This repository was archived by the owner on Sep 19, 2024. It is now read-only.
forked from spin-spin-ryo/SubspaceQuasiNewton
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
142 lines (129 loc) · 3.99 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import sys
import numpy as np
from environments import DTYPE, NOCONSTRAINTS, RESULTPATH
from numerical_experiment import get_objects_from_config
from utils.logger import logger
from utils.save_func import (
get_path_form_params,
load_config,
plot_results,
save_result_json,
)
# PROXIMAL_METHODS = [PROXIMAL_GRADIENT_DESCENT, ACCELERATED_PROXIMAL_GRADIENT_DESCENT]
# QUASI_NEWTONS = [BFGS_QUASI_NEWTON, RANDOM_BFGS, SUBSPACE_QUASI_NEWTON]
PROXIMAL_METHODS = []
QUASI_NEWTONS = []
def run_numerical_experiment(config):
iteration = config["iteration"]
log_interval = config["log_interval"]
algorithms_config = config["algorithms"]
objectives_config = config["objective"]
constraints_config = config["constraints"]
solver_name = algorithms_config["solver_name"]
objective_name = objectives_config["objective_name"]
constraints_name = constraints_config["constraints_name"]
use_prox = solver_name in PROXIMAL_METHODS
(
solver,
solver_params,
f,
function_properties,
con,
constraints_properties,
x0,
prox,
) = get_objects_from_config(config)
f.set_type(DTYPE)
x0 = x0.astype(DTYPE)
logger.info(f"dimension:{f.get_dimension()}")
solver_dir = get_path_form_params(solver_params)
func_dir = get_path_form_params(function_properties)
if constraints_name != NOCONSTRAINTS:
con_dir = get_path_form_params(constraints_properties)
save_path = os.path.join(
RESULTPATH,
objective_name,
func_dir,
constraints_name,
con_dir,
solver_name,
solver_dir,
)
con.set_type(DTYPE)
if con.is_feasible(x0):
logger.info("Initial point is feasible.")
else:
logger.info("Initial point is not feasible")
return
else:
save_path = os.path.join(
RESULTPATH,
objective_name,
func_dir,
constraints_name,
solver_name,
solver_dir,
)
os.makedirs(save_path, exist_ok=True)
logger.info(save_path)
# 実験開始
logger.info("Run Numerical Experiments")
if constraints_name != NOCONSTRAINTS:
if use_prox:
solver.run(
f=f,
prox=prox,
x0=x0,
iteration=iteration,
params=solver_params,
save_path=save_path,
log_interval=log_interval,
)
else:
solver.run(
f=f,
con=con,
x0=x0,
iteration=iteration,
params=solver_params,
save_path=save_path,
log_interval=log_interval,
)
else:
if use_prox:
solver.run(
f=f,
prox=prox,
x0=x0,
iteration=iteration,
params=solver_params,
save_path=save_path,
log_interval=log_interval,
)
else:
solver.run(
f=f,
x0=x0,
iteration=iteration,
params=solver_params,
save_path=save_path,
log_interval=log_interval,
)
solver.save_results(save_path)
nonzero_index = solver.save_values["func_values"] != 0
min_f_value = np.min(solver.save_values["func_values"][nonzero_index])
execution_time = solver.save_values["time"][-1]
values_dict = {"min_value": min_f_value, "time": execution_time}
plot_results(save_path, solver.save_values)
save_result_json(
save_path=os.path.join(save_path, "result.json"),
values_dict=values_dict,
iteration=iteration,
)
logger.info("Finish Numerical Experiment")
if __name__ == "__main__":
args = sys.argv
config_path = args[1]
config = load_config(config_path)
run_numerical_experiment(config)