-
Notifications
You must be signed in to change notification settings - Fork 395
/
hdf5_data_layer.cpp
167 lines (147 loc) · 5.56 KB
/
hdf5_data_layer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/*
TODO:
- load file in a separate thread ("prefetch")
- can be smarter about the memcpy call instead of doing it row-by-row
:: use util functions caffe_copy, and Blob->offset()
:: don't forget to update hdf5_daa_layer.cu accordingly
- add ability to shuffle filenames if flag is set
*/
#include <fstream> // NOLINT(readability/streams)
#include <string>
#include <vector>
#include "hdf5.h"
#include "hdf5_hl.h"
#include "stdint.h"
#include "caffe/data_layers.hpp"
#include "caffe/layer.hpp"
#include "caffe/util/hdf5.hpp"
namespace caffe {
template <typename Dtype>
HDF5DataLayer<Dtype>::~HDF5DataLayer<Dtype>() { }
// Load data and label from HDF5 filename into the class property blobs.
template <typename Dtype>
void HDF5DataLayer<Dtype>::LoadHDF5FileData(const char* filename) {
DLOG(INFO) << "Loading HDF5 file: " << filename;
hid_t file_id = H5Fopen(filename, H5F_ACC_RDONLY, H5P_DEFAULT);
if (file_id < 0) {
LOG(FATAL) << "Failed opening HDF5 file: " << filename;
}
int top_size = this->layer_param_.top_size();
hdf_blobs_.resize(top_size);
const int MIN_DATA_DIM = 1;
const int MAX_DATA_DIM = INT_MAX;
for (int i = 0; i < top_size; ++i) {
hdf_blobs_[i] = shared_ptr<Blob<Dtype> >(new Blob<Dtype>());
hdf5_load_nd_dataset(file_id, this->layer_param_.top(i).c_str(),
MIN_DATA_DIM, MAX_DATA_DIM, hdf_blobs_[i].get());
}
herr_t status = H5Fclose(file_id);
CHECK_GE(status, 0) << "Failed to close HDF5 file: " << filename;
// MinTopBlobs==1 guarantees at least one top blob
CHECK_GE(hdf_blobs_[0]->num_axes(), 1) << "Input must have at least 1 axis.";
const int num = hdf_blobs_[0]->shape(0);
for (int i = 1; i < top_size; ++i) {
CHECK_EQ(hdf_blobs_[i]->shape(0), num);
}
// Default to identity permutation.
data_permutation_.clear();
data_permutation_.resize(hdf_blobs_[0]->shape(0));
for (int i = 0; i < hdf_blobs_[0]->shape(0); i++)
data_permutation_[i] = i;
// Shuffle if needed.
if (this->layer_param_.hdf5_data_param().shuffle()) {
std::random_shuffle(data_permutation_.begin(), data_permutation_.end());
DLOG(INFO) << "Successully loaded " << hdf_blobs_[0]->shape(0)
<< " rows (shuffled)";
} else {
DLOG(INFO) << "Successully loaded " << hdf_blobs_[0]->shape(0) << " rows";
}
}
template <typename Dtype>
void HDF5DataLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
// Refuse transformation parameters since HDF5 is totally generic.
CHECK(!this->layer_param_.has_transform_param()) <<
this->type() << " does not transform data.";
// Read the source to parse the filenames.
const string& source = this->layer_param_.hdf5_data_param().source();
LOG(INFO) << "Loading list of HDF5 filenames from: " << source;
hdf_filenames_.clear();
std::ifstream source_file(source.c_str());
if (source_file.is_open()) {
std::string line;
while (source_file >> line) {
hdf_filenames_.push_back(line);
}
} else {
LOG(FATAL) << "Failed to open source file: " << source;
}
source_file.close();
num_files_ = hdf_filenames_.size();
current_file_ = 0;
LOG(INFO) << "Number of HDF5 files: " << num_files_;
CHECK_GE(num_files_, 1) << "Must have at least 1 HDF5 filename listed in "
<< source;
file_permutation_.clear();
file_permutation_.resize(num_files_);
// Default to identity permutation.
for (int i = 0; i < num_files_; i++) {
file_permutation_[i] = i;
}
// Shuffle if needed.
if (this->layer_param_.hdf5_data_param().shuffle()) {
std::random_shuffle(file_permutation_.begin(), file_permutation_.end());
}
// Load the first HDF5 file and initialize the line counter.
LoadHDF5FileData(hdf_filenames_[file_permutation_[current_file_]].c_str());
current_row_ = 0;
// Reshape blobs.
const int batch_size = this->layer_param_.hdf5_data_param().batch_size();
const int top_size = this->layer_param_.top_size();
vector<int> top_shape;
for (int i = 0; i < top_size; ++i) {
top_shape.resize(hdf_blobs_[i]->num_axes());
top_shape[0] = batch_size;
for (int j = 1; j < top_shape.size(); ++j) {
top_shape[j] = hdf_blobs_[i]->shape(j);
}
top[i]->Reshape(top_shape);
}
}
template <typename Dtype>
void HDF5DataLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const int batch_size = this->layer_param_.hdf5_data_param().batch_size();
for (int i = 0; i < batch_size; ++i, ++current_row_) {
if (current_row_ == hdf_blobs_[0]->shape(0)) {
if (num_files_ > 1) {
++current_file_;
if (current_file_ == num_files_) {
current_file_ = 0;
if (this->layer_param_.hdf5_data_param().shuffle()) {
std::random_shuffle(file_permutation_.begin(),
file_permutation_.end());
}
DLOG(INFO) << "Looping around to first file.";
}
LoadHDF5FileData(
hdf_filenames_[file_permutation_[current_file_]].c_str());
}
current_row_ = 0;
if (this->layer_param_.hdf5_data_param().shuffle())
std::random_shuffle(data_permutation_.begin(), data_permutation_.end());
}
for (int j = 0; j < this->layer_param_.top_size(); ++j) {
int data_dim = top[j]->count() / top[j]->shape(0);
caffe_copy(data_dim,
&hdf_blobs_[j]->cpu_data()[data_permutation_[current_row_]
* data_dim], &top[j]->mutable_cpu_data()[i * data_dim]);
}
}
}
#ifdef CPU_ONLY
STUB_GPU_FORWARD(HDF5DataLayer, Forward);
#endif
INSTANTIATE_CLASS(HDF5DataLayer);
REGISTER_LAYER_CLASS(HDF5Data);
} // namespace caffe