forked from luca-medeiros/lang-segment-anything
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
76 lines (64 loc) · 2.26 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
import warnings
import gradio as gr
import lightning as L
import numpy as np
from lightning.app.components.serve import ServeGradio
from PIL import Image
from lang_sam import LangSAM
from lang_sam import SAM_MODELS
from lang_sam.utils import draw_image
from lang_sam.utils import load_image
warnings.filterwarnings("ignore")
class LitGradio(ServeGradio):
inputs = [
gr.Dropdown(choices=list(SAM_MODELS.keys()), label="SAM model", value="vit_h"),
gr.Slider(0, 1, value=0.3, label="Box threshold"),
gr.Slider(0, 1, value=0.25, label="Text threshold"),
gr.Image(type="filepath", label='Image'),
gr.Textbox(lines=1, label="Text Prompt"),
]
outputs = [gr.outputs.Image(type="pil", label="Output Image")]
examples = [
[
'vit_h',
0.36,
0.25,
os.path.join(os.path.dirname(__file__), "assets", "fruits.jpg"),
"kiwi",
],
[
'vit_h',
0.3,
0.25,
os.path.join(os.path.dirname(__file__), "assets", "car.jpeg"),
"wheel",
],
[
'vit_h',
0.3,
0.25,
os.path.join(os.path.dirname(__file__), "assets", "food.jpg"),
"food",
],
]
def __init__(self, sam_type="vit_h"):
super().__init__()
self.ready = False
self.sam_type = sam_type
def predict(self, sam_type, box_threshold, text_threshold, image_path, text_prompt):
print("Predicting... ", sam_type, box_threshold, text_threshold, image_path, text_prompt)
if sam_type != self.model.sam_type:
self.model.build_sam(sam_type)
image_pil = load_image(image_path)
masks, boxes, phrases, logits = self.model.predict(image_pil, text_prompt, box_threshold, text_threshold)
labels = [f"{phrase} {logit:.2f}" for phrase, logit in zip(phrases, logits)]
image_array = np.asarray(image_pil)
image = draw_image(image_array, masks, boxes, labels)
image = Image.fromarray(np.uint8(image)).convert("RGB")
return image
def build_model(self, sam_type="vit_h"):
model = LangSAM(sam_type)
self.ready = True
return model
app = L.LightningApp(LitGradio())