Fast parentheses matching on GPU

Raph Levien
Google

January 4, 2022

Abstract

Parentheses matching is an important fundamental algorithm, with
applications in processing of tree-structured data, parsing, and others.
Theoretically efficient parallel algorithms have been known for some time,
but adapating these to actual GPU hardware is not straightforward, in
part because of the complexity of these algorithms. This paper restates
the parentheses matching problem in terms of two monoids, both of which
reveal parentheses matches but with different time-space tradeoffs, and
presents a work-efficient solution that interleaves the two. This algorithm
maps well to compute shaders running on a wide range of actual GPU
hardware, and we present performance results.

1 Introduction

The parentheses matching problem has a simple, efficient sequential algorithm,
and parallel algorithms have been well-studied as well. The literature contains a
variety of work-efficient algorithms specified in terms of a parallel random-access
machine (PRAM) architecture. These results demonstrate that the problem
contains inherent parallelism, and suggest that implementation on GPU hardware
may be possible, but it is not obvious how to adapt any of these published
algorithms to actual GPU code.

This paper presents a new algorithm, with some similarities to the published
algorithms, but carefully crafted to match the hierarchy of GPU hardware.
Specifically, it maximizes the amount of work done within a workgroup, thus
taking advantage of the fast communication and synchronization within that
boundary. We present the algorithm in two versions: a simple version that is
reasonably fast, and a work-efficient variant that increases performance further.
The difference between the two is the number of elements processed per thread.
In the simple version, each thread processes one element, while in the more
sophisticated version it processes more than one (k > 1).

2 The parentheses matching problem

The classical version of the parentheses matching problem is, for every index in
the source string, find the index of the corresponding matching parenthesis.
This paper actually considers a stronger version of the problem: for every
closing parenthesis, find the index of the matching open parenthesis. But for
every opening parenthesis, find the index of the immediately enclosing opening
parenthesis. It is straightforward to reconstruct the traditional version, but the
converse is not true.

One statement of the problem is as a simple sequential program which uses
a stack.

stack = [-1]
for i in range(len(s)):
out[i] = stack[len(stack) - 1]

if inpl[i]l == '('":
stack.push (i)
elif inp[i] == ")'":

stack.pop ()

We will be concerned with snapshots of the stack at step 7. An appealing
quality of this specific formulation of the parentheses-matching problem is that
all stacks can be recovered from the output, just by repeatedly following references
until the root is reached (here represented by a value of -1).

3 The bicyclic semigroup

The theoretical derivation of the algorithm relies heavily on the bicyclic semigroup,
actually a monoid, which is well known to model the balancing of parentheses.
An element of the bicyclic semigroup Bic can be represented as a pair of nonnegative
integers, with (0,0) as an identity and the following associative operator:

(a,b) ® (¢,d) = (a 4+ ¢ — min(b, ¢), b+ d — min(b, ¢))

An open parenthesis maps to (0,1) and a close parenthesis maps to (1,0).
We will overload the function Bic(s) over a string to result in the ®-reduction of
this mapping applied to the elements of the string; thus Bic(')) (O (') = (2,1).
We will use slice notation on strings; s[i..j] represents the substring beginning
at index i of length j — 3.

The bicyclic semigroup gives rise to an alternate definition of the parentheses
matching problem. In particular, parenmatch(s)[j] is the maximum value of i
such that Bic(s[i..j]).b = 1. This is one less than the minimum value such that
the b field is 0. Note that Bic(s[i..5]).b is monotonically increasing as i increases.

4 The stack monoid

Another related monoid is the stack monoid, which is a sort of hybrid of the
bicyclic semigroup and the free monoid. Essentially, rather than just counting
the number of stack pushes, it contains the actual values pushed on the stack.

(ao,lo) ® (a1,11) = (ag + a1 — min(|lg|, a1),lo[.. max(0, |lo| — a1)] + 1)

5 Simple algorithm

In this section, we describe a simple algorithm which is not strictly work-
efficient, but may be practical, especially if the problem is small or if the costs
associated with code complexity are significant. For simplicity, it is presented
as two dispatches, effective up to a problem size of w?, where w is the size of a
workgroup.

5.1 Stack slices

The first dispatch computes slices of the stack, with each workgroup computing a
partition of w values. More precisely, each workgroup computes Stk(enum(s)[p..p+
w]), where p is the start of the partition, in this case w - .

This dispatch is very simple. We do a partition-wide reverse scan of the
bicyclic semigroup on the mapping of the input elements, followed by a simple
stream compaction step: the index is written if the .a of the scan of all following
elements is zero, and the memory location to write is derived from the .b value
of that scan.

In this simpler variant, each thread handles one element, and a simple Hillis-
Steele scan[HS86].

5.2 Main matching pass

The second dispatch performs the main parentheses-matching task, resolving
all matches within the partition, and also using the stack slices generated
by the previous dispatch for the rest. Each workgroup handles one partition
independently, performing the following steps sequentially (separated by workgroup
barriers).

e Materialize the stack for the prefix of the input up to the current partition.
This results in the w-suffix of Stk(enum(s)[..p]) in workgroup-shared memory.
It consists of a forward Hillis-Steele scan of the bicyclic semigroups produced
in the previous step (up to %), followed by stream compaction which is a
per-element binary search of the .b values for the stack value.

e Compute a binary tree of the bicyclic semigroup from the elements in
the partition. This is a simple up-sweep as described by [Ble90]. This
binary tree requires storage of 2w—1 bicyclic semigroup elements in shared
memory storage, and 1g w steps.

e For each element j, find the least value j such that Bic(s[p+i..p+7]).b = 0,
searching the binary tree in an upwards then a downwards pass. The
algorithm is very similar to that given in [BOVS85].

e If i > 0 then the match is found within the partition, and p + 17 — 1 is
written to the output. If ¢ = 0 then the match is in outside the partition,
and the Bic(s[p..p+ j]).a is used to index into the stack as materialized in
the first step.

6 Work-efficient algorithm

In a PRAM model, a simple Hillis-Steele scan over n elements consists of n
processors running [lgn] steps. Thus, it has a work factor of [lgn] compared
to the sequential algorithm running in O(n) steps on one processor.

There are a number of work-efficient variations. The most straightforward
to implement on GPU is for each thread to process k elements sequentially,
amortizing the logarithmic cost over these k elements. In a PRAM model, n/k
processors each take O(lg(n/k)) steps, which is work-efficient when k > logn.
See [HSOOQ7] for more discussion of efficient GPU implementation of scan.

6.1 Work-efficient stack slices

The work-efficient version of the algorithm for producing stack slices is straightforward,
and based on standard techniques. We will present it in a bit of detail, as other
parts of the algorithm will use similar techniques.

Recall that production of a stack slice is a stream compaction based on a
reverse scan of the bicyclic semigroup. The standard work-efficient algorithm
for scan is for each thread to process k elements; this way the cost of the Hillis-
Steele scan is amortized over k. On an actual GPU, each workgroup will have w
threads, so will end up processing wk elements. An argument for the optimality
of that approach on an EREW PRAM is given at the end of section 1.2 of
[Ble90].

Applying that technique, the first step is for each thread to do a sequential
reduction of the bicyclic semigroup for k elements. Then a standard (reverse)
Hillis-Steele reduction over the resulting w elements, which takes lgw steps.
Lastly, each thread does a sequential walk (also in reverse), starting with the
exclusive scan value. At each step, the value is written if the .a field of the
bicyclic semigroup is 0, and the location is determined from the .b field.

The actual shader code is straightforward, and the speedup significant.
(TODQO: probably refer to quantitative measurements later)

6.2 Work-efficient matching

This section needs to be expanded to be clearer, but the basic ideas are presented
in bullet form:

e Stream compaction of stack. Breaks down into work-efficient reverse scan
of bicyclic semigroup; create bitmaps of size k to identify non-empty
segments; create linked list data structure (scan of max operation) of non-
empty segments; finally generate output, where each step either consumes
one element from a segment, steps to the next bit in the bitmap, or follows
the linked list (all O(1)). Result is the same stack slice as before.

e Build binary tree of bicyclic semigroup. This is the same as before, except
that we start by a sequential reduction of the monoid for k elements. Also
build bitmap representing stack monoid reduction (k bits per thread).

e Do two searches of tree. One for the first element in the k-chunk, the
second for the first unclosed open parenthesis in the k-chunk. The second
induces a linked list data structure to reconstruct all stack snapshots at k
granularity.

e Sequentially walk input elements. Start with search based on the first
element of the chunk. Maintain a local stack. For each element, push and
pop local stack as in sequential algorithm. When local stack is empty,
use hierarchy to resolve: next bit in bitmap, follow linked list induced by
second search, and, when it steps out of the partition, resolve in prefix
stack.

7 Portable compute shaders

A goal of this work was to develop an algorithm that could be run efficiently
and reliably on a wide range of GPU hardware. To this end, we avoided
constructs that would pose problems, such as inter-workgroup communication.
We also implemented the algorithm on the piet-gpu-hal infrastructure, which
runs compute shaders on multiple back-ends, currently Vulkan, Metal, and
DX12.

8 Performance results

This section will need to be filled in with detailed performance results, especially
graphs of throughput over problem size.

Preliminary numbers: For the £k = 1 case, with w = 512 so the problem
size is limited to 2'%, we see 3.9G elements/s on AMD 5700 XT. For k = 8,
on same problem size, throughput increases to 8.5G for that problem size, and
12.9G as the problem size reaches the maximum of 224. This latter number
is approximately 40% of the “speed of light” on that hardware, meaning the
amount of time it takes to read the input twice and write the output.

9 Related Work

There is an extensive literature of algorithms for parentheses matching described
in terms of the PRAM model. We will briefly survey those. Generally, an
algorithm that runs on n processors in O(logn) time is straightforward, but
adaptations to make it work-efficient add significant complexity.

The first work-efficient algorithm in the literature is [BOV85]. The core of
this algorithm is essentially equivalent to the up-sweep of the bicyclic semigroup
followed by efficient binary search; they don’t describe it in terms of a single
semigroup, but rather do two passes, one a simple prefix sum for nesting depth,
the second an up-sweep using a minimum operation. Certainly on modern GPUs
the bicyclic semigroup formulation is superior, as a single pass is more efficient
than two, and the calculation of the semigroup itself compiles to a small number
of inexpensive machine operations. The work-efficient adaptation depends on
scans in both directions.

Much of the following literature is concerned with efficient execution on
weaker PRAM variants, in particular EREW rather than CREW. These concerns
don’t map well to actual GPU hardware. Indeed, after a dispatch boundary,
having many threads read from the same location is a potentially good for
performance, due to caching.

The best presentation of a work-efficient algorithm is [PDC94].

This algorithm is similar to generalized prefix sum, described in [Ble90].

References

[Ble90] Guy E Blelloch. Prefix sums and their applications. In Synthesis of
parallel algorithms, pages 35-60. Morgan Kaufmann Publishers Inc.,
1990.

[BOVS85] Ilan Bar-On and Uzi Vishkin. Optimal parallel generation of a
computation tree form. ACM Trans. Program. Lang. Syst., 7(2):348—
357, apr 1985.

[HS86] W. Daniel Hillis and Guy L. Steele. Data parallel algorithms.
Commun. ACM, 29(12):1170-1183, dec 1986.

[HSOO07] Mark Harris, Shubhabrata Sengupta, and John D. Owens. Parallel
prefix sum (scan) with CUDA. In Hubert Nguyen, editor, GPU Gems
8, chapter 39, pages 851-876. Addison Wesley, August 2007.

[PDC94] S.K. Prasad, S.K. Das, and C.C.-Y. Chen. Efficient EREW PRAM
algorithms for parentheses-matching. IEEE Transactions on Parallel
and Distributed Systems, 5(9):995-1008, 1994.

