-
Notifications
You must be signed in to change notification settings - Fork 3.1k
/
pysarplus.cpp
224 lines (173 loc) · 6.62 KB
/
pysarplus.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
/*
* Copyright (c) Recommenders contributors.
* Licensed under the MIT License.
*/
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <string>
#include <exception>
#include <vector>
#include <algorithm>
#include <unordered_set>
#include <queue>
#include <iostream>
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#include <iostream>
namespace py = pybind11;
class MemoryMapFile {
int _fd;
void* _addr;
struct stat _sb;
public:
MemoryMapFile(std::string& path) : _fd(0), _addr(nullptr) {
_fd = open(path.c_str(), O_RDONLY);
if (_fd == -1)
throw std::domain_error("unable to open file");
if (fstat(_fd, &_sb) == -1)
throw std::domain_error("unable to open file stats");
_addr = mmap(NULL, _sb.st_size, PROT_READ, MAP_SHARED, _fd, 0);
if (_addr == MAP_FAILED)
throw std::domain_error("failed to memory map file");
}
~MemoryMapFile() {
if (_addr)
munmap(_addr, _sb.st_size);
if (_fd > 0)
close(_fd);
}
void* addr() { return _addr; }
};
struct item_score
{
int32_t id;
float score;
int get_id() { return id; }
float get_score() { return score; }
struct score_compare {
bool operator() (const item_score& left, const item_score& right)
{ return left.score > right.score; }
};
static struct _id_compare {
bool operator() (const item_score& left, const item_score& right)
{ return left.id < right.id; }
} id_compare;
};
class SARModel {
// MemoryMapFile _offsets_memory_map;
// MemoryMapFile _related_memory_map;
MemoryMapFile _memory_map;
int64_t* _offsets;
item_score* _related;
public:
SARModel(std::string& path)
: _memory_map(path) {
_offsets = (int64_t*)_memory_map.addr();
int64_t rows = *_offsets;
// skip # num row field
_offsets++;
_related = (item_score*)(_offsets + rows);
}
// More improvements using buffer https://github.com/pybind/pybind11/blob/master/docs/advanced/pycpp/numpy.rst
std::vector<item_score> predict(std::vector<int32_t>& items_of_user, std::vector<float>& ratings, int32_t top_k, bool remove_seen) {
if (items_of_user.size() != ratings.size())
throw std::domain_error("number of items and ratings must be equal");
std::vector<item_score> preds;
if (items_of_user.empty())
return preds;
// copy to item_score vector to be able to sort
std::vector<item_score> user_ratings;
user_ratings.resize(items_of_user.size());
for (size_t i=0;i<items_of_user.size();i++)
user_ratings[i] = { items_of_user[i], ratings[i] };
// make sure user ratings are sorted
std::sort(user_ratings.begin(), user_ratings.end(), item_score::id_compare);
std::unordered_set<int32_t> seen_items;
if (remove_seen)
for (auto& item_id : items_of_user)
seen_items.insert(item_id);
std::priority_queue<item_score, std::vector<item_score>, item_score::score_compare> top_k_items;
// loop through items user has seen
for (auto& iid : items_of_user) {
// loop through related items
auto related_beg = _related + _offsets[iid];
auto related_end = _related + _offsets[iid+1];
for (;related_beg != related_end; ++related_beg) {
auto related_item = *related_beg;
// avoid duplicated
if (seen_items.find(related_item.id) != seen_items.end())
continue;
seen_items.insert(related_item.id);
// calculate score
auto related_item_score = join_prod_sum(user_ratings, related_item.id);
if (related_item_score > 0)
push_if_better(top_k_items, {related_item.id, related_item_score}, top_k);
}
}
// output top-k items
while (!top_k_items.empty()) {
preds.push_back(top_k_items.top());
top_k_items.pop();
}
return preds;
}
void push_if_better(std::priority_queue<item_score, std::vector<item_score>, item_score::score_compare>& top_k_items, item_score new_item_score, int32_t top_k) {
// less than k items
if ((int32_t)top_k_items.size() < top_k) {
top_k_items.push(new_item_score);
return;
}
// found a better one?
if (top_k_items.top().score < new_item_score.score) {
top_k_items.pop();
top_k_items.push(new_item_score);
}
}
// join items_of_user with related-related items
float join_prod_sum(std::vector<item_score>& user_ratings, int32_t related_item) {
// std::cout << "join related: " << related_item << " from " << _offsets[related_item] << " to " << _offsets[related_item + 1] << std::endl;
auto contrib_beg = _related + _offsets[related_item];
auto contrib_end = _related + _offsets[related_item+1];
double score = 0;
auto user_iid = user_ratings.begin();
auto user_iid_end = user_ratings.end();
while(true) {
auto& user_iid_v = *user_iid;
auto& contrib_v = *contrib_beg;
// binary search
if (user_iid_v.id < contrib_v.id) {
auto user_iid_next = std::lower_bound(user_iid, user_iid_end, contrib_v, item_score::id_compare);
if (user_iid_next == user_iid_end)
break;
user_iid = user_iid_next;
continue;
}
if(user_iid_v.id > contrib_v.id) {
auto contrib_next = std::lower_bound(contrib_beg, contrib_end, user_iid_v, item_score::id_compare);
if (contrib_next == contrib_end)
break;
contrib_beg = contrib_next;
continue;
}
score += user_iid_v.score * contrib_v.score;
++user_iid;
if (user_iid == user_iid_end)
break;
++contrib_beg;
if (contrib_beg == contrib_end)
break;
}
return score;
}
};
PYBIND11_MODULE(pysarplus_cpp, m) {
py::class_<item_score> sar_pred(m, "SARPrediction");
sar_pred.def_property_readonly("id", &item_score::get_id);
sar_pred.def_property_readonly("score", &item_score::get_score);
py::class_<SARModel> model(m, "SARModelCpp");
model.def(py::init([](std::string path)
{ return new SARModel(path); }))
.def("predict", &SARModel::predict);
}