-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathdemo_cave.m
146 lines (118 loc) · 4.25 KB
/
demo_cave.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
% LTTR for Hyperspectral image and multispectral image fusion, Version 2.0
% Copyright(c) 2018 Renwei Dian
% All Rights Reserved.
%
% ----------------------------------------------------------------------
% Permission to use, copy, or modify this software and its documentation
% for educational and research purposes only and without fee is here
% granted, provided that this copyright notice and the original authors'
% names appear on all copies and supporting documentation. This program
% shall not be used, rewritten, or adapted as the basis of a commercial
% software or hardware product without first obtaining permission of the
% authors. The authors make no representations about the suitability of
% this software for any purpose. It is provided "as is" without express
% or implied warranty.
%----------------------------------------------------------------------
%
% This is an implementation of the algorithm for Hyperspectral image super-
% resolution from a pair of low-resolution hyperspectral image and a high-
% resolution multispectral image.
%
% if you use this code, Please cite the following paper:
%
% R. Dian, S. Li, and L. Fang, Learning a Low Tensor-Train Rank
% Representation for Hyperspectral Image Super-Resolution, IEEE TNNLS, 2019
clear
clc
addpath(genpath('LTTR_file'))
F=create_F();
sf = 8;
sz=[512 512];
s0=1;
psf = fspecial('gaussian',7,2);
par.fft_B = psf2otf(psf,sz);
par.fft_BT = conj(par.fft_B);
par.H = @(z)H_z(z, par.fft_B, sf, sz,s0 );
par.HT = @(y)HT_y(y, par.fft_BT, sf, sz,s0);
par.P=create_F();
F=F(:,3:31);
for band = 1:size(F,1)
div = sum(F(band,:));
for i = 1:size(F,2)
F(band,i) = F(band,i)/div;
end
end
%% CSU
% for yy=1:32
% im_structure =load(fullfile(pathstr, 'shuju1', imglist(yy).name));
% S = im_structure.b;
% [M,N,L] = size(S);
% S_bar = hyperConvert2D(S);
% hyper= par.H(S_bar);
% multi=F*S_bar;
% par.w=size(S,1);
% par.h=size(S,2);
% p=10;
% t0=clock;
% [E,A] = SupResPALM(hyper, multi, S_bar, F,p,par);
% Z = hyperConvert3d(E*A);
% t1(yy)=etime(clock,t0)
% [psnr1(yy),rmse1(yy), ergas1(yy), sam1(yy), uiqi1(yy),ssim1(yy),DD1(yy),CC1(yy)] = quality_assessment(double(im2uint8(S)), double(im2uint8(Z)), 0, 1.0/sf);
% end
%% NSSR
% for yy=1:32
% im_structure =load(fullfile(pathstr, 'shuju1', imglist(yy).name));
% S = im_structure.b;
% [M,N,L] = size(S);
% S_bar = hyperConvert2D(S);
% hyper= par.H(S_bar);
% Y_h = hyperConvert3D(hyper, M/sf, N/sf);
% Y = hyperConvert3D((F*S_bar), M, N);
% par.P=F;
% par.w=size(S,1);
% par.h=size(S,2);
% par.eta2 = 1e-4; % 0.03
% par.eta1 = 1e-2;
% par.mu = 2e-4; % 0.004
% par.ro = 1.1;
% par.Iter = 26;
% par.K = 80;
% par.lambda = 0.001;
% par.s0=s0;
% t0=clock;
% Z2 = NSSR_HSI_SR1( Y_h,Y,S_bar, sf,par,sz,s0 );
% Z2=hyperConvert3D(Z2,sz(1),sz(2));
% t2(yy)=etime(clock,t0)
% [psnr2(yy),rmse2(yy), ergas2(yy), sam2(yy), uiqi2(yy),ssim2(yy),DD2(yy),CC2(yy)] = quality_assessment(double(im2uint8(S)), double(im2uint8(Z2)), 0, 1.0/sf);
% end
%% NLSTF
% for yy=1:32
% yy
% im_structure =load(fullfile(pathstr, 'shuju1', imglist(yy).name));
% S = im_structure.b;
% [M,N,L] = size(S);
% S_bar = hyperConvert2D(S);
% hyper= par.H(S_bar);
% Y_h = hyperConvert3D(hyper, M/sf, N/sf);
% Y = hyperConvert3D((F*S_bar), M, N);
% K=160;
% C=0.012;
% t0=clock;
% Z = LTTR_FUS(Y_h,Y,F,K,C, par.fft_B,sf,S);
% t4(yy)=etime(clock,t0)
% [psnr4(yy),rmse4(yy), ergas4(yy), sam4(yy), uiqi4(yy),ssim4(yy),DD4(yy),CC4(yy)] = quality_assessment(double(im2uint8(S)), double(im2uint8(Z)), 0, 1.0/sf);
% end
im_structure =load('.\data\face_ms.mat');
S = im_structure.b;
S=S(:,:,3:31);
[M,N,L] = size(S);
S_bar = hyperConvert2D(S);
hyper= par.H(S_bar);
Y_h = hyperConvert3D(hyper, M/sf, N/sf);
Y = hyperConvert3D((F*S_bar), M, N);
para.K=160;
para.eta=1e-2;
t0=clock;
Z = LTTR_FUS(Y_h,Y,F,para.K,para.eta, par.fft_B,sf,S);
t4=etime(clock,t0)
[psnr4,rmse4, ergas4, sam4, uiqi4,ssim4,DD4,CC4] = quality_assessment(double(im2uint8(S)), double(im2uint8(Z)), 0, 1.0/sf);