-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfibonacci_matrix.cpp
128 lines (109 loc) · 2.42 KB
/
fibonacci_matrix.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#include <bits/stdc++.h>
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <sstream>
#include <queue>
#include <deque>
#include <bitset>
#include <iterator>
#include <list>
#include <stack>
#include <map>
#include <set>
#include <functional>
#include <numeric>
#include <utility>
#include <limits>
#include <time.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#define ll long long
#define ull unsigned long long
#define vi vector<ll>
#define pp pair<ll, ll>
#define mp make_pair
#define PI acos(-1.0)
#define all(v) v.begin(), v.end()
#define pb push_back
#define FOR(i, a, b) for (i = a; i < b; i++)
#define FREV(i, a, b) for (i = a; i >= b; i--)
#define SULL(n) scanf("%llu", &n)
#define INF 1e18
#define MOD 1000000007
using namespace std;
//---------------------------------------------------------------------------------
vector<vector<int>> I(2, vector<int>(2));
vector<vector<int>> T(2, vector<int>(2));
vector<int> ar(2);
void matrix_multiply(vector<vector<int>> &A, vector<vector<int>> &B, int dim)
{
vector<vector<int>> result(dim, vector<int>(dim));
for (int i = 0; i < dim; i++)
{
for (int j = 0; j < dim; j++)
{
result[i][j] = 0;
for (int k = 0; k < dim; k++)
{
int multi = A[i][k] * B[k][j];
result[i][j] = result[i][j] + multi;
}
}
}
for (int i = 0; i < dim; i++)
{
for (int j = 0; j < dim; j++)
{
A[i][j] = result[i][j];
}
}
}
int getfib(int n)
{
if (n < 2)
return ar[n];
//Identity Matrix
I[0][0] = I[1][1] = 0;
I[0][1] = I[1][0] = 1;
//Transition Matrix
T[0][0] = 0;
T[0][1] = T[1][0] = T[1][1] = 1;
//calculate T power
n = n - 1;
//calculate power
while (n)
{
//odd
if (n % 2)
{
matrix_multiply(I, T, 2);
n--;
}
else
{
matrix_multiply(T, T, 2);
n = n / 2;
}
}
// [ f1, f2] [A,B / C, D] = [f2,f3]
// x = Af1 + Cf2
// y = Cf1 + Df2
int fn = (ar[0] * I[0][0] + ar[1] * I[1][0]);
return fn;
}
int main()
{
cout << "enter two fib numbers: ";
cin >> ar[0] >> ar[1];
int n;
cout << "enter nth fib: ";
cin >> n;
n++;
cout << n - 1 << "th fibonacci: " << getfib(n);
return 0;
}