-
Notifications
You must be signed in to change notification settings - Fork 3
/
hexa_bomean.cpp
485 lines (405 loc) · 15.4 KB
/
hexa_bomean.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
//| This file is a part of the ERC ResiBots project.
//| Copyright 2015, ISIR / Universite Pierre et Marie Curie (UPMC)
//| Main contributor(s): Jean-Baptiste Mouret, [email protected]
//| Antoine Cully, [email protected]
//|
//| This software is governed by the CeCILL license under French law
//| and abiding by the rules of distribution of free software. You
//| can use, modify and/ or redistribute the software under the terms
//| of the CeCILL license as circulated by CEA, CNRS and INRIA at the
//| following URL "http://www.cecill.info".
//|
//| As a counterpart to the access to the source code and rights to
//| copy, modify and redistribute granted by the license, users are
//| provided only with a limited warranty and the software's author,
//| the holder of the economic rights, and the successive licensors
//| have only limited liability.
//|
//| In this respect, the user's attention is drawn to the risks
//| associated with loading, using, modifying and/or developing or
//| reproducing the software by the user in light of its specific
//| status of free software, that may mean that it is complicated to
//| manipulate, and that also therefore means that it is reserved for
//| developers and experienced professionals having in-depth computer
//| knowledge. Users are therefore encouraged to load and test the
//| software's suitability as regards their requirements in conditions
//| enabling the security of their systems and/or data to be ensured
//| and, more generally, to use and operate it in the same conditions
//| as regards security.
//|
//| The fact that you are presently reading this means that you have
//| had knowledge of the CeCILL license and that you accept its terms.
//#define SHOW_TIMER
#include <limbo/limbo.hpp>
#include <limbo/inner_cmaes.hpp>
#include "exhaustiveSearchMap.hpp"
#include "meanMap.hpp"
#include "statTransferts.hpp"
#ifdef GRAPHIC
//#define NO_PARALLEL
#include "renderer/osg_visitor.hh"
#endif
#include "hexapod.hh"
#include "simu.hpp"
#define NO_PARALLEL
#include "limbo/parallel.hpp"
#ifdef ROBOT
#include <ros/ros.h>
#include <std_msgs/String.h>
#include <std_msgs/Float32.h>
#include <hexa_control/Transfert.h>
#endif
using namespace limbo;
struct Params {
struct boptimizer {
BO_PARAM(double, noise, 0.001);
BO_PARAM(int, dump_period, 1);
};
struct maxiterations {
BO_DYN_PARAM(int, n_iterations);
};
struct maxpredictedvalue {
BO_PARAM(float, ratio, 0.9);
};
struct kf_maternfivehalfs {
BO_PARAM(float, sigma, 1);
BO_DYN_PARAM(float, l);
};
struct ucb {
BO_DYN_PARAM(float, alpha);
};
struct archiveparams {
struct elem_archive {
std::vector<float> duty_cycle;
float fit;
std::vector<float> controller;
};
struct classcomp {
bool operator()(const std::vector<float>& lhs, const std::vector<float>& rhs) const
{
assert(lhs.size() == 6 && rhs.size() == 6);
int i = 0;
while (i < 5 && round(lhs[i] * 4) == round(rhs[i] * 4)) //lhs[i]==rhs[i])
i++;
return round(lhs[i] * 4) < round(rhs[i] * 4); //lhs[i]<rhs[i];
}
};
typedef std::map<std::vector<float>, elem_archive, classcomp> archive_t;
static std::map<std::vector<float>, elem_archive, classcomp> archive;
};
};
Params::archiveparams::archive_t load_archive(std::string archive_name);
Params::archiveparams::archive_t create_random_map(int size);
namespace global {
struct timeval timev_selection; // Initial absolute time (static)
std::string res_dir;
#ifdef ROBOT
boost::shared_ptr<ros::NodeHandle> node;
ros::ServiceClient hexapod;
// crazy stuff
std::vector<int> brokenLegs;
boost::shared_ptr<ode::Environment_hexa> global_env;
boost::shared_ptr<robot::Hexapod> global_robot;
#else
std::vector<int> brokenLegs;
boost::shared_ptr<robot::Hexapod> global_robot;
boost::shared_ptr<ode::Environment_hexa> global_env;
#endif
};
///---------------------------
#ifdef ROBOT
void init_ros_node(int argc, char** argv)
{
ros::init(argc, argv, "hexap_bomean", ros::init_options::NoSigintHandler);
global::node = boost::shared_ptr<ros::NodeHandle>(new ros::NodeHandle());
global::hexapod = global::node->serviceClient<hexa_control::Transfert>("Transfert");
}
#endif
//hexa_control::Transfert srv;
void init_simu(int argc, char** argv, bool master, std::vector<int> broken_legs = std::vector<int>())
{
global::global_env = boost::shared_ptr<ode::Environment_hexa>(new ode::Environment_hexa(0));
if (broken_legs.size() > 0)
global::brokenLegs = broken_legs;
if (global::brokenLegs.size() == 0)
std::cout << "global_real_robot is undamaged" << std::endl;
else {
std::cout << "legs ";
for (size_t i = 0; i < global::brokenLegs.size(); i++)
std::cout << global::brokenLegs[i] << " ";
std::cout << " are removed from global_real_robot" << std::endl;
}
global::global_robot = boost::shared_ptr<robot::Hexapod>(new robot::Hexapod(*global::global_env, Eigen::Vector3d(0, 0, 0.5), global::brokenLegs));
float step = 0.001;
// low gravity to slow things down (eq. smaller timestep?)
global::global_env->set_gravity(0, 0, -9.81);
bool stabilized = false;
int stab = 0;
for (size_t s = 0; s < 1000 && !stabilized; ++s) {
Eigen::Vector3d prev_pos = global::global_robot->pos();
global::global_robot->next_step(step);
global::global_env->next_step(step);
if ((global::global_robot->pos() - prev_pos).norm() < 1e-4)
stab++;
else
stab = 0;
if (stab > 100)
stabilized = true;
}
global::global_env->set_gravity(0, 0, -9.81);
}
template <typename Params>
struct fit_eval_map {
BOOST_STATIC_CONSTEXPR int dim = 6;
fit_eval_map()
{
timerclear(&global::timev_selection);
gettimeofday(&global::timev_selection, NULL);
}
float operator()(Eigen::VectorXd x) const
{
std::cout << "start eval" << std::endl;
std::vector<float> key(x.size(), 0);
for (int i = 0; i < x.size(); i++)
key[i] = x[i];
if (Params::archiveparams::archive.count(key) == 0)
return -1000;
#ifdef ROBOT
std::vector<float> ctrl = Params::archiveparams::archive.at(key).controller;
struct timeval timev_init; // Initial absolute time (static)
struct timeval timev_cur; // Current absolute
struct timeval timev_duration; // Current tick position (curent - previous)
timerclear(&timev_cur);
gettimeofday(&timev_cur, NULL);
timersub(&timev_cur, &global::timev_selection, &timev_duration);
std::ofstream ofile((global::res_dir + "/times.dat").c_str(), std::ios_base::app);
std::cout << "selection " << timev_duration.tv_sec + timev_duration.tv_usec / 1e6 << "sec" << std::endl;
ofile << "selection " << timev_duration.tv_sec + timev_duration.tv_usec / 1e6 << "sec" << std::endl;
///- COMMUNICATION WITH ROS/HEXAPOD
hexa_control::Transfert srv;
srv.request.duration = -1; // pose zero
if (global::hexapod.call(srv)) {
ROS_INFO("init pose");
}
else {
ROS_ERROR("Failed to call service");
return 1;
}
std::cout << __FILE__ << " " << __LINE__ << std::endl;
for (int i = 0; i < ctrl.size(); i++)
srv.request.params[i] = ctrl[i];
std::cout << __FILE__ << " " << __LINE__ << std::endl;
float obs = 0;
bool ok = false;
std::cout << __FILE__ << " " << __LINE__ << std::endl;
do {
timerclear(&timev_init);
gettimeofday(&timev_init, NULL);
std::cout << __FILE__ << " " << __LINE__ << std::endl;
srv.request.duration = 5; // action
if (global::hexapod.call(srv)) {
ROS_INFO("controller executed");
obs = srv.response.covered_distance;
}
else {
ROS_ERROR("Failed to call service");
//return 1;
}
srv.request.duration = -1; // pose zero
if (global::hexapod.call(srv)) {
ROS_INFO("init pose");
}
else {
ROS_ERROR("Failed to call service");
return 1;
}
timerclear(&timev_cur);
gettimeofday(&timev_cur, NULL);
timersub(&timev_cur, &timev_init, &timev_duration);
std::cout << "estimated distance: " << obs << std::endl;
if (obs < 0 || obs > 2) {
std::cout << "measurement seems wrong, set to zero" << std::endl;
obs = 0;
}
std::cin.clear();
std::cout << "transfert ok? :" << std::endl;
std::cin >> ok;
std::cin.clear();
std::cin.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
} while (!ok);
std::cout << "action " << timev_duration.tv_sec + timev_duration.tv_usec / 1e6 << "sec" << std::endl;
ofile << "action " << timev_duration.tv_sec + timev_duration.tv_usec / 1e6 << "sec" << std::endl;
gettimeofday(&global::timev_selection, NULL);
return obs;
#else
Simu simu = Simu(Params::archiveparams::archive.at(key).controller, global::global_robot, global::brokenLegs, false, 5, 1, global::global_env->angle);
if (simu.covered_distance() < 0 || simu.covered_distance() > 2.5) {
std::cout << simu.covered_distance() << " measurement seems wrong, set to zero" << std::endl;
return 0;
}
return simu.covered_distance() * limbo::misc::gaussian_rand(0.95, 0.1);
#endif
}
};
std::map<std::vector<float>, Params::archiveparams::elem_archive, Params::archiveparams::classcomp> load_archive(std::string archive_name)
{
std::map<std::vector<float>, Params::archiveparams::elem_archive, Params::archiveparams::classcomp> archive;
std::ifstream monFlux(archive_name.c_str()); //Ouverture d'un fichier en lecture
if (monFlux) {
while (!monFlux.eof()) {
Params::archiveparams::elem_archive elem;
std::vector<float> candidate(6);
for (int i = 0; i < 43; i++) {
if (monFlux.eof())
break;
float data;
monFlux >> data;
if (i <= 5) {
candidate[i] = data;
elem.duty_cycle.push_back(data);
}
if (i == 6) {
elem.fit = data;
}
if (i >= 7)
elem.controller.push_back(data);
}
if (elem.controller.size() == 36) {
archive[candidate] = elem;
}
}
}
else {
std::cout << "ERREUR: Impossible d'ouvrir le fichier en lecture." << std::endl;
return archive;
}
std::cout << archive.size() << " elements loaded" << std::endl;
return archive;
}
void lecture(int argc, char** argv)
{
#ifdef ROBOT
std::cout << "reading params from command line" << std::endl;
std::cout << "Type any key whem ready" << std::endl;
int x;
std::cin >> x;
//init_simu(argc, argv,false);
hexa_control::Transfert srv;
srv.request.duration = -1; // pose zero
if (global::hexapod.call(srv)) {
ROS_INFO("init pose");
}
else {
ROS_ERROR("Failed to call service");
return;
}
std::cout << "LOADING..." << std::endl;
for (int i = 0; i < 36; i++)
srv.request.params[i] = atof(argv[i + 1]);
srv.request.duration = 5; // pose zero
if (global::hexapod.call(srv)) {
ROS_INFO("executed");
std::cout << "covered distance! " << srv.response.covered_distance << std::endl;
}
else {
ROS_ERROR("Failed to call service");
return;
}
srv.request.duration = -5; // relax
if (global::hexapod.call(srv)) {
ROS_INFO("relax");
}
else {
ROS_ERROR("Failed to call service");
return;
}
#else
std::vector<float> ctrl;
for (int i = 0; i < 36; i++)
ctrl.push_back(atof(argv[i + 1]));
Simu simu = Simu(ctrl, global::global_robot, global::brokenLegs);
std::cout << "covered distance! " << simu.covered_distance() << std::endl;
#endif
return;
}
Params::archiveparams::archive_t Params::archiveparams::archive;
BO_DECLARE_DYN_PARAM(float, Params::kf_maternfivehalfs, l);
BO_DECLARE_DYN_PARAM(int, Params::maxiterations, n_iterations);
BO_DECLARE_DYN_PARAM(float, Params::ucb, alpha);
int main(int argc, char** argv)
{
if (argc < 2) {
std::cout << "please provide a map" << std::endl;
return -1;
}
Params::archiveparams::archive = load_archive(argv[1]);
if (argc > 2)
Params::kf_maternfivehalfs::set_l(atof(argv[2]));
else
Params::kf_maternfivehalfs::set_l(0.4); //0.4 (antoine value)
Params::ucb::set_alpha(0.05);
Params::maxiterations::set_n_iterations(20);
srand(time(NULL));
typedef kernel_functions::MaternFiveHalfs<Params> Kernel_t;
typedef inner_optimization::ExhaustiveSearchArchive<Params> InnerOpt_t;
typedef boost::fusion::vector<stopping_criterion::MaxIterations<Params>, stopping_criterion::MaxPredictedValue<Params>> Stop_t;
typedef mean_functions::MeanArchive_Map<Params> Mean_t;
typedef boost::fusion::vector<stat::Acquisitions<Params>, stat::StatTransferts<Params>> Stat_t;
typedef init_functions::NoInit<Params> Init_t;
typedef model::GP<Params, Kernel_t, Mean_t> GP_t;
typedef acquisition_functions::UCB<Params, GP_t> Acqui_t;
#ifdef ROBOT
init_ros_node(argc, argv);
hexa_control::Transfert srv;
srv.request.duration = 0; // init
if (global::hexapod.call(srv)) {
ROS_INFO("executed");
}
else {
ROS_ERROR("Failed to call service");
return 1;
}
#else
dInitODE();
std::vector<int> brokenleg;
if (argc > 3) {
for (int i = 3; i < argc; i++) {
brokenleg.push_back(atoi(argv[i]));
}
}
init_simu(argc, argv, true, brokenleg);
#endif
BOptimizer<Params, model_fun<GP_t>, init_fun<Init_t>, acq_fun<Acqui_t>, inneropt_fun<InnerOpt_t>, stat_fun<Stat_t>, stop_fun<Stop_t>> opt;
global::res_dir = opt.res_dir();
Eigen::VectorXd result(1);
opt.optimize(fit_eval_map<Params>());
float val = opt.best_observation();
result = opt.best_sample().transpose();
std::ofstream oofile((opt.res_dir() + std::string("/panne.dat")).c_str(), std::ios_base::app);
for (size_t i = 0; i < global::brokenLegs.size(); i++)
oofile << global::brokenLegs[i] << " ";
#ifdef ROBOT
std::ofstream ofile((std::string("result_") + argv[2] + ".dat").c_str(), std::ios_base::app);
ofile << argv[1] << " " << argv[2] << " ";
for (int i = 3; i < argc; i++)
ofile << argv[i];
ofile << " " << val << " " << opt.iteration() << std::endl;
#endif
std::cout << val << " res " << result.transpose() << std::endl;
#ifdef ROBOT
srv.request.duration = -5; // relax
if (global::hexapod.call(srv)) {
ROS_INFO("executed");
}
else {
ROS_ERROR("Failed to call service");
return 1;
}
#else
global::global_robot.reset();
global::global_env.reset();
dCloseODE();
#endif
std::cout << "fin" << std::endl;
return 0;
}