et Marie Curie (UPMC)
//| Main contributor(s): Jean-Baptiste Mouret, [email protected]
//| Antoine Cully, [email protected]
//|
//| This software is governed by the CeCILL license under French law
//| and abiding by the rules of distribution of free software. You
//| can use, modify and/ or redistribute the software under the terms
//| of the CeCILL license as circulated by CEA, CNRS and INRIA at the
//| following URL "http://www.cecill.info".
//|
//| As a counterpart to the access to the source code and rights to
//| copy, modify and redistribute granted by the license, users are
//| provided only with a limited warranty and the software's author,
//| the holder of the economic rights, and the successive licensors
//| have only limited liability.
//|
//| In this respect, the user's attention is drawn to the risks
//| associated with loading, using, modifying and/or developing or
//| reproducing the software by the user in light of its specific
//| status of free software, that may mean that it is complicated to
//| manipulate, and that also therefore means that it is reserved for
//| developers and experienced professionals having in-depth computer
//| knowledge. Users are therefore encouraged to load and test the
//| software's suitability as regards their requirements in conditions
//| enabling the security of their systems and/or data to be ensured
//| and, more generally, to use and operate it in the same conditions
//| as regards security.
//|
//| The fact that you are presently reading this means that you have
//| had knowledge of the CeCILL license and that you accept its terms.
#ifndef MOLE_HPP_
#define MOLE_HPP_
#include <algorithm>
#include <limits>
#include <boost/foreach.hpp>
#include <boost/multi_array.hpp>
#include <boost/array.hpp>
#include <sferes/stc.hpp>
#include <sferes/parallel.hpp>
#include <sferes/ea/ea.hpp>
#include <sferes/fit/fitness.hpp>
#include <sferes/ea/dom_sort.hpp>
//#include <ssrc/spatial/kd_tree.h>
namespace sferes
{
namespace ea
{
// Main class
SFERES_EA(MoleGrid, Ea)
{
public:
typedef boost::shared_ptr<Phen> indiv_t;
typedef typename std::vector<indiv_t> pop_t;
typedef typename pop_t::iterator it_t;
typedef typename std::vector<std::vector<indiv_t> > front_t;
typedef boost::array<float, 6> point_t;
typedef boost::shared_ptr<Phen> phen_ptr_t;
typedef boost::multi_array<phen_ptr_t, 6> array_t;
typedef boost::multi_array<int, 6> hits_t;
SFERES_CONST size_t res =5;
SFERES_CONST float epsilon =0.05;
MoleGrid() :
_array(boost::extents[res][res][res][res][res][res]),
_hits(boost::extents[res][res][res][res][res][res])
{
for (size_t i = 0; i < res; ++i)
for (size_t j = 0; j < res; ++j)
for (size_t k = 0; k < res; ++k)
for (size_t l = 0; l < res; ++l)
for (size_t m = 0; m < res; ++m)
for (size_t n = 0; n < res; ++n)
_hits[i][j][k][l][m][n] = 0;
}
void random_pop()
{
parallel::init();
this->_pop.resize(Params::pop::size);
BOOST_FOREACH(boost::shared_ptr<Phen>&indiv, this->_pop)
{
indiv = boost::shared_ptr<Phen>(new Phen());
indiv->random();
indiv->develop();
}
this->_eval_pop(this->_pop, 0, this->_pop.size());
BOOST_FOREACH(boost::shared_ptr<Phen>&indiv, this->_pop)
_add_to_archive(indiv);
// _compute_scores(this->_pop);
}
void epoch()
{
this->_pop.clear();
for (size_t i = 0; i < res; ++i)
for (size_t j = 0; j < res; ++j)
for (size_t k = 0; k < res; ++k)
for (size_t l = 0; l < res; ++l)
for (size_t m = 0; m < res; ++m)
for (size_t n = 0; n < res; ++n)
if (_array[i][j][k][l][m][n])
this->_pop.push_back(_array[i][j][k][l][m][n]);
// _compute_scores(this->_pop);
// _compute_score_region();
front_t fronts;
std::vector<size_t> ranks;
// _fast_domsort(this->_pop, fronts);
pop_t ptmp;
for (size_t i = 0; i < Params::pop::size; ++i)
{
indiv_t p1 = _selection(this->_pop); //fronts[0]); //this->_pop);
indiv_t p2 = _selection(this->_pop); //fronts[0]); //this->_pop);
boost::shared_ptr<Phen> i1, i2;
p1->cross(p2, i1, i2);
i1->mutate();
i2->mutate();
i1->develop();
i2->develop();
ptmp.push_back(i1);
ptmp.push_back(i2);
}
this->_eval_pop(ptmp, 0, ptmp.size());
for (size_t i = 0; i < ptmp.size(); ++i)
_add_to_archive(ptmp[i]);
// if (this->gen() % 200 == 0)
/*{
std::cout << "writing..." << this->gen() << std::endl;
std::string fname = boost::lexical_cast<std::string>(this->gen()) + std::string(".dat");
std::ofstream ofs(fname.c_str());
for (size_t i = 0; i < res_x; ++i)
for (size_t j = 0; j < res_y; ++j)
if (_array[i][j])
ofs << i / (float) res_x
<< " " << j / (float) res_y
<< " " << _array[i][j]->fit().value() << std::endl;
}*/
/* std::ofstream ofsvar("variations.dat",std::ios_base::app);
std::cout<<"archive size:"<<_archive.size()<<" add=" << _added<<" swapped="<< _swapped<<std::endl;
ofsvar<<"archive size:"<<_archive.size()<<" add=" << _added<<" swapped="<< _swapped<<std::endl;
*/
std::cout<<"archive size:"<<this->_pop.size()<<std::endl;
if (this->gen() % Params::pop::dump_period == 0)
{
// créer un flux de sortie
std::ostringstream oss;
// écrire un nombre dans le flux
oss << this->gen();
// récupérer une chaîne de caractères
std::ofstream ofs((this->res_dir() + "/archive"+oss.str()+".dat").c_str());
for (size_t i = 0; i < res; ++i)
for (size_t j = 0; j < res; ++j)
for (size_t k = 0; k < res; ++k)
for (size_t l = 0; l < res; ++l)
for (size_t m = 0; m < res; ++m)
for (size_t n = 0; n < res; ++n)
if (_array[i][j][k][l][m][n])
{
phen_ptr_t indiv=_array[i][j][k][l][m][n];
ofs<<indiv->fit().behavior().duty_cycle[0]<<" "<<indiv->fit().behavior().duty_cycle[1]<<" "<<indiv->fit().behavior().duty_cycle[2]<<" "<<indiv->fit().behavior().duty_cycle[3]<<" "<<indiv->fit().behavior().duty_cycle[4]<<" "<<indiv->fit().behavior().duty_cycle[5]<<" "<<indiv->fit().behavior().covered_distance<<" ";
for(int j=0;j<indiv->fit().behavior().controller.size();j++)
ofs<<indiv->fit().behavior().controller[j]<<" ";
ofs<<std::endl;
}
}
}
const array_t& array() const { return _array; }
const array_t& archive() const { return _array; }
protected:
array_t _array;
hits_t _hits;
bool _add_to_archive(indiv_t i1)
{
if(i1->fit().dead())
return false;
point_t p = _get_point(i1);
size_t i = round(p[0] * (res-1));
size_t j = round(p[1] * (res-1));
size_t k = round(p[2] * (res-1));
size_t l = round(p[3] * (res-1));
size_t m = round(p[4] * (res-1));
size_t n = round(p[5] * (res-1));
i = std::min(i, res-1 );
j = std::min(j, res-1 );
k = std::min(k, res-1 );
l = std::min(l, res-1 );
m = std::min(m, res-1 );
n = std::min(n, res-1 );
assert(i < res);
assert(j < res);
assert(k < res);
assert(l < res);
assert(m < res);
assert(n < res);
_hits[i][j][k][l][m][n]++;
_dist_center(i1);
if (!_array[i][j][k][l][m][n]
|| i1->fit().behavior().covered_distance - _array[i][j][k][l][m][n]->fit().behavior().covered_distance > epsilon
|| (fabs(i1->fit().behavior().covered_distance - _array[i][j][k][l][m][n]->fit().behavior().covered_distance) <= epsilon && _dist_center(i1)<_dist_center(_array[i][j][k][l][m][n]) ))
{
_array[i][j][k][l][m][n] = i1;
// _archive.insert(p, i1);
return true;
}
return false;
}
template<typename I>
float _dist_center(const I& indiv)
{
float dist=0;
point_t p =_get_point(indiv);
for(int i=0;i<6;i++)
dist+=pow(p[i]-(float)round(p[i]*(res-1))/(float)(res-1),2);
dist=sqrt(dist);
return dist;
}
template<typename I>
point_t _get_point(const I& indiv)
{
point_t p;
p[0] = std::min(1.0f, indiv->fit().behavior().duty_cycle[0]);
p[1] = std::min(1.0f, indiv->fit().behavior().duty_cycle[1]);
p[2] = std::min(1.0f, indiv->fit().behavior().duty_cycle[2]);
p[3] = std::min(1.0f, indiv->fit().behavior().duty_cycle[3]);
p[4] = std::min(1.0f, indiv->fit().behavior().duty_cycle[4]);
p[5] = std::min(1.0f, indiv->fit().behavior().duty_cycle[5]);
return p;
}
// --- Pareto tournament selection --
indiv_t _selection(const pop_t& pop)
{
int x1 = misc::rand< int > (0, pop.size());
// int x2 = misc::rand< int > (0, pop.size());
//if (pop[x1]->fit().value() > pop[x2]->fit().value())
return pop[x1];
//else
//return pop[x2];
}
};
}
}
#endif