-
Notifications
You must be signed in to change notification settings - Fork 395
/
Copy patheltwise_layer.cpp
161 lines (152 loc) · 5.39 KB
/
eltwise_layer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#include <cfloat>
#include <vector>
#include "caffe/layer.hpp"
#include "caffe/util/math_functions.hpp"
#include "caffe/vision_layers.hpp"
namespace caffe {
template <typename Dtype>
void EltwiseLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
CHECK(this->layer_param().eltwise_param().coeff_size() == 0
|| this->layer_param().eltwise_param().coeff_size() == bottom.size()) <<
"Eltwise Layer takes one coefficient per bottom blob.";
CHECK(!(this->layer_param().eltwise_param().operation()
== EltwiseParameter_EltwiseOp_PROD
&& this->layer_param().eltwise_param().coeff_size())) <<
"Eltwise layer only takes coefficients for summation.";
op_ = this->layer_param_.eltwise_param().operation();
// Blob-wise coefficients for the elementwise operation.
coeffs_ = vector<Dtype>(bottom.size(), 1);
if (this->layer_param().eltwise_param().coeff_size()) {
for (int i = 0; i < bottom.size(); ++i) {
coeffs_[i] = this->layer_param().eltwise_param().coeff(i);
}
}
stable_prod_grad_ = this->layer_param_.eltwise_param().stable_prod_grad();
}
template <typename Dtype>
void EltwiseLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
for (int i = 1; i < bottom.size(); ++i) {
CHECK(bottom[i]->shape() == bottom[0]->shape());
}
top[0]->ReshapeLike(*bottom[0]);
// If max operation, we will initialize the vector index part.
if (this->layer_param_.eltwise_param().operation() ==
EltwiseParameter_EltwiseOp_MAX && top.size() == 1) {
max_idx_.Reshape(bottom[0]->shape());
}
}
template <typename Dtype>
void EltwiseLayer<Dtype>::Forward_cpu(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
int* mask = NULL;
const Dtype* bottom_data_a = NULL;
const Dtype* bottom_data_b = NULL;
const int count = top[0]->count();
Dtype* top_data = top[0]->mutable_cpu_data();
switch (op_) {
case EltwiseParameter_EltwiseOp_PROD:
caffe_mul(count, bottom[0]->cpu_data(), bottom[1]->cpu_data(), top_data);
for (int i = 2; i < bottom.size(); ++i) {
caffe_mul(count, top_data, bottom[i]->cpu_data(), top_data);
}
break;
case EltwiseParameter_EltwiseOp_SUM:
caffe_set(count, Dtype(0), top_data);
// TODO(shelhamer) does BLAS optimize to sum for coeff = 1?
for (int i = 0; i < bottom.size(); ++i) {
caffe_axpy(count, coeffs_[i], bottom[i]->cpu_data(), top_data);
}
break;
case EltwiseParameter_EltwiseOp_MAX:
// Initialize
mask = max_idx_.mutable_cpu_data();
caffe_set(count, -1, mask);
caffe_set(count, Dtype(-FLT_MAX), top_data);
// bottom 0 & 1
bottom_data_a = bottom[0]->cpu_data();
bottom_data_b = bottom[1]->cpu_data();
for (int idx = 0; idx < count; ++idx) {
if (bottom_data_a[idx] > bottom_data_b[idx]) {
top_data[idx] = bottom_data_a[idx]; // maxval
mask[idx] = 0; // maxid
} else {
top_data[idx] = bottom_data_b[idx]; // maxval
mask[idx] = 1; // maxid
}
}
// bottom 2++
for (int blob_idx = 2; blob_idx < bottom.size(); ++blob_idx) {
bottom_data_b = bottom[blob_idx]->cpu_data();
for (int idx = 0; idx < count; ++idx) {
if (bottom_data_b[idx] > top_data[idx]) {
top_data[idx] = bottom_data_b[idx]; // maxval
mask[idx] = blob_idx; // maxid
}
}
}
break;
default:
LOG(FATAL) << "Unknown elementwise operation.";
}
}
template <typename Dtype>
void EltwiseLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
const int* mask = NULL;
const int count = top[0]->count();
const Dtype* top_data = top[0]->cpu_data();
const Dtype* top_diff = top[0]->cpu_diff();
for (int i = 0; i < bottom.size(); ++i) {
if (propagate_down[i]) {
const Dtype* bottom_data = bottom[i]->cpu_data();
Dtype* bottom_diff = bottom[i]->mutable_cpu_diff();
switch (op_) {
case EltwiseParameter_EltwiseOp_PROD:
if (stable_prod_grad_) {
bool initialized = false;
for (int j = 0; j < bottom.size(); ++j) {
if (i == j) { continue; }
if (!initialized) {
caffe_copy(count, bottom[j]->cpu_data(), bottom_diff);
initialized = true;
} else {
caffe_mul(count, bottom[j]->cpu_data(), bottom_diff,
bottom_diff);
}
}
} else {
caffe_div(count, top_data, bottom_data, bottom_diff);
}
caffe_mul(count, bottom_diff, top_diff, bottom_diff);
break;
case EltwiseParameter_EltwiseOp_SUM:
if (coeffs_[i] == Dtype(1)) {
caffe_copy(count, top_diff, bottom_diff);
} else {
caffe_cpu_scale(count, coeffs_[i], top_diff, bottom_diff);
}
break;
case EltwiseParameter_EltwiseOp_MAX:
mask = max_idx_.cpu_data();
for (int index = 0; index < count; ++index) {
Dtype gradient = 0;
if (mask[index] == i) {
gradient += top_diff[index];
}
bottom_diff[index] = gradient;
}
break;
default:
LOG(FATAL) << "Unknown elementwise operation.";
}
}
}
}
#ifdef CPU_ONLY
STUB_GPU(EltwiseLayer);
#endif
INSTANTIATE_CLASS(EltwiseLayer);
REGISTER_LAYER_CLASS(Eltwise);
} // namespace caffe