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Abstract

Parentheses matching is an important fundamental algorithm, with
applications including parsing and processing of tree-structured data. Previous
literature presents work-efficient parallel algorithms targeting an abstract
PRAM machine, but does not address modern GPU hardware. This
paper analyzes the parentheses matching problem using two monoids, the
bijective semigroup and a novel “stack monoid,” and presents a practical,
fast algorithm interleaving these two monoids to map to the thread,
workgroup, and dispatch levels of the GPU hierarchy. This algorithm is
implemented portably using compute shaders, and performance results
show that the algorithm operates at a significant fraction of the raw
memory bandwidth of a typical GPU.

1 Introduction

This paper presents an efficient parallel solution to the parentheses matching
problem, tuned for high throughput on GPU hardware. Parentheses matching
is an important subproblem of parsing, and is a general building block for
disparate other algorithms, including bin packing[AMW89] and tree pattern
matching[PJ20]. The immediate motivation for the present work is calculating
clipping rectangles for each node in a tree representing a 2D rendering task.

1.1 Limitations of current state of the art

The literature on the parentheses matching problem goes back decades (at least
to [BOV85]), but until now there is no known satisfactory solution running on
actual GPU hardware. The literature falls into several categories:

� Theoretical investigations which present work-efficient algorithms analyzed
in terms of an abstract Parallel Random Access Machine model but no
clear mapping to an efficient GPU implementation ([BOV85], [LP92],
[PDC94]).

� Practical algorithms which run on GPU but have a work factor dependent
on maximum nesting depth ([Hsu19]).
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� More limited GPU-based parsing algorithms which cannot handle arbitrary
tree structure ([SJ19]). This category also includes the use of standard
generalized prefix sum algorithms with a small fixed bound on nesting
depth.

Thus, the prevailing wisdom remains that parsing of arbitrary tree structured
data is inherently a serial problem and must be done on CPU rather than GPU.

1.2 Key insights and contributions

There are several key insights in this paper, culminating in presentation and
empirical performance measurement of an algorithm that is fast and practical
to implement on standard GPU hardware.

The first insight is that the parentheses matching problem can be expressed
in terms of two monoids, both of which can be used to compute matches, but
with different time/space tradeoffs. The first of these is the well-known bicyclic
semigroup which is cheap to compute and can be queried by binary search, and
the second is a “stack monoid” which takes more space but can be queried in
O(1) time. Either by itself can be used to derive an algorithm which is parallel
but has O(log n) work factor.

The second insight is that interleaving these two approaches yields a work-
efficient algorithm. Further, the two approaches map well to the hierarchical
structure of actual GPU hardware. We present a simple algorithm consisting of
reduction of the stack monoid (computing stack snapshots at partition granularity),
followed by binary search of the bicyclic semigroup to resolve matches within
a partition. The second step can be done within a workgroup, using efficient
shared memory. It is reasonably fast but not truly work-efficient.

A faster version of the algorithm adds a third level of hierarchy: a sequence of
k elements processed per thread, instead of just one as in the simpler algorithm.
This technique is analogous to that used for high performance prefix sum implementations,
but requires more sophistication. Stack monoid reduction is used for the smallest
granularity, then binary search for the workgroup level, and then stack monoids
again for finding matches across workgroup boundaries.

1.3 Experimental methodology and artifact availability

The primary empirical claim is that the proposed algorithm is fast on standard
GPU hardware. To demonstrate this claim, we run the code on an AMD 5700
XT as Vulkan compute shaders. The test consists of a random sequence of
parenthesis. The GPU time is measured with Vulkan timer queries.

All software is available on GitHub with a permissive Apache 2 open source
license1. The infrastructure for running and measuring compute shader performance
is cross-platform and runs on Metal and Direct3D 12 as well as Vulkan. Such
cross-platform infrastructure is unusual for compute-centric tasks, though it is
relatively common in game engines.

1https://github.com/linebender/piet-gpu
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1.4 Limitations of the proposed approach

The main limitation of the proposed algorithm is that the presentation and
implementation is a 2-dispatch pipeline and is limited to inputs of w2k2, where
w is workgroup size and k is the number of elements processed per thread. In
many cases it is possible to increase k to accommodate the problem size (as is
the case for the motivating 2D graphics example), but as inputs scale up the
algorithm would need to be extended to 3 or more dispatches.

Parentheses matching in isolation is not an especially useful task. To put
this technique into practice will require integration with other subsystems that
can utilize parentheses matching as a subtask. For example, parsing of textual
tree-structured data formats such as XML and JSON would also require lexical
analysis.

2 The parentheses matching problem

The classical version of the parentheses matching problem is, for every index in
the source string, find the index of the corresponding matching parenthesis.
This paper actually considers a stronger version of the problem: for every
closing parenthesis, find the index of the matching open parenthesis. But for
every opening parenthesis, find the index of the immediately enclosing opening
parenthesis. It is straightforward to reconstruct the traditional version, but the
converse is not true.

One statement of the problem is as a simple sequential program which uses
a stack.

stack = [-1]
for i in range(len(s)):

out[i] = stack[len(stack) - 1]
if inp[i] == '(':

stack.push(i)
elif inp[i] == ')':

stack.pop()

We will be concerned with snapshots of the stack at step i. An appealing
quality of this specific formulation of the parentheses-matching problem is that
all stacks can be recovered from the output, just by repeatedly following references
until the root is reached (here represented by a value of -1).

3 The bicyclic semigroup

The theoretical derivation of the algorithm relies heavily on the bicyclic semigroup,
actually a monoid, which is well known to model the balancing of parentheses.
An element of the bicyclic semigroup Bic can be represented as a pair of nonnegative
integers, with (0, 0) as an identity and the following associative operator:
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(a, b)⊕ (c, d) = (a+ c−min(b, c), b+ d−min(b, c))

An open parenthesis maps to (0, 1) and a close parenthesis maps to (1, 0).
We will overload the function Bic(s) over a string to result in the ⊕-reduction of
this mapping applied to the elements of the string; thus Bic('))()(') = (2, 1).
We will use slice notation on strings; s[i..j] represents the substring beginning
at index i of length j − i.

The bicyclic semigroup gives rise to an alternate definition of the parentheses
matching problem. In particular, parenmatch(s)[j] is the maximum value of i
such that Bic(s[i..j]).b = 1. This is one less than the minimum value such that
the b field is 0. Note that Bic(s[i..j]).b is monotonically increasing as i decreases.

4 The stack monoid

Another related monoid is the stack monoid, which is a sort of hybrid of the
bicyclic semigroup and the free monoid. Essentially, rather than just counting
the number of stack pushes, it contains the actual values pushed on the stack.

(a0, l0)⊕ (a1, l1) = (a0 + a1 −min(|l0|, a1), l0[..max(0, |l0| − a1)] + l1)

Another interpretation of the stack monoid is that the stack monoid reduction
of a slice of input represents the unmatched open parentheses in that slice. It is
a free monoid, meaning that the sequence can contain values of any type, but
in this paper we will (without loss of generality) exclusively store indices.

Like the bicyclic semigroup, the stack monoid lends itself to a straightforward
definition of the parenthesis matching problem. A reduction of the stack monoid
over a prefix of the input represents a snapshot of the stack, as computed by the
sequential algorithm, up to the end of that slice. The result of the parentheses
matching algorithm is the top of the stack at each step.

The parenthesis match value at j is the topmost value of stack snapshot taken
at position j. Here we use enum(s) to represent the enumeration of the indices of
the sequence s, for example, enum('))(') is the sequence [(0, ')'), (1, ')'), (2, '(')].

parenmatch(s)[j] = last(Stk(enum(s)[..j]))

The k-suffix of the stack monoid is simply the last k values.
The storage required by a single stack monoid value is unbounded, but that

does not preclude efficient implementations. In particular, the combination of
two values of size k can be done in-place by 2k processors in one step. This
result generalizes to combination of a vector of values, which can be represented
as a stream compaction.

rev(Stk(enum(s)[i0..i2])[k] = rev(Stk(enum(s)[i0..i1]))[k+j] whereBic(s[i1..i2]) = (j, 0)

The significance of this relation is that, given the value of the Bic monoid
and a materialized stack slice, it is possible to resolve queries in O(1) time. In
cases where Bic has a nonzero .b, the match is foudn
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5 Core parallel algorithm

The core parallel algorithm is a binary search over the bicyclic semigroup. That
algorithm by itself is fully parallel and reasonably efficient; it has a work factor
of O(log n) for the binary search.

Before running this algorithm, a binary tree of bicyclic semigroup values
is constructed; this is the same as the up-sweep phase of a standard parallel
prefix sum implementation. Specifically, the leaf nodes of the tree are defined by
tree[0][i] = Bic(s[i]), and parent nodes by the relation tree[j+1][i] = tree[j][2i]⊕
tree[j][2i + 1]. Construction of this tree takes lg n steps, and the tree itself
requires storage of 2n− 2 bicyclic semigroup elements.

Then, for each index i, the following algorithm searches the tree for a
parentheses match.

i← i1
b← (0, 0)
j ← 0
while j < lgw do

if i bitand 2j ̸= 0 then
q ← tree[j][⌊i/2j⌋ − 1]⊕ b
if q.b = 0 then

b← q
i← i− 2j

else
break

end if
end if
j ← j + 1

end while
if i > 0 then

while j > 0 do
j ← j − 1
q ← tree[j][⌊i/2j⌋ − 1]⊕ b
if q.b = 0 then

b← q
i← i− 2j

end if
end while

end if

On termination, i contains the smallest value such that Bic(s[i..i1]).b = 0,
thus i− 1 is the solution to the parentheses matching problem.

Operation of the algorithm is illustrated in the figure below. Here, i1 is
14 (of a 16 element sequence), and the final value of i is 4, indicating that
Bic(s[4..14]).b = 0 but Bic(s[3..14]).b = 1. There is an upward scanning pass
followed by a downward scanning pass. At each level, one node from the
tree is examined. If combining that node with b would preserve .b = 0, it is
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incorporated (and i adjusted to point to the beginning of the range covered by
the node), otherwise it is rejected. Nodes incorporated are marked with a circle,
nodes rejected by an X.

This binary search takes 2 lg n steps in the worst case. Thus, while the
algorithm is highly parallel, it cannot be considered work-efficient.

6 Simple algorithm

In this section, we describe a simple algorithm which is not strictly work-
efficient, but may be practical, especially if the problem is small or if the costs
associated with code complexity are significant. For simplicity, it is presented
as two dispatches, effective up to a problem size of w2, where w is the size of a
workgroup.

6.1 Stack slices

The first dispatch computes slices of the stack, with each workgroup computing a
partition of w values. More precisely, each workgroup computes Stk(enum(s)[p..p+
w]), where p is the start of the partition, in this case w · i.

This dispatch is very simple. We do a partition-wide reverse scan of the
bicyclic semigroup on the mapping of the input elements, followed by a simple
stream compaction step: the index is written if the .a of the scan of all following
elements is zero, and the memory location to write is derived from the .b value
of that scan.

In more detail, for each index i covering the input, index p+ i is written to
the output at location Bic(s[p..p+w]).b−Bic(s[p+ i..p+w]).b if the element is
an open parenthesis and Bic(s[p+ i+ 1..p+ w]).a = 0. ***Give example.

In this simpler variant, each thread handles one element, and a simple Hillis-
Steele scan[HS86].
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6.2 Main matching pass

The second dispatch performs the main parentheses-matching task, resolving
all matches within the partition, and also using the stack slices generated
by the previous dispatch for the rest. Each workgroup handles one partition
independently, performing the following steps sequentially (separated by workgroup
barriers).

� Materialize the stack for the prefix of the input up to the current partition.
This results in the w-suffix of Stk(enum(s)[..p]) in workgroup-shared memory.
It consists of a reverse Hillis-Steele scan of the bicyclic semigroups produced
in the previous step (up to i), followed by stream compaction which is a
per-element binary search of the .b values for the stack value.

� Compute a binary tree of the bicyclic semigroup from the elements in
the partition. This is a simple up-sweep as described by [Ble90]. This
binary tree requires storage of 2w−1 bicyclic semigroup elements in shared
memory storage, and lgw steps.

� For each element j, find the least value j such that Bic(s[p+i..p+j]).b = 0,
searching the binary tree in an upwards then a downwards pass. The
algorithm is very similar to that given in [BOV85].

� If i > 0 then the match is found within the partition, and p + i − 1 is
written to the output. If i = 0 then the match is in outside the partition,
and the Bic(s[p..p+ j]).a is used to index into the stack as materialized in
the first step.

7 Work-efficient algorithm

In a PRAM model, a simple Hillis-Steele scan over n elements consists of n
processors running ⌈lg n⌉ steps. Thus, it has a work factor of ⌈lg n⌉ compared
to the sequential algorithm running in O(n) steps on one processor.

There are a number of work-efficient variations. The most straightforward
to implement on GPU is for each thread to process k elements sequentially,
amortizing the logarithmic cost over these k elements. In a PRAM model, n/k
processors each take O(lg(n/k)) steps, which is work-efficient when k ≥ logn.
See [HSO07] for more discussion of efficient GPU implementation of scan.

7.1 Work-efficient stack slices

The work-efficient version of the algorithm for producing stack slices is straightforward,
and based on standard techniques. We will present it in a bit of detail, as other
parts of the algorithm will use similar techniques.

Recall that production of a stack slice is a stream compaction based on a
reverse scan of the bicyclic semigroup. The standard work-efficient algorithm
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for scan is for each thread to process k elements; this way the cost of the Hillis-
Steele scan is amortized over k. On an actual GPU, each workgroup will have w
threads, so will end up processing wk elements. An argument for the optimality
of that approach on an EREW PRAM is given at the end of section 1.2 of
[Ble90].

Applying that technique, the first step is for each thread to do a sequential
reduction of the bicyclic semigroup for k elements. Then a standard (reverse)
Hillis-Steele reduction over the resulting w elements, which takes lgw steps.
Lastly, each thread does a sequential walk (also in reverse), starting with the
exclusive scan value. At each step, the value is written if the .a field of the
bicyclic semigroup is 0, and the location is determined from the .b field.

The actual shader code is straightforward, and the speedup significant.
(TODO: probably refer to quantitative measurements later)

7.2 Work-efficient matching

This section needs to be expanded to be clearer, but the basic ideas are presented
in bullet form:

� Stream compaction of stack. Breaks down into work-efficient reverse scan
of bicyclic semigroup; create bitmaps of size k to identify non-empty
segments; create linked list data structure (scan of max operation) of non-
empty segments; finally generate output, where each step either consumes
one element from a segment, steps to the next bit in the bitmap, or follows
the linked list (all O(1)). Result is the same stack slice as before.

� Build binary tree of bicyclic semigroup. This is the same as before, except
that we start by a sequential reduction of the monoid for k elements. Also
build bitmap representing stack monoid reduction (k bits per thread).

� Do two searches of tree. One for the first element in the k-chunk, the
second for the first unclosed open parenthesis in the k-chunk. The second
induces a linked list data structure to reconstruct all stack snapshots at k
granularity.

� Sequentially walk input elements. Start with search based on the first
element of the chunk. Maintain a local stack. For each element, push and
pop local stack as in sequential algorithm. When local stack is empty,
use hierarchy to resolve: next bit in bitmap, follow linked list induced by
second search, and, when it steps out of the partition, resolve in prefix
stack.

8 Portable compute shaders

A goal of this work was to develop an algorithm that could be run efficiently
and reliably on a wide range of GPU hardware. To this end, we avoided
constructs that would pose problems, such as inter-workgroup communication.
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We also implemented the algorithm on the piet-gpu-hal infrastructure, which
runs compute shaders on multiple back-ends, currently Vulkan, Metal, and
DX12.

9 Performance results

This section will need to be filled in with detailed performance results, especially
graphs of throughput over problem size.

Preliminary numbers: For the k = 1 case, with w = 512 so the problem
size is limited to 218, we see 3.9G elements/s on AMD 5700 XT. For k = 8,
on same problem size, throughput increases to 8.5G for that problem size, and
12.9G as the problem size reaches the maximum of 224. This latter number
is approximately 40% of the “speed of light” on that hardware, meaning the
amount of time it takes to read the input twice and write the output.

10 Related Work

There is an extensive literature of algorithms for parentheses matching described
in terms of the PRAM model. We will briefly survey those. Generally, an
algorithm that runs on n processors in O(log n) time is straightforward, but
adaptations to make it work-efficient add significant complexity.

The first work-efficient algorithm in the literature is [BOV85]. The core of
this algorithm is essentially equivalent to the up-sweep of the bicyclic semigroup
followed by efficient binary search; they don’t describe it in terms of a single
semigroup, but rather do two passes, one a simple prefix sum for nesting depth,
the second an up-sweep using a minimum operation. Certainly on modern GPUs
the bicyclic semigroup formulation is superior, as a single pass is more efficient
than two, and the calculation of the semigroup itself compiles to a small number
of inexpensive machine operations. The work-efficient adaptation depends on
scans in both directions.

Much of the following literature is concerned with efficient execution on
weaker PRAM variants, in particular EREW rather than CREW. These concerns
don’t map well to actual GPU hardware. Indeed, after a dispatch boundary,
having many threads read from the same location is a potentially good for
performance, due to caching.

The parentheses matching problem is very similar that of deriving parent and
left sibling vectors from a depth vector. The depth vector is a representation
of tree structure popular in the APL world, and it can readily be derived as a
prefix some from a sequence of parentheses. A highly parallel algorithm is given
in Section 3.3 of [Hsu19]. This algorithm, however, is not work-efficient, but
rather has an additional work factor proportional to the maximum depth of the
tree. The present work has no such limitation, and tree depth is unbounded
with no impact on performance.

The parentheses matching is related to prefix sum [Ble90]. The latter has
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both a solid theoretical foundation and a host of practical implementations on
actual GPU. A state of the art implementation is decoupled look-back [MG16].

11 Discussion and future work

The parentheses matching is similar in many ways to prefix sum, for which
there is much work on efficient implementations. In particular, both can be
represented as monoids, though the monoidal structure of parentheses matching
is trickier than pure sums. In particular, for parentheses matching there are two
monoids with different time/space tradeoffs, and only through their interleaving
is a work-efficient algorithm possible. This algorithm is not merely theoretically
work-efficient in a PRAM model, but maps well to efficient implementation on
GPU using similar techniques as existing prefix sum implementations.

The decomposition into monoids has the advantage that pure parentheses
matching problem can readily be fused with other monoid operations. The main
motivating example for this work is computing bounding boxes for clipping,
which can be modeled as the intersection of rectangles on all paths from the
root of a tree to the leaves. Reduction of the stack monoid generalizes easily as
it is free and can be extended to include some other monoid such as rectangle
intersection in addition to indices. Other related tasks such as parsing likely
can be expressed in terms of monoids as well.

Possible extension of the algorithm presented in this paper includes scaling
up to larger problem sizes than can fit in w2k2. There are a few different
approaches, depending on the exact application. If the nesting depth can be
bounded by wk, then the most straightfoward approach is a standard tree
reduction applied at the workgroup granularity approach; this is work-efficient
and straightforward to implement. If unbounded nesting depth is required,
other tradeoffs exist.

This work should help make parsing and other manipulation of tree-structured
data practical for implementation on GPU, pushing past the common misconception
that this work is inherently serial and must be run on CPU.
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