-
Notifications
You must be signed in to change notification settings - Fork 395
/
Copy pathbnll_layer.cpp
48 lines (40 loc) · 1.31 KB
/
bnll_layer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#include <algorithm>
#include <vector>
#include "caffe/layer.hpp"
#include "caffe/vision_layers.hpp"
namespace caffe {
const float kBNLL_THRESHOLD = 50.;
template <typename Dtype>
void BNLLLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* bottom_data = bottom[0]->cpu_data();
Dtype* top_data = top[0]->mutable_cpu_data();
const int count = bottom[0]->count();
for (int i = 0; i < count; ++i) {
top_data[i] = bottom_data[i] > 0 ?
bottom_data[i] + log(1. + exp(-bottom_data[i])) :
log(1. + exp(bottom_data[i]));
}
}
template <typename Dtype>
void BNLLLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {
if (propagate_down[0]) {
const Dtype* bottom_data = bottom[0]->cpu_data();
const Dtype* top_diff = top[0]->cpu_diff();
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
const int count = bottom[0]->count();
Dtype expval;
for (int i = 0; i < count; ++i) {
expval = exp(std::min(bottom_data[i], Dtype(kBNLL_THRESHOLD)));
bottom_diff[i] = top_diff[i] * expval / (expval + 1.);
}
}
}
#ifdef CPU_ONLY
STUB_GPU(BNLLLayer);
#endif
INSTANTIATE_CLASS(BNLLLayer);
REGISTER_LAYER_CLASS(BNLL);
} // namespace caffe