-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathmodellib.py
856 lines (709 loc) · 24.5 KB
/
modellib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
from tensorflow.python.framework import ops
from utils import logger
import numpy as np
import tensorflow as tf
hungarian_module = None
log = logger.get()
# Register gradient for Hungarian algorithm.
ops.NoGradient("Hungarian")
def get_device_fn(device):
"""Choose device for different ops."""
OPS_ON_CPU = set([
'ResizeBilinear', 'ResizeBilinearGrad', 'Mod', 'Hungarian',
'SparseToDense', 'Print', 'Gather', 'Reverse'
])
def _device_fn(op):
if op.type in OPS_ON_CPU:
return "/cpu:0"
else:
return device
return _device_fn
def get_identity_match(num_ex, timespan, s_gt):
zeros = tf.zeros(tf.pack([num_ex, timespan, timespan]))
eye = tf.expand_dims(tf.constant(np.eye(timespan), dtype='float32'), 0)
mask_x = tf.expand_dims(s_gt, 1)
mask_y = tf.expand_dims(s_gt, 2)
match = zeros + eye
match = match * mask_x * mask_y
return match
def f_cum_min(s, d):
"""Calculates cumulative minimum.
Args:
s: Input matrix [B, D].
d: Second dim.
Returns:
s_min: [B, D], cumulative minimum across the second dim.
"""
s_min_list = [None] * d
s_min_list[0] = s[:, 0:1]
for ii in range(1, d):
s_min_list[ii] = tf.minimum(s_min_list[ii - 1], s[:, ii:ii + 1])
return tf.concat(1, s_min_list)
def f_cum_max(s, d):
"""Calculates cumulative maximum.
Args:
s: Input matrix [B, D].
d: Second dim.
Returns:
s_max: [B, D], cumulative maximum across the second dim, reversed.
"""
s_max_list = [None] * d
s_max_list[-1] = s[:, d - 1:d]
for ii in range(d - 2, -1, -1):
s_max_list[ii] = tf.maximum(s_max_list[ii + 1], s[:, ii:ii + 1])
return tf.concat(1, s_max_list)
def f_dice(a, b, timespan, pairwise=False):
"""Computes DICE score.
Args:
a: [B, N, H, W], or [N, H, W], or [H, W]
b: [B, N, H, W], or [N, H, W], or [H, W]
in pairwise mode, the second dimension can be different,
e.g. [B, M, H, W], or [M, H, W], or [H, W]
pairwise: whether the inputs are already aligned, outputs [B, N] or
the inputs are orderless, outputs [B, N, M].
"""
if pairwise:
# N * [B, 1, M]
y_list = [None] * timespan
# [B, N, H, W] => [B, N, 1, H, W]
a = tf.expand_dims(a, 2)
# [B, N, 1, H, W] => N * [B, 1, 1, H, W]
a_list = tf.split(1, timespan, a)
# [B, M, H, W] => [B, 1, M, H, W]
b = tf.expand_dims(b, 1)
card_b = tf.reduce_sum(b + 1e-5, [3, 4])
for ii in range(timespan):
# [B, 1, M]
y_list[ii] = 2 * f_inter(a_list[ii], b) / \
(tf.reduce_sum(a_list[ii] + 1e-5, [3, 4]) + card_b)
# N * [B, 1, M] => [B, N, M]
return tf.concat(1, y_list)
else:
card_a = tf.reduce_sum(a + 1e-5, _get_reduction_indices(a))
card_b = tf.reduce_sum(b + 1e-5, _get_reduction_indices(b))
return 2 * f_inter(a, b) / (card_a + card_b)
def f_inter(a, b):
"""Computes intersection."""
reduction_indices = _get_reduction_indices(a)
return tf.reduce_sum(a * b, reduction_indices=reduction_indices)
def f_union(a, b, eps=1e-5):
"""Computes union."""
reduction_indices = _get_reduction_indices(a)
return tf.reduce_sum(
a + b - (a * b) + eps, reduction_indices=reduction_indices)
def _get_reduction_indices(a):
"""Gets the list of axes to sum over."""
dim = tf.shape(tf.shape(a))
return tf.concat(0, [dim - 2, dim - 1])
def f_iou(a, b, timespan=None, pairwise=False):
"""
Computes IOU score.
Args:
a: [B, N, H, W], or [N, H, W], or [H, W]
b: [B, N, H, W], or [N, H, W], or [H, W]
in pairwise mode, the second dimension can be different,
e.g. [B, M, H, W], or [M, H, W], or [H, W]
pairwise: whether the inputs are already aligned, outputs [B, N] or
the inputs are orderless, outputs [B, N, M].
Returns:
iou: [B, N]
"""
if pairwise:
# N * [B, 1, M]
y_list = [None] * timespan
# [B, N, H, W] => [B, N, 1, H, W]
a = tf.expand_dims(a, 2)
# [B, N, 1, H, W] => N * [B, 1, 1, H, W]
a_list = tf.split(1, timespan, a)
# [B, M, H, W] => [B, 1, M, H, W]
b = tf.expand_dims(b, 1)
for ii in range(timespan):
# [B, 1, M]
y_list[ii] = f_inter(a_list[ii], b) / f_union(a_list[ii], b)
# N * [B, 1, M] => [B, N, M]
return tf.concat(1, y_list)
else:
return f_inter(a, b) / f_union(a, b)
def f_iou_pair_new(a, b):
"""
a: [B, N, H, W]
b: [B, N, H, W]
"""
a = tf.tile(tf.expand_dims(a, 2), tf.pack([1, 1, tf.shape(b)[1], 1, 1]))
b = tf.expand_dims(b, 1)
inter = tf.reduce_sum(a * b, [3, 4])
union = tf.reduce_sum(a + b, [3, 4])
union = tf.maximum(union - inter, 1)
return inter / union
def f_iou_all(a, b):
"""Computes total IOU score
Args:
a: Any shape
b: Any shape
Returns:
iou: float
"""
inter = tf.reduce_sum(a * b)
union = tf.reduce_sum(a) + tf.reduce_sum(b) - inter + 1e-5
return inter / union
def f_inter_box(top_left_a, bot_right_a, top_left_b, bot_right_b):
"""Computes intersection area with boxes.
Args:
top_left_a: [B, T, 2] or [B, 2]
bot_right_a: [B, T, 2] or [B, 2]
top_left_b: [B, T, 2] or [B, 2]
bot_right_b: [B, T, 2] or [B, 2]
Returns:
area: [B, T]
"""
top_left_max = tf.maximum(top_left_a, top_left_b)
bot_right_min = tf.minimum(bot_right_a, bot_right_b)
ndims = tf.shape(tf.shape(top_left_a))
# Check if the resulting box is valid.
overlap = tf.to_float(top_left_max < bot_right_min)
overlap = tf.reduce_prod(overlap, ndims - 1)
area = tf.reduce_prod(bot_right_min - top_left_max, ndims - 1)
area = overlap * tf.abs(area)
return area
def f_iou_box(top_left_a, bot_right_a, top_left_b, bot_right_b):
"""Compute IOU of boxes.
Args:
top_left_a: [B, T, 2]
bot_right_a: [B, T, 2]
top_left_b: [B, T, 2]
bot_right_b: [B, T, 2]
Returns:
iou: [B, T] or [B]
"""
y1A = top_left_a[:, :, 0]
x1A = top_left_a[:, :, 1]
y2A = bot_right_a[:, :, 0]
x2A = bot_right_a[:, :, 1]
y1B = top_left_b[:, :, 0]
x1B = top_left_b[:, :, 1]
y2B = bot_right_b[:, :, 0]
x2B = bot_right_b[:, :, 1]
# compute intersection
x1_max = tf.maximum(x1A, x1B)
y1_max = tf.maximum(y1A, y1B)
x2_min = tf.minimum(x2A, x2B)
y2_min = tf.minimum(y2A, y2B)
overlap_flag = tf.to_float(x1_max < x2_min) * tf.to_float(y1_max < y2_min)
overlap_area = overlap_flag * (x2_min - x1_max) * (y2_min - y1_max)
# compute union
areaA = (x2A - x1A) * (y2A - y1A)
areaB = (x2B - x1B) * (y2B - y1B)
union_area = areaA + areaB - overlap_area
return tf.div(overlap_area, union_area)
def f_iou_box_old(top_left_a, bot_right_a, top_left_b, bot_right_b):
"""Computes IoU of boxes.
Args:
top_left_a: [B, T, 2] or [B, 2]
bot_right_a: [B, T, 2] or [B, 2]
top_left_b: [B, T, 2] or [B, 2]
bot_right_b: [B, T, 2] or [B, 2]
Returns:
iou: [B, T]
"""
inter_area = f_inter_box(top_left_a, bot_right_a, top_left_b, bot_right_b)
inter_area = tf.maximum(inter_area, 1e-6)
ndims = tf.shape(tf.shape(top_left_a))
# area_a = tf.reduce_prod(bot_right_a - top_left_a, ndims - 1)
# area_b = tf.reduce_prod(bot_right_b - top_left_b, ndims - 1)
check_a = tf.reduce_prod(tf.to_float(top_left_a < bot_right_a), ndims - 1)
area_a = check_a * tf.reduce_prod(bot_right_a - top_left_a, ndims - 1)
check_b = tf.reduce_prod(tf.to_float(top_left_b < bot_right_b), ndims - 1)
area_b = check_b * tf.reduce_prod(bot_right_b - top_left_b, ndims - 1)
union_area = (area_a + area_b - inter_area + 1e-5)
union_area = tf.maximum(union_area, 1e-5)
iou = inter_area / union_area
iou = tf.maximum(iou, 1e-5)
iou = tf.minimum(iou, 1.0)
return iou
def f_coverage(iou):
"""Coverage function proposed in [1]
[1] N. Silberman, D. Sontag, R. Fergus. Instance segmentation of indoor
scenes using a coverage loss. ECCV 2015.
Args:
iou: [B, N, N]. Pairwise IoU.
"""
return tf.reduce_max(iou, [1])
def f_coverage_weight(y_gt):
"""Compute the normalized weight for each groundtruth instance."""
# [B, T]
y_gt_sum = tf.reduce_sum(y_gt, [2, 3])
# Plus one to avoid dividing by zero.
# The resulting weight will be zero for any zero cardinality instance.
# [B, 1]
y_gt_sum_sum = tf.reduce_sum(
y_gt_sum, [1], keep_dims=True) + tf.to_float(tf.equal(y_gt_sum, 0))
# [B, T]
return y_gt_sum / y_gt_sum_sum
def f_weighted_coverage(iou, y_gt):
"""Weighted coverage score.
Args:
iou: [B, N, N]. Pairwise IoU.
y_gt: [B, N, H, W]. Groundtruth segmentations.
"""
cov = f_coverage(iou)
wt = f_coverage_weight(y_gt)
num_ex = tf.to_float(tf.shape(y_gt)[0])
return tf.reduce_sum(cov * wt) / num_ex
def f_unweighted_coverage(iou, count):
"""Unweighted coverage score.
Args:
iou: [B, N, N]. Pairwise IoU.
"""
# [B, N]
cov = f_coverage(iou)
num_ex = tf.to_float(tf.shape(iou)[0])
return tf.reduce_sum(tf.reduce_sum(cov, [1]) / count) / num_ex
def f_conf_loss(s_out, match, timespan, use_cum_min=True):
"""Loss function for confidence score sequence.
Args:
s_out:
match:
use_cum_min:
"""
s_out_shape = tf.shape(s_out)
num_ex = tf.to_float(s_out_shape[0])
max_num_obj = tf.to_float(s_out_shape[1])
match_sum = tf.reduce_sum(match, reduction_indices=[2])
# Loss for confidence scores.
if use_cum_min:
# [B, N]
s_out_min = f_cum_min(s_out, timespan)
s_out_max = f_cum_max(s_out, timespan)
# [B, N]
s_bce = f_bce_minmax(s_out_min, s_out_max, match_sum)
else:
s_bce = f_bce(s_out, match_sum)
loss = tf.reduce_sum(s_bce) / num_ex / max_num_obj
return loss
def f_sem_loss(s_out,
match,
c_gt,
timespan,
num_semantic_classes,
use_cum_min=True):
# General monotonic score loss.
c_loss = f_conf_loss(
1 - s_out[:, :, 0], match, timespan, use_cum_min=use_cum_min)
# Match [B, T, T]
# C_gt [B, T, C] => [B, 1, T, C]
# C_gt' [B, T, T] * [B, 1, T, C] = [B, T, T, C] => [B, T, C]
m2 = tf.tile(tf.expand_dims(match, 3), [1, 1, 1, num_semantic_classes])
c_gt2 = tf.reduce_sum(m2 * tf.expand_dims(c_gt, 1), [2])
s_out_shape = tf.shape(s_out)
num_ex = tf.to_float(s_out_shape[0])
max_num_obj = tf.to_float(s_out_shape[1])
s_loss = tf.reduce_sum(f_ce(s_out, c_gt2)) / num_ex / max_num_obj
return c_loss + s_loss
# return s_loss
def f_greedy_match(score, matched):
"""Compute greedy matching given the IOU, and matched.
Args:
score: [B, N] relatedness score, positive.
matched: [B, N] binary mask
Returns:
match: [B, N] binary mask
"""
score = score * (1.0 - matched)
max_score = tf.reshape(tf.reduce_max(score, reduction_indices=[1]), [-1, 1])
match = tf.to_float(tf.equal(score, max_score))
match_sum = tf.reshape(tf.reduce_sum(match, reduction_indices=[1]), [-1, 1])
return match / match_sum
def f_segm_match(iou, s_gt):
"""Matching between segmentation output and groundtruth.
Args:
y_out: [B, T, H, W], output segmentations
y_gt: [B, T, H, W], groundtruth segmentations
s_gt: [B, T], groudtruth score sequence
"""
global hungarian_module
if hungarian_module is None:
mod_name = './hungarian.so'
hungarian_module = tf.load_op_library(mod_name)
log.info('Loaded library "{}"'.format(mod_name))
# Mask X, [B, M] => [B, 1, M]
mask_x = tf.expand_dims(s_gt, dim=1)
# Mask Y, [B, M] => [B, N, 1]
mask_y = tf.expand_dims(s_gt, dim=2)
iou_mask = iou * mask_x * mask_y
# Keep certain precision so that we can get optimal matching within
# reasonable time.
eps = 1e-5
precision = 1e6
iou_mask = tf.round(iou_mask * precision) / precision
match_eps = hungarian_module.hungarian(iou_mask + eps)[0]
# [1, N, 1, 1]
s_gt_shape = tf.shape(s_gt)
num_segm_out = s_gt_shape[1]
num_segm_out_mul = tf.pack([1, num_segm_out, 1])
# Mask the graph algorithm output.
match = match_eps * mask_x * mask_y
return match
def f_ce(y_out, y_gt):
"""Multiclass cross entropy."""
eps = 1e-5
return -y_gt * tf.log(y_out + eps)
def f_bce(y_out, y_gt):
"""Binary cross entropy."""
eps = 1e-5
return -y_gt * tf.log(y_out + eps) - (1 - y_gt) * tf.log(1 - y_out + eps)
def f_bce_minmax(y_out_min, y_out_max, y_gt):
"""Binary cross entropy (encourages monotonic decreasing).
Use minimum (cumulative from start) to compare against 1.
Use maximum (cumulative till end) to compare against 0.
"""
eps = 1e-5
return -y_gt * tf.log(y_out_min + eps) - (1 - y_gt
) * tf.log(1 - y_out_max + eps)
def f_match_loss(y_out, y_gt, match, timespan, loss_fn, model=None):
"""Binary cross entropy with matching.
Args:
y_out: [B, N, H, W] or [B, N, D]
y_gt: [B, N, H, W] or [B, N, D]
match: [B, N, N]
match_count: [B]
timespan: N
loss_fn:
"""
# N * [B, 1, H, W]
y_out_list = tf.split(1, timespan, y_out)
# N * [B, 1, N]
match_list = tf.split(1, timespan, match)
err_list = [None] * timespan
shape = tf.shape(y_out)
num_ex = tf.to_float(shape[0])
num_dim = tf.to_float(tf.reduce_prod(tf.to_float(shape[2:])))
sshape = tf.size(shape)
# [B, N, M] => [B, N]
match_sum = tf.reduce_sum(match, reduction_indices=[2])
# [B, N] => [B]
match_count = tf.reduce_sum(match_sum, reduction_indices=[1])
match_count = tf.maximum(match_count, 1)
for ii in range(timespan):
# [B, 1, H, W] * [B, N, H, W] => [B, N, H, W] => [B, N]
# [B, N] * [B, N] => [B]
# [B] => [B, 1]
red_idx = tf.range(2, sshape)
err_list[ii] = tf.expand_dims(
tf.reduce_sum(
tf.reduce_sum(loss_fn(y_out_list[ii], y_gt), red_idx) *
tf.reshape(match_list[ii], [-1, timespan]), [1]), 1)
# N * [B, 1] => [B, N] => [B]
err_total = tf.reduce_sum(tf.concat(1, err_list), reduction_indices=[1])
return tf.reduce_sum(err_total / match_count) / num_ex / num_dim
def f_count_acc(s_out, s_gt):
"""Counting accuracy.
Args:
s_out:
s_gt:
"""
num_ex = tf.to_float(tf.shape(s_out)[0])
count_out = tf.reduce_sum(tf.to_float(s_out > 0.5), reduction_indices=[1])
count_gt = tf.reduce_sum(s_gt, reduction_indices=[1])
count_acc = tf.reduce_sum(tf.to_float(tf.equal(count_out, count_gt))) / num_ex
return count_acc
def f_dic(s_out, s_gt, abs=False):
"""Difference in count.
Args:
s_out:
s_gt:
"""
num_ex = tf.to_float(tf.shape(s_out)[0])
count_out = tf.reduce_sum(tf.to_float(s_out > 0.5), reduction_indices=[1])
count_gt = tf.reduce_sum(s_gt, reduction_indices=[1])
count_diff = count_out - count_gt
if abs:
count_diff = tf.abs(count_diff)
count_diff = tf.reduce_sum(tf.to_float(count_diff)) / num_ex
return count_diff
def f_huber(y_out, y_gt, threshold=1.0):
"""Huber loss. Smooth combination of L2 and L1 loss for robustness."""
size = tf.size(y_out)
err = y_out - y_gt
ind = tf.to_float(err <= 1)
squared_err = 0.5 * err * err
l1_err = tf.abs(err) - (threshold - 0.5 * (threshold**2))
huber = squared_err * ind + l1_err * (1 - ind)
return huber
def f_squared_err(y_out, y_gt):
"""Mean squared error (L2) loss."""
err = y_out - y_gt
squared_err = 0.5 * err * err
return squared_err
def build_skip_conn_inner(cnn_channels, h_cnn, x):
"""Build skip connection."""
skip = [None]
skip_ch = [0]
for jj, layer in enumerate(h_cnn[-2::-1] + [x]):
skip.append(layer_reshape)
ch_idx = len(cnn_channels) - jj - 2
skip_ch.append(cnn_channels[ch_idx])
return skip, skip_ch
def build_skip_conn(cnn_channels, h_cnn, x, timespan):
"""Build skip connection."""
skip = [None]
skip_ch = [0]
for jj, layer in enumerate(h_cnn[-2::-1] + [x]):
ss = tf.shape(layer)
zeros = tf.zeros(tf.pack([ss[0], timespan, ss[1], ss[2], ss[3]]))
new_shape = tf.pack([ss[0] * timespan, ss[1], ss[2], ss[3]])
layer_reshape = tf.reshape(tf.expand_dims(layer, 1) + zeros, new_shape)
skip.append(layer_reshape)
ch_idx = len(cnn_channels) - jj - 2
skip_ch.append(cnn_channels[ch_idx])
return skip, skip_ch
def build_skip_conn_attn(cnn_channels, h_cnn_time, x_time, timespan):
"""Build skip connection for attention based model."""
skip = [None]
skip_ch = [0]
nlayers = len(h_cnn_time[0])
timespan = len(h_cnn_time)
for jj in range(nlayers):
lidx = nlayers - jj - 2
if lidx >= 0:
ll = [h_cnn_time[tt][lidx] for tt in range(timespan)]
else:
ll = x_time
layer = tf.concat(1, [tf.expand_dims(l, 1) for l in ll])
ss = tf.shape(layer)
layer = tf.reshape(layer, tf.pack([-1, ss[2], ss[3], ss[4]]))
skip.append(layer)
ch_idx = lidx + 1
skip_ch.append(cnn_channels[ch_idx])
return skip, skip_ch
def get_gaussian_filter(center, size, lg_var, image_size, filter_size):
"""Get Gaussian-based attention filter along one dimension
Args:
center: center of one dimension (mean), [B]
delta: delta of one dimension (size), [B]
lg_var: variance of the filter, [B]
image_size: image size of one dimension, [B]
filter_size: filter size of one dimension, [B]
"""
# [1, 1, F].
span_filter = tf.to_float(tf.reshape(tf.range(filter_size), [1, 1, -1]))
# [B, 1, 1]
center = tf.reshape(center, [-1, 1, 1])
size = tf.reshape(size, [-1, 1, 1])
# [B, 1, 1] + [B, 1, 1] * [1, F, 1] = [B, 1, F]
# mu = center + size / filter_size * (span_filter - (filter_size - 1) / 2.0)
mu = center + (size + 1) / filter_size * \
(span_filter - (filter_size - 1) / 2.0)
# [B, 1, 1]
lg_var = tf.reshape(lg_var, [-1, 1, 1])
# [1, L, 1]
span = tf.to_float(
tf.reshape(tf.range(image_size), tf.pack([1, image_size, 1])))
# [1, L, 1] - [B, 1, F] = [B, L, F]
filt = tf.mul(1 / tf.sqrt(tf.exp(lg_var)) / tf.sqrt(2 * np.pi),
tf.exp(-0.5 * (span - mu) * (span - mu) / tf.exp(lg_var)))
return filt
def extract_patch(x, f_y, f_x, nchannels, normalize=False):
"""
Args:
x: [B, H, W, D]
f_y: [B, H, FH]
f_x: [B, W, FH]
nchannels: D
Returns:
patch: [B, FH, FW]
"""
patch = [None] * nchannels
fsize_h = tf.shape(f_y)[2]
fsize_w = tf.shape(f_x)[2]
hh = tf.shape(x)[1]
ww = tf.shape(x)[2]
for dd in range(nchannels):
# [B, H, W]
x_ch = tf.reshape(
tf.slice(x, [0, 0, 0, dd], [-1, -1, -1, 1]), tf.pack([-1, hh, ww]))
patch[dd] = tf.reshape(
tf.batch_matmul(
tf.batch_matmul(
f_y, x_ch, adj_x=True), f_x),
tf.pack([-1, fsize_h, fsize_w, 1]))
return tf.concat(3, patch)
def get_gt_attn(y_gt,
filter_height,
filter_width,
padding_ratio=0.0,
center_shift_ratio=0.0,
min_padding=10.0):
"""Get groundtruth attention box given segmentation."""
top_left, bot_right, box = get_gt_box(
y_gt,
padding_ratio=padding_ratio,
center_shift_ratio=center_shift_ratio,
min_padding=min_padding)
ctr, size = get_box_ctr_size(top_left, bot_right)
# lg_var = tf.zeros(tf.shape(ctr)) + 1.0
lg_var = get_normalized_var(size, filter_height, filter_width)
lg_gamma = get_normalized_gamma(size, filter_height, filter_width)
return ctr, size, lg_var, lg_gamma, box, top_left, bot_right
def get_gt_box(y_gt,
padding_ratio=0.0,
center_shift_ratio=0.0,
min_padding=10.0):
"""Get groundtruth bounding box given segmentation.
Current only support [B, T, H, W] as input!!!
Args:
y_gt: Groundtruth segmentation [B, T, H, W], or [B, H, W]
Returns:
top_left: Bounding box top left coordinates [B, T, 2], or [B, 2]
bot_right: Bounding box bottom right coordinates [B, T, 2], or [B, 2]
"""
s = tf.shape(y_gt)
# [B, T, H, W, 2]
idx = get_idx_map(s)
y_gt_not_zero = tf.to_float(tf.reduce_sum(y_gt, [2, 3]) > 0)
y_gt_not_zero = tf.expand_dims(y_gt_not_zero, 2)
idx_min = idx + tf.expand_dims((1.0 - y_gt) * tf.to_float(s[2] * s[3]), 4)
idx_max = idx * tf.expand_dims(y_gt, 4)
# [B, T, 2]
top_left = tf.reduce_min(idx_min, reduction_indices=[2, 3])
bot_right = tf.reduce_max(idx_max, reduction_indices=[2, 3])
# Enlarge the groundtruth box by some padding.
size = bot_right - top_left
top_left += center_shift_ratio * size
top_left -= tf.maximum(padding_ratio * size, min_padding)
bot_right += center_shift_ratio * size
bot_right += tf.maximum(padding_ratio * size, min_padding)
box = get_filled_box_idx(idx, top_left, bot_right)
# If the segmentation is zero, then fix to top left corner.
top_left *= y_gt_not_zero
bot_right = y_gt_not_zero * bot_right + \
(1 - y_gt_not_zero) * (2 * min_padding)
return top_left, bot_right, box
def get_idx_map(shape):
"""Get index map for a image.
Args:
shape: [B, T, H, W] or [B, H, W]
Returns:
idx: [B, T, H, W, 2], or [B, H, W, 2]
"""
s = shape
ndims = tf.shape(s)
wdim = ndims - 1
hdim = ndims - 2
idx_shape = tf.concat(0, [s, tf.constant([1])])
ones_h = tf.ones(hdim - 1, dtype='int32')
ones_w = tf.ones(wdim - 1, dtype='int32')
h_shape = tf.concat(0, [ones_h, tf.constant([-1]), tf.constant([1, 1])])
w_shape = tf.concat(0, [ones_w, tf.constant([-1]), tf.constant([1])])
idx_y = tf.zeros(idx_shape, dtype='float')
idx_x = tf.zeros(idx_shape, dtype='float')
h = tf.slice(s, ndims - 2, [1])
w = tf.slice(s, ndims - 1, [1])
idx_y += tf.reshape(tf.to_float(tf.range(h[0])), h_shape)
idx_x += tf.reshape(tf.to_float(tf.range(w[0])), w_shape)
idx = tf.concat(ndims[0], [idx_y, idx_x])
return idx
def get_filled_box_idx(idx, top_left, bot_right):
"""Fill a box with top left and bottom right coordinates.
Args:
idx: [B, T, H, W, 2] or [B, H, W, 2] or [H, W, 2]
top_left: [B, T, 2] or [B, 2] or [2]
bot_right: [B, T, 2] or [B, 2] or [2]
"""
ss = tf.shape(idx)
ndims = tf.shape(ss)
batch = tf.slice(ss, [0], ndims - 3)
coord_shape = tf.concat(0, [batch, tf.constant([1, 1, 2])])
top_left = tf.reshape(top_left, coord_shape)
bot_right = tf.reshape(bot_right, coord_shape)
lower = tf.reduce_prod(tf.to_float(idx >= top_left), ndims - 1)
upper = tf.reduce_prod(tf.to_float(idx <= bot_right), ndims - 1)
box = lower * upper
return box
def get_unnormalized_center(ctr_norm, inp_height, inp_width):
"""Get unnormalized center coordinates
Args:
ctr_norm: [B, T, 2] or [B, 2] or [2], normalized within range [-1, +1]
inp_height: int, image height
inp_width: int, image width
Returns:
ctr: [B, 2]
"""
img_size = tf.to_float(tf.pack([inp_height, inp_width]))
img_size = img_size / 2.0
ctr = (ctr_norm + 1.0) * img_size
return ctr
def get_normalized_center(ctr, inp_height, inp_width):
"""Get unnormalized center coordinates
Args:
ctr: [B, T, 2] or [B, 2] or [2]
inp_height: int, image height
inp_width: int, image width
Returns:
ctr: [B, 2], normalized within range [-1, +1]
"""
img_size = tf.to_float(tf.pack([inp_height, inp_width]))
img_size = img_size / 2.0
ctr = ctr / img_size - 1
return ctr
def get_normalized_var(size, filter_height, filter_width):
"""Get normalized variance.
Args:
size: [B, T, 2] or [B, 2] or [2]
filter_height: int
filter_width: int
Returns:
lg_var: [B, T, 2] or [B, 2] or [2]
"""
filter_size = tf.to_float(tf.pack([filter_height, filter_width]))
lg_var = tf.log(size) - tf.log(filter_size)
return lg_var
def get_normalized_gamma(size, filter_height, filter_width):
"""Get normalized gamma.
Args:
size: [B, T, 2] or [B, 2] or [2]
filter_height: int
filter_width: int
Returns:
lg_gamma: [B, T] or [B] or float
"""
rank = tf.shape(tf.shape(size))
filter_area = filter_height * filter_width
area = tf.reduce_prod(size, rank - 1)
lg_gamma = tf.log(float(filter_area)) - tf.log(area)
return lg_gamma
def get_unnormalized_size(lg_size, inp_height, inp_width):
"""Get unnormalized patch size.
Args:
lg_size: [B, T, 2] or [B, 2] or [2], logarithm of delta.
inp_height: int, image height.
inp_width: int, image width.
Returns:
size: [B, T, 2] or [B, 2] or [2], patch size.
"""
size = tf.exp(lg_size)
img_size = tf.to_float(tf.pack([inp_height, inp_width]))
size *= img_size
return size
def get_normalized_size(size, inp_height, inp_width):
"""Get normalized patch size.
Args:
patch: [B, 2], patch size.
inp_height: int, image height.
inp_width: int, image width.
patch_size: int patch size.
Returns:
lg_delta: [B, 2], logarithm of delta.
"""
img_size = tf.to_float(tf.pack([inp_height, inp_width]))
lg_size = tf.log(size / img_size)
return lg_size
def get_unnormalized_attn(ctr, lg_size, inp_height, inp_width):
"""Unnormalize the attention parameters to image size."""
ctr = get_unnormalized_center(ctr, inp_height, inp_width)
size = get_unnormalized_size(lg_size, inp_height, inp_width)
return ctr, size
def get_box_coord(ctr, size, truncate=True):
"""Get box coordinates given parameters."""
return ctr - size / 2.0, ctr + size / 2.0
def get_box_ctr_size(top_left, bot_right):
return (top_left + bot_right) / 2.0, (bot_right - top_left)