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ABSTRACT
Parentheses matching is an important fundamental algorithm, with
applications including parsing and processing of tree-structured
data. Previous literature presents work-efficient parallel algorithms
targeting an abstract PRAM machine, but does not address modern
GPU hardware. This paper analyzes the parentheses matching
problem using two monoids, the bijective semigroup and a novel
“stack monoid,” and presents a practical, fast algorithm interleaving
these two monoids to map to the thread, workgroup, and dispatch
levels of the GPU hierarchy. This algorithm is implemented portably
using compute shaders, and performance results show that the
algorithm operates at a significant fraction of the raw memory
bandwidth of a typical GPU.
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1 INTRODUCTION
This paper presents an efficient parallel solution to the parentheses
matching problem, tuned for high throughput on GPU hardware.
Parentheses matching is an important subproblem of parsing, and
is a general building block for disparate other algorithms, including
bin packing[AMW89] and tree patternmatching[PJ20]. The immediate
motivation for the present work is calculating clipping rectangles
for each node in a tree representing a 2D rendering task.

1.1 Motivation
There are many GPU algorithms operating on large, flat arrays
of values, but fewer for processing tree-structured data. At the
heart of many such tree problems, including parsing a sequential
representation of a tree into a usable tree structure, is the parentheses
matching problem. Since the ’80s there have been theoretical results
suggesting that efficient parallel implementation is possible, but
the literature has not to date produced practical algorithms that
run on contemporary GPU hardware.

The specific motivation for this work was tracking clip bounding
boxes for a 2D renderering engine in which the scene is represented
as a tree of drawing operations, with individual objects such as
images and vector paths as leaf nodes, and operations such as clip,
blend, and transform as parent nodes. An earlier version of the
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code tracked these bounding rectangles on the CPU, but that was
a significant bottleneck, so we sought to move the tracking to the
GPU. Parentheses matching is the key subproblem of that task,
associating the end of the scope of each clip operation with the
beginning, and deriving tree structure in a way that intersection of
clip rectangles for all nodes insides a clip can be readily computed.
The parentheses matching problem is general, however, and an
efficient algorithm will help make parsing and other related tasks
practical for GPU implementation.

1.2 Limitations of current state of the art
The literature on the parentheses matching problem goes back
decades (at least to [BOV85]), but until now there is no known
satisfactory solution running on actual GPUhardware. The literature
falls into several categories:
• Theoretical presentations ofwork-efficient algorithms analyzed
in terms of an abstract Parallel Random Access Machine
PRAM) model but no clear mapping to an efficient GPU
implementation ([BOV85], [LP92], [PDC94]).
• Practical algorithms which run on GPU but have a work
factor dependent on maximum nesting depth ([Hsu19]).
• More limited GPU-based parsing algorithms which cannot
handle arbitrary tree structure ([SJ19]). This category also
includes the use of standard generalized prefix sum algorithms
with a small fixed bound on nesting depth.

Thus, the prevailing wisdom remains that parsing of arbitrary
tree structured data is inherently a serial problem and must be done
on CPU rather than GPU.

1.3 Key insights and contributions
There are several key insights in this paper, culminating in presentation
and empirical performance measurement of an algorithm that is
fast and practical to implement on standard GPU hardware.

The first insight is that the parentheses matching problem can
be expressed in terms of two monoids, both of which can be used
to compute matches, but with different time/space tradeoffs. The
first of these is the well-known bicyclic semigroup which is cheap
to compute and can be queried by binary search, and the second
is a “stack monoid” which takes more space but can be queried in
𝑂 (1) time. Either by itself can be used to derive an algorithm which
is parallel but has 𝑂 (log𝑛) work factor.

The second insight is that interleaving these two approaches
yields a work-efficient algorithm. Further, the two approaches
map well to the hierarchical structure of actual GPU hardware.
We present a simple algorithm consisting of reduction of the stack
monoid (computing stack snapshots at partition granularity), followed
by binary search of the bicyclic semigroup to resolvematcheswithin
a partition. The second step can be done within a workgroup, using
efficient shared memory. It is reasonably fast but not truly work-
efficient.
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A faster version of the algorithm adds a third level of hierarchy:
a sequence of 𝑘 elements processed per thread, instead of just
one as in the simpler algorithm. This technique is analogous to
that used for high performance prefix sum implementations, but
requires more sophistication. Stack monoid reduction is used for
the smallest granularity, then binary search for the workgroup
level, and then stack monoids again for finding matches across
workgroup boundaries.

1.4 Experimental methodology and artifact
availability

The primary empirical claim is that the proposed algorithm is fast
on standard GPU hardware. To demonstrate this claim, we run the
code on an AMD 5700 XT as Vulkan compute shaders. The test
consists of a random sequence of parenthesis. The GPU time is
measured with Vulkan timer queries.

All software is available on GitHub with a permissive Apache 2
open source license1. The infrastructure for running and measuring
compute shader performance is cross-platform and runs on Metal
andDirect3D 12 aswell as Vulkan. Such cross-platform infrastructure
is unusual for compute-centric tasks, though it is relatively common
in game engines.

1.5 Limitations of the proposed approach
Themain limitation of the proposed algorithm is that the presentation
and implementation is a 2-dispatch pipeline and is limited to inputs
of𝑤2𝑘2, where𝑤 is workgroup size and𝑘 is the number of elements
processed per thread. In many cases it is possible to increase 𝑘 to
accommodate the problem size (as is the case for the motivating
2D graphics example), but as inputs scale up the algorithm would
need to be extended to 3 or more dispatches.

Parentheses matching in isolation is not an especially useful task.
To put this technique into practice will require integration with
other subsystems that can utilize parentheses matching as a subtask.
For example, parsing of textual tree-structured data formats such
as XML and JSON would also require lexical analysis.

2 THE PARENTHESES MATCHING PROBLEM
The classical version of the parentheses matching problem is, for
every index in the source string, find the index of the corresponding
matching parenthesis. This paper actually considers a stronger
version of the problem: for every closing parenthesis, find the
index of the matching open parenthesis. But for every opening
parenthesis, find the index of the immediately enclosing opening
parenthesis. It is straightforward to reconstruct the traditional
version, but the converse is not true.

One statement of the problem is as a simple sequential program
which uses a stack, as shown in Figure 1.

We will be concerned with snapshots of the stack at step 𝑖 . An
appealing quality of this specific formulation of the parentheses-
matching problem is that all stacks can be recovered from the
output, just by repeatedly following references until the root is
reached (here represented by a value of -1).

1https://github.com/linebender/piet-gpu

stack = [-1]

for i in range(len(s)):

out[i] = stack[len(stack) - 1]

if inp[i] == '(':

stack.push(i)

elif inp[i] == ')':

stack.pop()

Figure 1: Sequential algorithm for parentheses matching

3 THE BICYCLIC SEMIGROUP
The theoretical derivation of the algorithm relies heavily on the
bicyclic semigroup, actually a monoid, which is well known to model
the balancing of parentheses. An element of the bicyclic semigroup
Bic can be represented as a pair of nonnegative integers, with (0, 0)
as an identity and the following associative operator:

(𝑎, 𝑏) ⊕ (𝑐, 𝑑) = (𝑎 + 𝑐 −min(𝑏, 𝑐), 𝑏 + 𝑑 −min(𝑏, 𝑐))
An open parenthesis maps to (0, 1) and a close parenthesis maps

to (1, 0). We will overload the function Bic(𝑠) over a string to result
in the ⊕-reduction of this mapping applied to the elements of the
string; thus Bic('))()(') = (2, 1). We will use slice notation on
strings; 𝑠 [𝑖 .. 𝑗] represents the substring beginning at index 𝑖 of
length 𝑗 − 𝑖 .

The bicyclic semigroup gives rise to an alternate definition of
the parentheses matching problem. In particular, parenmatch(s)[j]
is the maximum value of 𝑖 such that Bic(𝑠 [𝑖 .. 𝑗]).𝑏 = 1. This is one
less than the minimum value such that the 𝑏 field is 0. Note that
Bic(𝑠 [𝑖 .. 𝑗]).𝑏 is monotonically increasing as 𝑖 decreases.

4 THE STACK MONOID
Another related monoid is the stack monoid, which is a sort of
hybrid of the bicyclic semigroup and the free monoid. Essentially,
rather than just counting the number of stack pushes, it contains
the actual values pushed on the stack.

Like the bicyclic semigroup, the stack monoid can be represented
as a 2-tuple. The first element in the tuple is the number of unmatched
closing parentheses, the same as the bicyclic semigroup. The second
element is a sequence of values corresponding to unmatched open
parentheses, as opposed merely to their count as in the bicyclic
semigroup. In the context of this paper, those values are typically
the indices, though the monoid is free in that it can be defined over
any sequence element type.

The empty stack monoid is (0, []). The value corresponding to an
open parenthesis with associated value 𝑥 is (0, [𝑥]), and the value
corresponding to a close parenthesis is (1, []). The combination
rule is as below:

(𝑎0, 𝑙0)⊕ (𝑎1, 𝑙1) = (𝑎0+𝑎1−min( |𝑙0 |, 𝑎1), 𝑙0 [..max(0, |𝑙0 |−𝑎1)]+𝑙1)
Like the bicyclic semigroup, the stack monoid lends itself to a

straightforward definition of the parenthesis matching problem. A
reduction of the stack monoid over a prefix of the input represents
a snapshot of the stack, as computed by the sequential algorithm,
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up to the end of that slice. The result of the parentheses matching
algorithm is then the top of the stack at each step.

The parenthesis match value at 𝑗 is the topmost value of stack
snapshot taken at position 𝑗 . Here we use 𝑒𝑛𝑢𝑚(𝑠) to represent
the enumeration of the indices of the sequence 𝑠 , for example,
𝑒𝑛𝑢𝑚('))(') is the sequence [(0, ')'), (1, ')'), (2, '(')].

𝑝𝑎𝑟𝑒𝑛𝑚𝑎𝑡𝑐ℎ(𝑠) [ 𝑗] = 𝑙𝑎𝑠𝑡 (Stk(𝑒𝑛𝑢𝑚(𝑠) [.. 𝑗]))
The 𝑘-suffix of the stack monoid is simply the last 𝑘 values.
The storage required by a single stackmonoid value is unbounded,

but that does not preclude efficient implementations. In particular,
the combination of two values of size 𝑘 can be done in-place by 2𝑘
processors in one step. This result generalizes to combination of a
vector of values, which can be represented as a stream compaction.

When a sequence containing only unbalanced close parentheses
(and no unbalanced open parentheses) is appended to a first sequence,
the resulting stack monoid is a prefix of that of the first sequence.
Stated more formally:

𝑟𝑒𝑣 (Stk(𝑒𝑛𝑢𝑚(𝑠) [𝑖0 ..𝑖2])) [𝑘] = 𝑟𝑒𝑣 (Stk(𝑒𝑛𝑢𝑚(𝑠) [𝑖0 ..𝑖1])) [𝑘+ 𝑗]
where Bic(𝑠 [𝑖1 ..𝑖2]) = ( 𝑗, 0)

The significance of this relation is that, given the value of the
Bic monoid and a materialized stack slice, it is possible to resolve
queries in 𝑂 (1) time. In cases where Bic( [𝑠1 ..𝑖2]) has a nonzero .𝑏,
the match is found within the slice 𝑠 [𝑖1 ..𝑖2]; a general matching
algorithm will resolve the match inside the slice if .𝑏 ≠ 0, and use
.𝑎 to index into a stack monoid value in 𝑠 [𝑖0 ..𝑖1] when .𝑏 = 0.

5 CORE PARALLEL ALGORITHM
The core parallel algorithm is a binary search over the bicyclic
semigroup. That algorithm by itself is fully parallel and reasonably
efficient; it has a work factor of 𝑂 (log𝑛) for the binary search.

Before running this algorithm, a binary tree of bicyclic semigroup
values is constructed; this is the same as the up-sweep phase of a
standard parallel prefix sum implementation. Specifically, the leaf
nodes of the tree are defined by 𝑡𝑟𝑒𝑒 [0] [𝑖] = Bic(𝑠 [𝑖]), and parent
nodes by the relation 𝑡𝑟𝑒𝑒 [ 𝑗 + 1] [𝑖] = 𝑡𝑟𝑒𝑒 [ 𝑗] [2𝑖] ⊕ 𝑡𝑟𝑒𝑒 [ 𝑗] [2𝑖 + 1].
Construction of this tree takes lg𝑛 steps, and the tree itself requires
storage of 2𝑛 − 2 bicyclic semigroup elements.

Then, for each index 𝑖 , the algorithm shown in Figure 2 searches
the tree for a parentheses match.

On termination, 𝑖 contains the smallest value such that Bic(𝑠 [𝑖 ..𝑖1]) .𝑏 =

0, thus 𝑖 − 1 is the solution to the parentheses matching problem.
Operation of the algorithm is illustrated in Figure 3. Here, 𝑖1 is

14 (of a 16 element sequence), and the final value of 𝑖 is 4, indicating
that Bic(𝑠 [4..14]).𝑏 = 0 but Bic(𝑠 [3..14]).𝑏 = 1. There is an upward
scanning pass followed by a downward scanning pass. At each
level, one node from the tree is examined. If combining that node
with 𝑏 would preserve .𝑏 = 0, it is incorporated (and 𝑖 adjusted to
point to the beginning of the range covered by the node), otherwise
it is rejected. Nodes incorporated are marked with a circle, nodes
rejected by an X.

This binary search takes 2 lg𝑛 steps in the worst case. Thus,
while the algorithm is highly parallel, it cannot be considered work-
efficient.

𝑖 ← 𝑖1
𝑏 ← (0, 0)
𝑗 ← 0
while 𝑗 < lg𝑤 do

if 𝑖 bitand 2𝑗 ≠ 0 then
𝑞 ← 𝑡𝑟𝑒𝑒 [ 𝑗] [⌊𝑖/2𝑗 ⌋ − 1] ⊕ 𝑏
if 𝑞.𝑏 = 0 then

𝑏 ← 𝑞

𝑖 ← 𝑖 − 2𝑗
else

break
end if

end if
𝑗 ← 𝑗 + 1

end while
if 𝑖 > 0 then

while 𝑗 > 0 do
𝑗 ← 𝑗 − 1
𝑞 ← 𝑡𝑟𝑒𝑒 [ 𝑗] [⌊𝑖/2𝑗 ⌋ − 1] ⊕ 𝑏
if 𝑞.𝑏 = 0 then

𝑏 ← 𝑞

𝑖 ← 𝑖 − 2𝑗
end if

end while
end if

Figure 2: Core parallel matching algorithm

6 SIMPLE ALGORITHM
In this section, we describe a simple algorithm which is not strictly
work-efficient, but may be practical, especially if the problem is
small or if the costs associated with code complexity are significant.
For simplicity, it is presented as two dispatches, effective up to a
problem size of𝑤2, where𝑤 is the size of a workgroup.

6.1 Stack slices
The first dispatch computes slices of the stack, with each workgroup
computing a partition of𝑤 values. More precisely, each workgroup
computes Stk(𝑒𝑛𝑢𝑚(𝑠) [𝑝..𝑝+𝑤]), where 𝑝 is the start of the partition,
in this case𝑤 · 𝑖 .

This dispatch is very simple. We do a partition-wide reverse scan
of the bicyclic semigroup on the mapping of the input elements,
followed by a simple stream compaction step: the index is written if
the .𝑎 of the scan of all following elements is zero, and the memory
location to write is derived from the .𝑏 value of that scan.

In more detail, for each index 𝑖 covering the input, index 𝑝 + 𝑖 is
written to the output at location Bic(𝑠 [𝑝..𝑝 +𝑤]).𝑏−Bic(𝑠 [𝑝 +𝑖 ..𝑝 +
𝑤]) .𝑏 if the element is an open parenthesis and Bic(𝑠 [𝑝 + 𝑖 + 1..𝑝 +
𝑤]) .𝑎 = 0. For example, in the sequence ')(()(', the result of the
reverse scan of the bicyclic semigroup is [(1, 2), (0, 2), (0, 1) (1, 1),
(0, 1)], and the predicate is true at indices 1 and 4, representing the
two unmatched open parentheses. The .𝑏 values at these indices
are 2 and 1, respectively, resulting in 1 being written to output slot
0 and 4 being written to output slot 1.
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Figure 3: Binary tree search for matching parentheses

In this simpler variant, each thread handles one element, and a
simple Hillis-Steele scan[HS86] is used to compute the scan of the
bicyclic semigroup.

6.2 Main matching pass
The second dispatch performs the main parentheses-matching
task, resolving all matches within the partition, and also using
the stack slices generated by the previous dispatch for the rest.
Each workgroup handles one partition independently, performing
the following steps sequentially (separated by workgroup barriers).
• Materialize the stack for the prefix of the input up to the
current partition. This results in the𝑤-suffix of Stk(𝑒𝑛𝑢𝑚(𝑠) [..𝑝])
in workgroup-shared memory. It consists of a reverse Hillis-
Steele scan of the bicyclic semigroups produced in the previous
step (up to 𝑖), followed by stream compaction which is a per-
element binary search of the .𝑏 values for the stack value.
• Compute a binary tree of the bicyclic semigroup from the
elements in the partition. This is a simple up-sweep as described
by [Ble90]. This binary tree requires storage of 2𝑤−1 bicyclic
semigroup elements in shared memory storage, and lg𝑤
steps.
• For each element 𝑗 , find the least value 𝑗 such that Bic(𝑠 [𝑝 +
𝑖 ..𝑝 + 𝑗]) .𝑏 = 0, searching the binary tree in an upwards
then a downwards pass. The algorithm is very similar to that
given in [BOV85].
• If 𝑖 > 0 then the match is found within the partition, and
𝑝 + 𝑖 − 1 is written to the output. If 𝑖 = 0 then the match is
in outside the partition, and the Bic(𝑠 [𝑝..𝑝 + 𝑗]) .𝑎 is used to
index into the stack as materialized in the first step.

7 WORK-EFFICIENT ALGORITHM
In a PRAM model, a simple Hillis-Steele scan over 𝑛 elements
consists of 𝑛 processors running ⌈lg𝑛⌉ steps. Thus, it has a work
factor of ⌈lg𝑛⌉ compared to the sequential algorithm running in
𝑂 (𝑛) steps on one processor.

There are a number of work-efficient variations of the basic
Hillis-Steele scan. The most straightforward to implement on GPU
is for each thread to process 𝑘 elements sequentially, amortizing

the logarithmic cost over these 𝑘 elements. In a PRAM model, 𝑛/𝑘
processors each take 𝑂 (lg(𝑛/𝑘)) steps, which is work-efficient
when 𝑘 ≥ 𝑙𝑜𝑔𝑛. See [HSO07] and [SHG08] for more discussion
of efficient GPU implementation of scan.

7.1 Work-efficient stack slices
The work-efficient version of the algorithm for producing stack
slices is straightforward, and based on standard techniques. We will
present it in a bit of detail, as other parts of the algorithm will use
similar techniques.

Recall that production of a stack slice is a stream compaction
based on a reverse scan of the bicyclic semigroup. The standard
work-efficient algorithm for scan is for each thread to process 𝑘
elements; this way the cost of theHillis-Steele scan is amortized over
𝑘 . On an actual GPU, each workgroup will have𝑤 threads, so will
end up processing𝑤𝑘 elements. An argument for the optimality of
that approach on an EREW (exclusive read, exclusive write) PRAM
is given at the end of section 1.2 of [Ble90].

Applying that technique, the first step is for each thread to do
a sequential reduction of the bicyclic semigroup for 𝑘 elements.
Then a standard (reverse) Hillis-Steele reduction over the resulting
𝑤 elements, which takes lg𝑤 steps. Lastly, each thread does a
sequential walk (also in reverse), starting with the exclusive scan
value. At each step, the value is written if the .𝑎 field of the bicyclic
semigroup is 0, and the location is determined from the .𝑏 field.

The change to the shader code compared to the 𝑘 = 1 case is
modest, and the speedup is significant, contributing to a speedup
of over 2.5 for peak throughput (see section 8).

7.2 Work-efficient matching
The work-efficient matching algorithm also processes 𝑘 elements
per thread. Significant attention to detail is required to ensure
that sequential iteration over each of these 𝑘 elements is 𝑂 (1), in
addition to tree build and tree search stages which are 𝑂 (log𝑤).

The key steps of the algorithm are outlined as follows (with the
reader referred to the commented source code for a more complete
presentation):
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(1) Reduction of the stack monoid for the prefix preceding this
partition. This computes the same stack monoid reduction
as in the 𝑘 = 1 case, and is also a stream compaction. In the
input stage, each thread processes 𝑘 input stack monoids,
resulting in a segment of subsequences. A bitmap records
for each input whether it contributed any unmatched open
parentheses. The segments with nonzero bitmaps are placed
in a linked list data structure (computed as scan of the max
operation). Next, a reverse scan of the bicyclic semigroups,
one value per segment. In the output stage, each thread is
resposible for generating𝑘 values. The first value is determined
by binary search of the scan result, and successive values
are determined by iteration: walking backward through the
subsequence from the inputmonoid until the beginning, then
finding the previous nonempty subsequence from the same
segment (using the bitmap to identify nonempty subsequences),
then following the linked list structure. Each of these queries
is 𝑂 (1).

(2) Building a binary tree of bicyclic semigroup. This the same
as the 𝑘 = 1 case, except that each value is a reduction over
𝑘 input elements. This stage also builds a bitmap for each
sequence of𝑘 input elements, with a 1 bit for each unmatched
open parenthesis in the sequence.

(3) Two binary searches of that tree. The first begins at the
first element in the sequence of 𝑘 input elements processed
by the thread. The second begins at the first unmatched
open parenthesis in that sequence. The results of these latter
searches induces a linked list structure; walking them backwards
reconstructs all stack snapshots at multiples of 𝑘 elements.

(4) Production of parentheses match output. This is a sequential
iteration over 𝑘 elements as well. Maintain an index which
might reference a location in the partition, or an index into
the prefix stack monoid (the code uses negative values to
represent the latter case). This index is initially the result of
the first binary search. Also maintain a local stack, initially
empty. At each step, if the stack is nonempty, output that
value. If empty, use the index to resolve amatch value (reading
from the prefix stack monoid if outside the partition). Then
process the input element. If an open parenthesis, push its
index onto the stack. If a close parenthesis, use the hierarchy
of previous computations to resolve the next element: if there
are nonzero bits remaining in the bitmap (as computed in
step 2), use those; otherwise, if the index is in the partition,
follow the linked list link as computed in step 3, and lastly,
if outside the partition, decrement the index so it references
the next element down in the prefix stack monoid.

8 PORTABLE COMPUTE SHADERS
A goal of this work was to develop an algorithm that could be run
efficiently and reliably on a wide range of GPU hardware. To this
end, we avoided constructs that would pose problems, such as inter-
workgroup communication. We also implemented the algorithm
on the piet-gpu-hal infrastructure, which runs compute shaders on
multiple back-ends, currently Vulkan, Metal, and Direct3D 12.

Our portability layer provides an abstraction over the multiple
APIs available for submitting compute jobs to theGPU. The compute
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Figure 4: Performance results

shaders are written in GLSL, and compiled to SPIR-V intermediate
representation for the Vulkan back-end, as well as translation to
HLSL and Metal Shading Language using the standard open-source
spirv-cross tool for use on Direct3D 12 and Metal, respectively.
All shader translation is done ahead of time, for minimal runtime
overhead at execution time. The test executable is approximately
1.5 megabytes and requires no additional runtime dependencies
aside from the GPU interface provided by the operating system.

The infrastructure allows for runtime query of specific GPU
capabilities beyond a baseline set, so different permutations of
shaders can be selected for performance or compatibility reasons.
Even so, the final implementation of this algorithm was written
with compatibility in mind, using workgroup shared memory for
communication between threads, and not relying on subgroups or
memory barriers, both of which can pose portability challenges.

9 PERFORMANCE RESULTS
Performance results are shown in Figure 4. All measurements were
performed on an AMD 5700 XT graphics card on using the Vulkan
API, and clocks set manually to 2GHz. For small problem sizes,
throughput is dominated by the overhead of a dispatch. For small
problems, 𝑘 = 1 offers the best performance, as the ratio of available
hardware threads to number of elements is favorable, so minimizing
the amount of work done by any one thread is a winning strategy.
As problem size increases to 216 and beyond, larger values of 𝑘 use
the available throughput more efficiently. In addition, the maximum
problem size is 𝑤2𝑘2, so a larger value of 𝑘 is required to handle
problems at the larger end of the scale. An optimum scheduler
may adaptively choose compute shaders specialized to a value of 𝑘
optimum for the hardware.

The peak performance is 13.5 billion elements per second. Since
each input and output word is 4 bytes, the memory bandwidth just
to read and write the problem is 108GB/s, which is a substantial
fraction (27%)of the approximately 400GB/s rawmemory bandwidth
available on the device. These numbers suggest that the algorithm
is operating not far from the theoretical limit of how fast it could
possibly go, even if considerably more clever optimizations were
applied.
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This section will be expanded in the final work; the algorithm has
been ported to a wide variety of GPU hardware, but measurement
and analysis is not yet complete.

10 RELATEDWORK
There is an extensive literature of algorithms for parenthesesmatching
described in terms of the PRAMmodel. We will briefly survey those.
Generally, an algorithm that runs on 𝑛 processors in 𝑂 (log𝑛) time
is straightforward, but adaptations to make it work-efficient add
significant complexity.

The first work-efficient algorithm in the literature is [BOV85].
The core of this algorithm is essentially equivalent to the up-sweep
of the bicyclic semigroup followed by efficient binary search; they
don’t describe it in terms of a single semigroup, but rather do two
passes, one a simple prefix sum for nesting depth, the second an
up-sweep using a minimum operation. Certainly on modern GPUs
the bicyclic semigroup formulation is superior, as a single pass is
more efficient than two, and the calculation of the semigroup itself
compiles to a small number of inexpensive machine operations.
The work-efficient adaptation depends on scans in both directions.

Much of the following literature is concerned with efficient
execution on weaker PRAM variants, in particular EREW (exclusive
read, exclusive write) rather than CREW (concurrent read, exclusive
write). These concerns don’t map well to actual GPU hardware.
Indeed, after a dispatch boundary, having many threads read from
the same location is a potentially good for performance, due to
caching.

An example of work targeting the EREW model is [PDC94].
While the refinement of theoretical execution model is of little
interest when targeting actual GPU hardware, their Algorithm II is
notable because it is effectively an in-place reduction of the stack
monoid presented in this paper, though the monoidal structure was
not identified as such in that paper.

The parenthesesmatching problem is very similar that of deriving
parent and left sibling vectors from a depth vector. The depth
vector is a representation of tree structure popular in the APL
world, and it can readily be derived as a prefix sum of +1/-1 values
corresponding to open and close parentheses in the input sequence,
respectively. A highly parallel algorithm is given in Section 3.3 of
[Hsu19]. This algorithm, however, is not work-efficient, but rather
has an additional work factor proportional to the maximum depth
of the tree. The present work has no such limitation, and tree depth
is unbounded with no impact on performance.

The parentheses matching is related to prefix sum [Ble90]. The
latter has both a solid theoretical foundation and a host of practical
implementations on actual GPUs, of which a good early example is
[SHG08]. We have liberally adapted techniques used for efficient
implementation of prefix sum on GPU to develop the algorithm
presented here.

11 DISCUSSION AND FUTUREWORK
The parentheses matching problem is similar inmanyways to prefix
sum, for which there is much work on efficient implementations.
In particular, both can be represented as monoids, though the
monoidal structure of parentheses matching is trickier than pure
sums. In particular, for parentheses matching there are twomonoids

with different time/space tradeoffs, and only through their interleaving
is a work-efficient algorithm possible. This algorithm is not merely
theoretically work-efficient in a PRAM model, but maps well to
efficient implementation onGPUusing techniques similar to existing
prefix sum implementations.

The decomposition into monoids has the advantage that the
pure parentheses matching problem can readily be fused with other
monoid operations. The main motivating example for this work is
computing bounding boxes for clipping, which can be modeled as
the intersection of rectangles on all paths from the root of a tree
to the leaves. Reduction of the stack monoid generalizes easily as
it is free and can be extended to include some other monoid such
as rectangle intersection in addition to indices. Other related tasks
such as parsing likely can be expressed in terms of monoids as well.

One possible extension of the algorithm presented in this paper
is scaling up to larger problem sizes than can fit in𝑤2𝑘2. There are a
few different approaches, depending on the exact application. If the
nesting depth can be bounded by𝑤𝑘 , then the most straightfoward
approach is a standard tree reduction applied at the workgroup
granularity approach; this is work-efficient and straightforward to
implement. If unbounded nesting depth is required, other tradeoffs
exist.

This work uses a portable fragment of the GPU computation
model, using workgroup shared memory to communicate between
threads within a dispatch, and multiple dispatches to pass data
from one workgroup partition to another. The state of the art in
high performance prefix sum implementations is decoupled look-
back[MG16], which performs a single pass rather than multiple
dispatches, and usesmessage passing betweenworkgroups to propagate
the partial results. The primary performance advantage of this
technique is eliminating the need to read the input twice, which
is important because prefix sum is usually limited by raw memory
bandwidth. It may be interesting to apply such a single-pass technique
to the parentheses matching problem, though it may be tricky, and
it is not obvious that memory bandwidth is the limiting factor.
Similarly, it is worth exploring whether subgroups can speed the
communication of partial results between threads, compared with
workgroup shared memory.

In any case, this work should help make parsing and other
manipulation of tree-structured data practical for implementation
on GPU, pushing past the common misconception that this work is
inherently serial and must be run on CPU.
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