-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathbox_model.py
669 lines (597 loc) · 21.6 KB
/
box_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
import h5py
import image_ops as img
import nnlib as nn
import numpy as np
import tensorflow as tf
import modellib
from utils import logger
def get_model(opt):
"""The box model"""
log = logger.get()
model = {}
timespan = opt['timespan']
inp_height = opt['inp_height']
inp_width = opt['inp_width']
inp_depth = opt['inp_depth']
padding = opt['padding']
filter_height = opt['filter_height']
filter_width = opt['filter_width']
ctrl_cnn_filter_size = opt['ctrl_cnn_filter_size']
ctrl_cnn_depth = opt['ctrl_cnn_depth']
ctrl_cnn_pool = opt['ctrl_cnn_pool']
ctrl_rnn_hid_dim = opt['ctrl_rnn_hid_dim']
num_ctrl_mlp_layers = opt['num_ctrl_mlp_layers']
ctrl_mlp_dim = opt['ctrl_mlp_dim']
attn_box_padding_ratio = opt['attn_box_padding_ratio']
wd = opt['weight_decay']
use_bn = opt['use_bn']
box_loss_fn = opt['box_loss_fn']
base_learn_rate = opt['base_learn_rate']
learn_rate_decay = opt['learn_rate_decay']
steps_per_learn_rate_decay = opt['steps_per_learn_rate_decay']
pretrain_cnn = opt['pretrain_cnn']
if 'pretrain_net' in opt:
pretrain_net = opt['pretrain_net']
else:
pretrain_net = None
if 'freeze_pretrain_cnn' in opt:
freeze_pretrain_cnn = opt['freeze_pretrain_cnn']
else:
freeze_pretrain_cnn = True
squash_ctrl_params = opt['squash_ctrl_params']
clip_gradient = opt['clip_gradient']
fixed_order = opt['fixed_order']
num_ctrl_rnn_iter = opt['num_ctrl_rnn_iter']
num_glimpse_mlp_layers = opt['num_glimpse_mlp_layers']
if 'fixed_var' in opt:
fixed_var = opt['fixed_var']
else:
fixed_var = True
if 'use_iou_box' in opt:
use_iou_box = opt['use_iou_box']
else:
use_iou_box = False
if 'dynamic_var' in opt:
dynamic_var = opt['dynamic_var']
else:
dynamic_var = False
if 'num_semantic_classes' in opt:
num_semantic_classes = opt['num_semantic_classes']
else:
num_semantic_classes = 1
if 'add_d_out' in opt:
add_d_out = opt['add_d_out']
add_y_out = opt['add_y_out']
else:
add_d_out = False
add_y_out = False
rnd_hflip = opt['rnd_hflip']
rnd_vflip = opt['rnd_vflip']
rnd_transpose = opt['rnd_transpose']
rnd_colour = opt['rnd_colour']
############################
# Input definition
############################
# Input image, [B, H, W, D]
x = tf.placeholder(
'float', [None, inp_height, inp_width, inp_depth], name='x')
x_shape = tf.shape(x)
num_ex = x_shape[0]
# Groundtruth segmentation, [B, T, H, W]
y_gt = tf.placeholder(
'float', [None, timespan, inp_height, inp_width], name='y_gt')
# Groundtruth confidence score, [B, T]
s_gt = tf.placeholder('float', [None, timespan], name='s_gt')
if add_d_out:
d_in = tf.placeholder(
'float', [None, inp_height, inp_width, 8], name='d_in')
model['d_in'] = d_in
if add_y_out:
y_in = tf.placeholder(
'float', [None, inp_height, inp_width, num_semantic_classes],
name='y_in')
model['y_in'] = y_in
# Whether in training stage.
phase_train = tf.placeholder('bool', name='phase_train')
phase_train_f = tf.to_float(phase_train)
model['x'] = x
model['y_gt'] = y_gt
model['s_gt'] = s_gt
model['phase_train'] = phase_train
# Global step
global_step = tf.Variable(0.0, name='global_step')
###############################
# Random input transformation
###############################
# Either add both or add nothing.
assert (add_d_out and add_y_out) or (not add_d_out and not add_y_out)
if not add_d_out:
results = img.random_transformation(
x,
padding,
phase_train,
rnd_hflip=rnd_hflip,
rnd_vflip=rnd_vflip,
rnd_transpose=rnd_transpose,
rnd_colour=rnd_colour,
y=y_gt)
x, y_gt = results['x'], results['y']
else:
results = img.random_transformation(
x,
padding,
phase_train,
rnd_hflip=rnd_hflip,
rnd_vflip=rnd_vflip,
rnd_transpose=rnd_transpose,
rnd_colour=rnd_colour,
y=y_gt,
d=d_in,
c=y_in)
x, y_gt, d_in, y_in = results['x'], results['y'], results['d'], results['c']
model['d_in_trans'] = d_in
model['y_in_trans'] = y_in
model['x_trans'] = x
model['y_gt_trans'] = y_gt
############################
# Canvas: external memory
############################
canvas = tf.zeros(tf.pack([num_ex, inp_height, inp_width, 1]))
ccnn_inp_depth = inp_depth + 1
acnn_inp_depth = inp_depth + 1
if add_d_out:
ccnn_inp_depth += 8
acnn_inp_depth += 8
if add_y_out:
ccnn_inp_depth += num_semantic_classes
acnn_inp_depth += num_semantic_classes
############################
# Controller CNN definition
############################
ccnn_filters = ctrl_cnn_filter_size
ccnn_nlayers = len(ccnn_filters)
ccnn_channels = [ccnn_inp_depth] + ctrl_cnn_depth
ccnn_pool = ctrl_cnn_pool
ccnn_act = [tf.nn.relu] * ccnn_nlayers
ccnn_use_bn = [use_bn] * ccnn_nlayers
pt = pretrain_net or pretrain_cnn
if pt:
log.info('Loading pretrained weights from {}'.format(pt))
with h5py.File(pt, 'r') as h5f:
pt_cnn_nlayers = 0
# Assuming pt_cnn_nlayers is smaller than or equal to
# ccnn_nlayers.
for ii in range(ccnn_nlayers):
if 'attn_cnn_w_{}'.format(ii) in h5f:
cnn_prefix = 'attn_'
log.info('Loading attn_cnn_w_{}'.format(ii))
log.info('Loading attn_cnn_b_{}'.format(ii))
pt_cnn_nlayers += 1
elif 'cnn_w_{}'.format(ii) in h5f:
cnn_prefix = ''
log.info('Loading cnn_w_{}'.format(ii))
log.info('Loading cnn_b_{}'.format(ii))
pt_cnn_nlayers += 1
elif 'ctrl_cnn_w_{}'.format(ii) in h5f:
cnn_prefix = 'ctrl_'
log.info('Loading ctrl_cnn_w_{}'.format(ii))
log.info('Loading ctrl_cnn_b_{}'.format(ii))
pt_cnn_nlayers += 1
ccnn_init_w = [{
'w': h5f['{}cnn_w_{}'.format(cnn_prefix, ii)][:],
'b': h5f['{}cnn_b_{}'.format(cnn_prefix, ii)][:]
} for ii in range(pt_cnn_nlayers)]
for ii in range(pt_cnn_nlayers):
for tt in range(timespan):
for w in ['beta', 'gamma']:
ccnn_init_w[ii]['{}_{}'.format(w, tt)] = h5f[
'{}cnn_{}_{}_{}'.format(cnn_prefix, ii, tt, w)][:]
ccnn_frozen = [freeze_pretrain_cnn] * pt_cnn_nlayers
for ii in range(pt_cnn_nlayers, ccnn_nlayers):
ccnn_init_w.append(None)
ccnn_frozen.append(False)
else:
ccnn_init_w = None
ccnn_frozen = None
ccnn = nn.cnn(ccnn_filters,
ccnn_channels,
ccnn_pool,
ccnn_act,
ccnn_use_bn,
phase_train=phase_train,
wd=wd,
scope='ctrl_cnn',
model=model,
init_weights=ccnn_init_w,
frozen=ccnn_frozen)
h_ccnn = [None] * timespan
############################
# Controller RNN definition
############################
ccnn_subsample = np.array(ccnn_pool).prod()
crnn_h = inp_height / ccnn_subsample
crnn_w = inp_width / ccnn_subsample
crnn_dim = ctrl_rnn_hid_dim
canvas_dim = inp_height * inp_width / (ccnn_subsample**2)
glimpse_map_dim = crnn_h * crnn_w
glimpse_feat_dim = ccnn_channels[-1]
crnn_inp_dim = glimpse_feat_dim
pt = pretrain_net
if pt:
log.info('Loading pretrained controller RNN weights from {}'.format(pt))
h5f = h5py.File(pt, 'r')
crnn_init_w = {}
for w in [
'w_xi', 'w_hi', 'b_i', 'w_xf', 'w_hf', 'b_f', 'w_xu', 'w_hu', 'b_u',
'w_xo', 'w_ho', 'b_o'
]:
key = 'ctrl_lstm_{}'.format(w)
crnn_init_w[w] = h5f[key][:]
crnn_frozen = None
else:
crnn_init_w = None
crnn_frozen = None
crnn_state = [None] * (timespan + 1)
crnn_glimpse_map = [None] * timespan
crnn_g_i = [None] * timespan
crnn_g_f = [None] * timespan
crnn_g_o = [None] * timespan
h_crnn = [None] * timespan
crnn_state[-1] = tf.zeros(tf.pack([num_ex, crnn_dim * 2]))
crnn_cell = nn.lstm(
crnn_inp_dim,
crnn_dim,
wd=wd,
scope='ctrl_lstm',
init_weights=crnn_init_w,
frozen=crnn_frozen,
model=model)
############################
# Glimpse MLP definition
############################
gmlp_dims = [crnn_dim] * num_glimpse_mlp_layers + [glimpse_map_dim]
gmlp_act = [tf.nn.relu] * \
(num_glimpse_mlp_layers - 1) + [tf.nn.softmax]
gmlp_dropout = None
pt = pretrain_net
if pt:
log.info('Loading pretrained glimpse MLP weights from {}'.format(pt))
h5f = h5py.File(pt, 'r')
gmlp_init_w = [{
'w': h5f['glimpse_mlp_w_{}'.format(ii)][:],
'b': h5f['glimpse_mlp_b_{}'.format(ii)][:]
} for ii in range(num_glimpse_mlp_layers)]
gmlp_frozen = None
else:
gmlp_init_w = None
gmlp_frozen = None
gmlp = nn.mlp(gmlp_dims,
gmlp_act,
add_bias=True,
dropout_keep=gmlp_dropout,
phase_train=phase_train,
wd=wd,
scope='glimpse_mlp',
init_weights=gmlp_init_w,
frozen=gmlp_frozen,
model=model)
############################
# Controller MLP definition
############################
cmlp_dims = [crnn_dim] + [ctrl_mlp_dim] * \
(num_ctrl_mlp_layers - 1) + [9]
cmlp_act = [tf.nn.relu] * (num_ctrl_mlp_layers - 1) + [None]
cmlp_dropout = None
pt = pretrain_net
if pt:
log.info('Loading pretrained controller MLP weights from {}'.format(pt))
h5f = h5py.File(pt, 'r')
cmlp_init_w = [{
'w': h5f['ctrl_mlp_w_{}'.format(ii)][:],
'b': h5f['ctrl_mlp_b_{}'.format(ii)][:]
} for ii in range(num_ctrl_mlp_layers)]
cmlp_frozen = None
else:
cmlp_init_w = None
cmlp_frozen = None
cmlp = nn.mlp(cmlp_dims,
cmlp_act,
add_bias=True,
dropout_keep=cmlp_dropout,
phase_train=phase_train,
wd=wd,
scope='ctrl_mlp',
init_weights=cmlp_init_w,
frozen=cmlp_frozen,
model=model)
##########################
# Score MLP definition
##########################
pt = pretrain_net
if pt:
log.info('Loading score mlp weights from {}'.format(pt))
h5f = h5py.File(pt, 'r')
smlp_init_w = [{
'w': h5f['score_mlp_w_{}'.format(ii)][:],
'b': h5f['score_mlp_b_{}'.format(ii)][:]
} for ii in range(1)]
else:
smlp_init_w = None
smlp = nn.mlp([crnn_dim, num_semantic_classes], [None],
wd=wd,
scope='score_mlp',
init_weights=smlp_init_w,
model=model)
s_out = [None] * timespan
##########################
# Attention box
##########################
attn_ctr_norm = [None] * timespan
attn_lg_size = [None] * timespan
attn_lg_var = [None] * timespan
attn_ctr = [None] * timespan
attn_size = [None] * timespan
attn_top_left = [None] * timespan
attn_bot_right = [None] * timespan
attn_box = [None] * timespan
attn_box_lg_gamma = [None] * timespan
attn_box_gamma = [None] * timespan
const_ones = tf.ones(tf.pack([num_ex, filter_height, filter_width, 1]))
attn_box_beta = tf.constant([-5.0])
iou_soft_box = [None] * timespan
#############################
# Groundtruth attention box
#############################
attn_top_left_gt, attn_bot_right_gt, attn_box_gt = modellib.get_gt_box(
y_gt, padding_ratio=attn_box_padding_ratio, center_shift_ratio=0.0)
attn_ctr_gt, attn_size_gt = modellib.get_box_ctr_size(attn_top_left_gt,
attn_bot_right_gt)
attn_ctr_norm_gt = modellib.get_normalized_center(attn_ctr_gt, inp_height,
inp_width)
attn_lg_size_gt = modellib.get_normalized_size(attn_size_gt, inp_height,
inp_width)
##########################
# Groundtruth mix
##########################
grd_match_cum = tf.zeros(tf.pack([num_ex, timespan]))
##########################
# Computation graph
##########################
for tt in range(timespan):
# Controller CNN
ccnn_inp_list = [x, canvas]
if add_d_out:
ccnn_inp_list.append(d_in)
if add_y_out:
ccnn_inp_list.append(y_in)
ccnn_inp = tf.concat(3, ccnn_inp_list)
acnn_inp = ccnn_inp
h_ccnn[tt] = ccnn(ccnn_inp)
_h_ccnn = h_ccnn[tt]
h_ccnn_last = _h_ccnn[-1]
# Controller RNN [B, R1]
crnn_inp = tf.reshape(h_ccnn_last, [-1, glimpse_map_dim, glimpse_feat_dim])
crnn_state[tt] = [None] * (num_ctrl_rnn_iter + 1)
crnn_g_i[tt] = [None] * num_ctrl_rnn_iter
crnn_g_f[tt] = [None] * num_ctrl_rnn_iter
crnn_g_o[tt] = [None] * num_ctrl_rnn_iter
h_crnn[tt] = [None] * num_ctrl_rnn_iter
crnn_state[tt][-1] = tf.zeros(tf.pack([num_ex, crnn_dim * 2]))
crnn_glimpse_map[tt] = [None] * num_ctrl_rnn_iter
crnn_glimpse_map[tt][0] = tf.ones(tf.pack([num_ex, glimpse_map_dim, 1
])) / glimpse_map_dim
# Inner glimpse RNN
for tt2 in range(num_ctrl_rnn_iter):
crnn_glimpse = tf.reduce_sum(crnn_inp * crnn_glimpse_map[tt][tt2], [1])
crnn_state[tt][tt2], crnn_g_i[tt][tt2], crnn_g_f[tt][tt2], \
crnn_g_o[tt][tt2] = \
crnn_cell(crnn_glimpse, crnn_state[tt][tt2 - 1])
h_crnn[tt][tt2] = tf.slice(crnn_state[tt][tt2], [0, crnn_dim],
[-1, crnn_dim])
h_gmlp = gmlp(h_crnn[tt][tt2])
if tt2 < num_ctrl_rnn_iter - 1:
crnn_glimpse_map[tt][tt2 + 1] = tf.expand_dims(h_gmlp[-1], 2)
ctrl_out = cmlp(h_crnn[tt][-1])[-1]
attn_ctr_norm[tt] = tf.slice(ctrl_out, [0, 0], [-1, 2])
attn_lg_size[tt] = tf.slice(ctrl_out, [0, 2], [-1, 2])
# Restrict to (-1, 1), (-inf, 0)
if squash_ctrl_params:
attn_ctr_norm[tt] = tf.tanh(attn_ctr_norm[tt])
attn_lg_size[tt] = -tf.nn.softplus(attn_lg_size[tt])
attn_ctr[tt], attn_size[tt] = modellib.get_unnormalized_attn(
attn_ctr_norm[tt], attn_lg_size[tt], inp_height, inp_width)
attn_box_lg_gamma[tt] = tf.slice(ctrl_out, [0, 7], [-1, 1])
if fixed_var:
attn_lg_var[tt] = tf.zeros(tf.pack([num_ex, 2]))
else:
attn_lg_var[tt] = modellib.get_normalized_var(attn_size[tt],
filter_height, filter_width)
if dynamic_var:
attn_lg_var[tt] = tf.slice(ctrl_out, [0, 4], [-1, 2])
attn_box_gamma[tt] = tf.reshape(
tf.exp(attn_box_lg_gamma[tt]), [-1, 1, 1, 1])
attn_top_left[tt], attn_bot_right[tt] = modellib.get_box_coord(
attn_ctr[tt], attn_size[tt])
# Initial filters (predicted)
filter_y = modellib.get_gaussian_filter(
attn_ctr[tt][:, 0], attn_size[tt][:, 0], attn_lg_var[tt][:, 0],
inp_height, filter_height)
filter_x = modellib.get_gaussian_filter(
attn_ctr[tt][:, 1], attn_size[tt][:, 1], attn_lg_var[tt][:, 1],
inp_width, filter_width)
filter_y_inv = tf.transpose(filter_y, [0, 2, 1])
filter_x_inv = tf.transpose(filter_x, [0, 2, 1])
# Attention box
attn_box[tt] = attn_box_gamma[tt] * modellib.extract_patch(
const_ones, filter_y_inv, filter_x_inv, 1)
attn_box[tt] = tf.sigmoid(attn_box[tt] + attn_box_beta)
attn_box[tt] = tf.reshape(attn_box[tt], [-1, 1, inp_height, inp_width])
if fixed_order:
_y_out = tf.expand_dims(y_gt[:, tt, :, :], 3)
else:
if use_iou_box:
iou_soft_box[tt] = modellib.f_iou_box(
tf.expand_dims(attn_top_left[tt], 1),
tf.expand_dims(attn_bot_right[tt], 1), attn_top_left_gt,
attn_bot_right_gt)
else:
iou_soft_box[tt] = modellib.f_inter(
attn_box[tt], attn_box_gt) / \
modellib.f_union(attn_box[tt], attn_box_gt, eps=1e-5)
grd_match = modellib.f_greedy_match(iou_soft_box[tt], grd_match_cum)
grd_match = tf.expand_dims(tf.expand_dims(grd_match, 2), 3)
_y_out = tf.expand_dims(tf.reduce_sum(grd_match * y_gt, 1), 3)
# Add independent uniform noise to groundtruth.
_noise = tf.random_uniform(
tf.pack([num_ex, inp_height, inp_width, 1]), 0, 0.3)
_y_out = _y_out - _y_out * _noise
canvas = tf.stop_gradient(tf.maximum(_y_out, canvas))
# canvas += tf.stop_gradient(_y_out)
# Scoring network
s_out[tt] = smlp(h_crnn[tt][-1])[-1]
if num_semantic_classes == 1:
s_out[tt] = tf.sigmoid(s_out[tt])
else:
s_out[tt] = tf.nn.softmax(s_out[tt])
#########################
# Model outputs
#########################
s_out = tf.concat(1, [tf.expand_dims(tmp, 1) for tmp in s_out])
if num_semantic_classes == 1:
s_out = s_out[:, :, 0]
model['s_out'] = s_out
attn_box = tf.concat(1, attn_box)
model['attn_box'] = attn_box
attn_top_left = tf.concat(1,
[tf.expand_dims(tmp, 1) for tmp in attn_top_left])
attn_bot_right = tf.concat(1,
[tf.expand_dims(tmp, 1) for tmp in attn_bot_right])
attn_ctr = tf.concat(1, [tf.expand_dims(tmp, 1) for tmp in attn_ctr])
attn_size = tf.concat(1, [tf.expand_dims(tmp, 1) for tmp in attn_size])
model['attn_top_left'] = attn_top_left
model['attn_bot_right'] = attn_bot_right
model['attn_ctr'] = attn_ctr
model['attn_size'] = attn_size
model['attn_ctr_norm_gt'] = attn_ctr_norm_gt
model['attn_lg_size_gt'] = attn_lg_size_gt
model['attn_top_left_gt'] = attn_top_left_gt
model['attn_bot_right_gt'] = attn_bot_right_gt
model['attn_box_gt'] = attn_box_gt
attn_ctr_norm = tf.concat(1,
[tf.expand_dims(tmp, 1) for tmp in attn_ctr_norm])
attn_lg_size = tf.concat(1, [tf.expand_dims(tmp, 1) for tmp in attn_lg_size])
model['attn_ctr_norm'] = attn_ctr_norm
model['attn_lg_size'] = attn_lg_size
attn_params = tf.concat(2, [attn_ctr_norm, attn_lg_size])
attn_params_gt = tf.concat(2, [attn_ctr_norm_gt, attn_lg_size_gt])
#########################
# Loss function
#########################
y_gt_shape = tf.shape(y_gt)
num_ex_f = tf.to_float(y_gt_shape[0])
max_num_obj = tf.to_float(y_gt_shape[1])
############################
# Box loss
############################
if fixed_order:
# [B, T] for fixed order.
iou_soft_box = modellib.f_iou(attn_box, attn_box_gt, pairwise=False)
else:
# [B, T, T] for matching.
iou_soft_box = tf.concat(
1, [tf.expand_dims(iou_soft_box[tt], 1) for tt in range(timespan)])
identity_match = modellib.get_identity_match(num_ex, timespan, s_gt)
if fixed_order:
match_box = identity_match
else:
match_box = modellib.f_segm_match(iou_soft_box, s_gt)
model['match_box'] = match_box
match_sum_box = tf.reduce_sum(match_box, reduction_indices=[2])
match_count_box = tf.reduce_sum(match_sum_box, reduction_indices=[1])
match_count_box = tf.maximum(1.0, match_count_box)
# [B] if fixed order, [B, T] if matching.
if fixed_order:
iou_soft_box_mask = iou_soft_box
else:
iou_soft_box_mask = tf.reduce_sum(iou_soft_box * match_box, [1])
iou_soft_box = tf.reduce_sum(iou_soft_box_mask, [1])
iou_soft_box = tf.reduce_sum(iou_soft_box / match_count_box) / num_ex_f
if box_loss_fn == 'mse':
box_loss = modellib.f_match_loss(
attn_params,
attn_params_gt,
match_box,
timespan,
modellib.f_squared_err,
model=model)
elif box_loss_fn == 'huber':
box_loss = modellib.f_match_loss(attn_params, attn_params_gt, match_box,
timespan, modellib.f_huber)
if box_loss_fn == 'iou':
box_loss = -iou_soft_box
elif box_loss_fn == 'wt_iou':
box_loss = -wt_iou_soft_box
elif box_loss_fn == 'wt_cov':
box_loss = -modellib.f_weighted_coverage(iou_soft_box, box_map_gt)
elif box_loss_fn == 'bce':
box_loss = modellib.f_match_loss(box_map, box_map_gt, match_box, timespan,
modellib.f_bce)
else:
raise Exception('Unknown box_loss_fn: {}'.format(box_loss_fn))
model['box_loss'] = box_loss
box_loss_coeff = tf.constant(1.0)
model['box_loss_coeff'] = box_loss_coeff
tf.add_to_collection('losses', box_loss_coeff * box_loss)
####################
# Score loss
####################
if num_semantic_classes == 1:
conf_loss = modellib.f_conf_loss(
s_out, match_box, timespan, use_cum_min=True)
else:
conf_loss = modellib.f_conf_loss(
1 - s_out[:, :, 0], match_box, timespan, use_cum_min=True)
model['conf_loss'] = conf_loss
conf_loss_coeff = tf.constant(1.0)
tf.add_to_collection('losses', conf_loss_coeff * conf_loss)
####################
# Total loss
####################
total_loss = tf.add_n(tf.get_collection('losses'), name='total_loss')
model['loss'] = total_loss
####################
# Optimizer
####################
learn_rate = tf.train.exponential_decay(
base_learn_rate,
global_step,
steps_per_learn_rate_decay,
learn_rate_decay,
staircase=True)
model['learn_rate'] = learn_rate
eps = 1e-7
optim = tf.train.AdamOptimizer(learn_rate, epsilon=eps)
gvs = optim.compute_gradients(total_loss)
capped_gvs = []
for grad, var in gvs:
if grad is not None:
capped_gvs.append((tf.clip_by_value(grad, -1, 1), var))
else:
capped_gvs.append((grad, var))
train_step = optim.apply_gradients(capped_gvs, global_step=global_step)
model['train_step'] = train_step
####################
# Glimpse
####################
# T * T2 * [B, H' * W'] => [B, T, T2, H', W']
crnn_glimpse_map = tf.concat(1, [
tf.expand_dims(
tf.concat(1, [
tf.expand_dims(crnn_glimpse_map[tt][tt2], 1)
for tt2 in range(num_ctrl_rnn_iter)
]), 1) for tt in range(timespan)
])
crnn_glimpse_map = tf.reshape(
crnn_glimpse_map, [-1, timespan, num_ctrl_rnn_iter, crnn_h, crnn_w])
model['ctrl_rnn_glimpse_map'] = crnn_glimpse_map
return model