diff --git a/README.md b/README.md
index 8b0a3015d..74805200d 100644
--- a/README.md
+++ b/README.md
@@ -94,7 +94,7 @@ The table below lists the recommendation algorithms currently available in the r
| LightFM/Factorization Machine | Collaborative Filtering | Factorization Machine algorithm for both implicit and explicit feedbacks. It works in the CPU environment. | [Quick start](examples/02_model_collaborative_filtering/lightfm_deep_dive.ipynb) |
| LightGBM/Gradient Boosting Tree* | Content-Based Filtering | Gradient Boosting Tree algorithm for fast training and low memory usage in content-based problems. It works in the CPU/GPU/PySpark environments. | [Quick start in CPU](examples/00_quick_start/lightgbm_tinycriteo.ipynb) / [Deep dive in PySpark](examples/02_model_content_based_filtering/mmlspark_lightgbm_criteo.ipynb) |
| LightGCN | Collaborative Filtering | Deep learning algorithm which simplifies the design of GCN for predicting implicit feedback. It works in the CPU/GPU environment. | [Deep dive](examples/02_model_collaborative_filtering/lightgcn_deep_dive.ipynb) |
-| GeoIMC* | Collaborative Filtering | Matrix completion algorithm that has into account user and item features using Riemannian conjugate gradients optimization and following a geometric approach. It works in the CPU environment. | [Quick start](examples/00_quick_start/geoimc_movielens.ipynb) |
+| GeoIMC* | Collaborative Filtering | Matrix completion algorithm that takes into account user and item features using Riemannian conjugate gradient optimization and follows a geometric approach. It works in the CPU environment. | [Quick start](examples/00_quick_start/geoimc_movielens.ipynb) |
| GRU | Collaborative Filtering | Sequential-based algorithm that aims to capture both long and short-term user preferences using recurrent neural networks. It works in the CPU/GPU environment. | [Quick start](examples/00_quick_start/sequential_recsys_amazondataset.ipynb) |
| Multinomial VAE | Collaborative Filtering | Generative model for predicting user/item interactions. It works in the CPU/GPU environment. | [Deep dive](examples/02_model_collaborative_filtering/multi_vae_deep_dive.ipynb) |
| Neural Recommendation with Long- and Short-term User Representations (LSTUR)* | Content-Based Filtering | Neural recommendation algorithm for recommending news articles with long- and short-term user interest modeling. It works in the CPU/GPU environment. | [Quick start](examples/00_quick_start/lstur_MIND.ipynb) |