Skip to content

Commit fcd9c95

Browse files
styling and linting
1 parent 71081e7 commit fcd9c95

File tree

3 files changed

+25
-17
lines changed

3 files changed

+25
-17
lines changed

redisvl/vectorize/base.py

Lines changed: 6 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,8 @@
11
from typing import Callable, Dict, List, Optional
2+
23
from redisvl.utils.utils import array_to_buffer
34

5+
46
class BaseVectorizer:
57
def __init__(self, model: str, dims: int, api_config: Optional[Dict] = None):
68
self._dims = dims
@@ -24,15 +26,15 @@ def embed_many(
2426
texts: List[str],
2527
preprocess: Optional[Callable] = None,
2628
batch_size: Optional[int] = 1000,
27-
as_buffer: Optional[bool] = False
29+
as_buffer: Optional[bool] = False,
2830
) -> List[List[float]]:
2931
raise NotImplementedError
3032

3133
def embed(
3234
self,
3335
text: str,
3436
preprocess: Optional[Callable] = None,
35-
as_buffer: Optional[bool] = False
37+
as_buffer: Optional[bool] = False,
3638
) -> List[float]:
3739
raise NotImplementedError
3840

@@ -41,15 +43,15 @@ async def aembed_many(
4143
texts: List[str],
4244
preprocess: Optional[Callable] = None,
4345
batch_size: Optional[int] = 1000,
44-
as_buffer: Optional[bool] = False
46+
as_buffer: Optional[bool] = False,
4547
) -> List[List[float]]:
4648
raise NotImplementedError
4749

4850
async def aembed(
4951
self,
5052
text: str,
5153
preprocess: Optional[Callable] = None,
52-
as_buffer: Optional[bool] = False
54+
as_buffer: Optional[bool] = False,
5355
) -> List[float]:
5456
raise NotImplementedError
5557

redisvl/vectorize/text/huggingface.py

Lines changed: 8 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ def embed(
2222
self,
2323
text: str,
2424
preprocess: Optional[Callable] = None,
25-
as_buffer: Optional[float] = False
25+
as_buffer: Optional[float] = False,
2626
) -> List[float]:
2727
"""Embed a chunk of text using the Hugging Face sentence transformer.
2828
@@ -46,7 +46,7 @@ def embed_many(
4646
texts: List[str],
4747
preprocess: Optional[Callable] = None,
4848
batch_size: int = 1000,
49-
as_buffer: Optional[float] = None
49+
as_buffer: Optional[float] = None,
5050
) -> List[List[float]]:
5151
"""Asynchronously embed many chunks of texts using the Hugging Face sentence
5252
transformer.
@@ -66,7 +66,10 @@ def embed_many(
6666
embeddings: List = []
6767
for batch in self.batchify(texts, batch_size, preprocess):
6868
batch_embeddings = self._model_client.encode(batch)
69-
embeddings.extend([
70-
self._process_embedding(embedding.tolist(), as_buffer) for embedding in batch_embeddings
71-
])
69+
embeddings.extend(
70+
[
71+
self._process_embedding(embedding.tolist(), as_buffer)
72+
for embedding in batch_embeddings
73+
]
74+
)
7275
return embeddings

redisvl/vectorize/text/openai.py

Lines changed: 11 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,10 @@
11
from typing import Callable, Dict, List, Optional
2-
from tenacity import (
2+
3+
from tenacity import ( # for exponential backoff
34
retry,
45
stop_after_attempt,
56
wait_random_exponential,
6-
) # for exponential backoff
7+
)
78

89
from redisvl.vectorize.base import BaseVectorizer
910

@@ -30,7 +31,7 @@ def embed_many(
3031
texts: List[str],
3132
preprocess: Optional[Callable] = None,
3233
batch_size: Optional[int] = 10,
33-
as_buffer: Optional[float] = False
34+
as_buffer: Optional[float] = False,
3435
) -> List[List[float]]:
3536
"""Embed many chunks of texts using the OpenAI API.
3637
@@ -50,7 +51,8 @@ def embed_many(
5051
for batch in self.batchify(texts, batch_size, preprocess):
5152
response = self._model_client.create(input=batch, engine=self._model)
5253
embeddings += [
53-
self._process_embedding(r["embedding"], as_buffer) for r in response["data"]
54+
self._process_embedding(r["embedding"], as_buffer)
55+
for r in response["data"]
5456
]
5557
return embeddings
5658

@@ -59,7 +61,7 @@ def embed(
5961
self,
6062
text: str,
6163
preprocess: Optional[Callable] = None,
62-
as_buffer: Optional[float] = False
64+
as_buffer: Optional[float] = False,
6365
) -> List[float]:
6466
"""Embed a chunk of text using the OpenAI API.
6567
@@ -84,7 +86,7 @@ async def aembed_many(
8486
texts: List[str],
8587
preprocess: Optional[Callable] = None,
8688
batch_size: int = 1000,
87-
as_buffer: Optional[bool] = False
89+
as_buffer: Optional[bool] = False,
8890
) -> List[List[float]]:
8991
"""Asynchronously embed many chunks of texts using the OpenAI API.
9092
@@ -104,7 +106,8 @@ async def aembed_many(
104106
for batch in self.batchify(texts, batch_size, preprocess):
105107
response = await self._model_client.acreate(input=batch, engine=self._model)
106108
embeddings += [
107-
self._process_embedding(r["embedding"], as_buffer) for r in response["data"]
109+
self._process_embedding(r["embedding"], as_buffer)
110+
for r in response["data"]
108111
]
109112
return embeddings
110113

@@ -113,7 +116,7 @@ async def aembed(
113116
self,
114117
text: str,
115118
preprocess: Optional[Callable] = None,
116-
as_buffer: Optional[bool] = False
119+
as_buffer: Optional[bool] = False,
117120
) -> List[float]:
118121
"""Asynchronously embed a chunk of text using the OpenAI API.
119122

0 commit comments

Comments
 (0)