-
Notifications
You must be signed in to change notification settings - Fork 395
/
Copy pathembed_layer.cu
85 lines (76 loc) · 3.13 KB
/
embed_layer.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#include <vector>
#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/common_layers.hpp"
#include "caffe/filler.hpp"
#include "caffe/layer.hpp"
#include "caffe/util/gpu_util.cuh"
#include "caffe/util/math_functions.hpp"
namespace caffe {
template <typename Dtype>
__global__ void EmbedForward(const int nthreads, const Dtype* bottom_data,
const Dtype* weight, const int M, const int N, const int K,
Dtype* top_data) {
CUDA_KERNEL_LOOP(top_index, nthreads) {
const int n = top_index / N;
const int d = top_index % N;
const int index = static_cast<int>(bottom_data[n]);
const int weight_index = index * N + d;
top_data[top_index] = weight[weight_index];
}
}
template <typename Dtype>
__global__ void EmbedBackward(const int nthreads, const Dtype* bottom_data,
const Dtype* top_diff, const int M, const int N, const int K,
Dtype* weight_diff);
template <typename Dtype>
__global__ void EmbedBackward(const int nthreads, const Dtype* bottom_data,
const Dtype* top_diff, const int M, const int N, const int K,
Dtype* weight_diff) {
CUDA_KERNEL_LOOP(top_index, nthreads) {
const int n = top_index / N;
const int d = top_index % N;
const int index = static_cast<int>(bottom_data[n]);
const int weight_index = index * N + d;
caffe_gpu_atomic_add(top_diff[top_index], weight_diff + weight_index);
}
}
template <typename Dtype>
void EmbedLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* bottom_data = bottom[0]->gpu_data();
Dtype* top_data = top[0]->mutable_gpu_data();
const Dtype* weight = this->blobs_[0]->gpu_data();
const int count = top[0]->count();
EmbedForward<Dtype> // NOLINT_NEXT_LINE(whitespace/operators)
<<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>(
count, bottom_data, weight, M_, N_, K_, top_data);
if (bias_term_) {
caffe_gpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, M_, N_, 1, Dtype(1),
bias_multiplier_.gpu_data(),
this->blobs_[1]->gpu_data(), Dtype(1), top_data);
}
}
template <typename Dtype>
void EmbedLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
CHECK(!propagate_down[0]) << "Can't backpropagate to EmbedLayer input.";
if (this->param_propagate_down_[0]) {
const int top_count = top[0]->count();
const int count = this->blobs_[0]->count();
const Dtype* top_diff = top[0]->gpu_diff();
const Dtype* bottom_data = bottom[0]->gpu_data();
Dtype* weight_diff = this->blobs_[0]->mutable_gpu_diff();
EmbedBackward<Dtype> // NOLINT_NEXT_LINE(whitespace/operators)
<<<CAFFE_GET_BLOCKS(top_count), CAFFE_CUDA_NUM_THREADS>>>(
top_count, bottom_data, top_diff, M_, N_, K_, weight_diff);
}
if (bias_term_ && this->param_propagate_down_[1]) {
const Dtype* top_diff = top[0]->gpu_diff();
Dtype* bias_diff = this->blobs_[1]->mutable_gpu_diff();
caffe_gpu_gemv<Dtype>(CblasTrans, M_, N_, Dtype(1), top_diff,
bias_multiplier_.gpu_data(), Dtype(1), bias_diff);
}
}
INSTANTIATE_LAYER_GPU_FUNCS(EmbedLayer);
} // namespace caffe