-
Notifications
You must be signed in to change notification settings - Fork 2
/
Network.py
617 lines (529 loc) · 29.6 KB
/
Network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
# encoding: utf-8
from datetime import datetime
import numpy as np
import tensorflow as tf
import dataset
import metrics_tf
from dataset import DataSet
import os
import time
import tensorflow.contrib.layers as layers
import tensorflow.contrib.slim as slim
from tensorflow.contrib.slim import arg_scope
import losses
current_time = time.strftime("%Y-%m-%d--%H-%M-%S", time.gmtime())
# these weights are from resnet: https://github.com/ry/tensorflow-resnet/blob/master/resnet.py
BN_DECAY = 0.9997
BN_EPSILON = 1e-3
CONV_WEIGHT_DECAY = 4e-5
CONV_WEIGHT_STDDEV = 0.1
MAX_EPOCHS = int(1e6)
LOG_DEVICE_PLACEMENT = False
# BATCH_SIZE = 8
BATCH_SIZE = 4 # batch size 8 does not fit to Nvidia GTX 1080 Ti. Hopefully batch size 4 will fit
# TRAIN_FILE = "train.csv"
# TEST_FILE = "test.csv"
# TRAIN_FILE = "train-small.csv"
# TEST_FILE = "train-small.csv"
# TRAIN_FILE = "train-nyu.csv"
# TEST_FILE = "test-nyu.csv"
# TRAIN_FILE = "train-depth-gta.csv"
# TEST_FILE = "test-depth-gta.csv"
# for voxelmap
TRAIN_FILE = "train-voxel-gta.csv"
TEST_FILE = "test-voxel-gta.csv"
# for trying to overfit
# TRAIN_FILE = "train-gta-small.csv"
# TEST_FILE = "train-gta-small.csv"
PREDICT_DIR = os.path.join('predict', current_time)
CHECKPOINT_DIR = os.path.join('checkpoint', current_time) # Directory name to save the checkpoints
LOGS_DIR = 'logs'
# GPU_IDX can be either integer, array or None. If None, only CPU is used
GPU_IDX = [0]
# GPU_IDX = None
# WEIGHTS_REGULARIZER = slim.l2_regularizer(CONV_WEIGHT_DECAY)
WEIGHTS_REGULARIZER = None
IS_VOXELMAP = True
USE_SOFTMAX_OUTPUT = False
ITERATIONS_PER_DECAY = 30000
INITIAL_LEARNING_RATE = 1e-4
LEARNING_RATE_DECAY_FACTOR = 0.1 # dividing by 10 every decay
class Network(object):
def __init__(self):
self.sess = None
self.saver = None
self.x = None # input images
self.y = None # desired output depth bins
self.y_image_orig = None # desired output depth images original, not used for voxelmap
self.y_image = None # desired output depth images (synthetized from depths)
self.y_image_rank4 = None # desired output depth images in rank4
self.voxelmaps = None # images
self.voxelmaps_test = None
self.images = None # images
self.images_test = None
self.depths = None # depth images
self.depths_test = None
self.depth_bins = None # depth bins
self.depth_bins_test = None
self.depth_reconst = None # depth images, reconstructed from bins (correct depth range...)
self.depth_reconst_test = None
# GPU settings
if type(GPU_IDX) not in [type(None), list, int]:
raise Exception('Wrong GPU_IDX type, must be None, list or int, but is {}'.format(type(GPU_IDX)))
if GPU_IDX is None:
self.config = tf.ConfigProto(device_count={'GPU': 0})
else:
self.config = tf.ConfigProto(log_device_placement=LOG_DEVICE_PLACEMENT)
self.config.gpu_options.allow_growth = False
self.config.gpu_options.allocator_type = 'BFC'
devices_environ_var = 'CUDA_VISIBLE_DEVICES'
if devices_environ_var in os.environ:
available_devices = os.environ[devices_environ_var].split(',')
if len(available_devices):
if isinstance(GPU_IDX, list):
os.environ[devices_environ_var] = ', '.join([available_devices[gpu] for gpu in GPU_IDX])
else:
gpu = GPU_IDX
os.environ[devices_environ_var] = available_devices[gpu]
def resize_layer(self, scope_name, inputs, small_size, big_size, stride=1, rate=1):
with arg_scope([layers.conv2d], rate=rate):
with tf.variable_scope(scope_name) as scope:
conv1 = slim.conv2d(inputs, num_outputs=small_size, scope='conv2', kernel_size=1, stride=stride,
activation_fn=tf.nn.relu,
)
conv1 = slim.conv2d(conv1, num_outputs=small_size, scope='conv3', kernel_size=3, stride=1,
activation_fn=tf.nn.relu,
)
conv1 = slim.conv2d(conv1, num_outputs=big_size, scope='conv4', kernel_size=1, stride=1,
activation_fn=None,
)
conv1b = slim.conv2d(inputs, num_outputs=big_size, scope='conv5', kernel_size=1, stride=stride,
activation_fn=None,
)
# concat
conv1 = conv1 + conv1b
conv1 = tf.nn.relu(conv1, 'relu')
return conv1
def non_resize_layer(self, scope_name, inputs, small_size, big_size, rate=1):
with arg_scope([layers.conv2d], rate=rate):
with tf.variable_scope(scope_name) as scope:
conv1 = slim.conv2d(inputs, num_outputs=small_size, scope='conv2', kernel_size=1, stride=1,
activation_fn=tf.nn.relu,
)
conv1 = slim.conv2d(conv1, num_outputs=small_size, scope='conv3', kernel_size=3, stride=1,
activation_fn=tf.nn.relu,
)
conv1 = slim.conv2d(conv1, num_outputs=big_size, scope='conv4', kernel_size=1, stride=1,
activation_fn=None,
)
# concat
conv1 = conv1 + inputs
conv1 = tf.nn.relu(conv1, 'relu')
return conv1
def initialize_by_resnet(self):
# I initialize only trainable variables, not others. Now is unified saving and restoring
saver = tf.train.Saver(tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='network'))
# saver.restore(self.sess, 'init-weights/resnet')
# saver.restore(self.sess, 'init-weights-2/resnet') # initialization with new deconv layer(5,1),(8-4),depth=50
# saver.restore(self.sess, 'init-weights-3/resnet') # initialization with new deconv layer(2,2),(8-2),depth=50
saver.restore(self.sess, 'init-weights-4/resnet') # initialization with new deconv layer(2,2),(8-2),depth=200
print('weights initialized')
def initialize_by_last_version(self):
# I initialize only trainable variables, not others. Now is unified saving and restoring
saver = tf.train.Saver(tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='network'))
saver.restore(self.sess, tf.train.latest_checkpoint('checkpoint/2018-05-04--22-57-49'))
print('weights initialized')
def inference(self):
batch_norm_params = {
'decay': BN_DECAY, # also known as momentum, they are the same
'updates_collections': None,
'epsilon': BN_EPSILON,
'scale': True,
'scope': 'batch_norm',
}
with arg_scope([layers.conv2d, layers.conv2d_transpose],
normalizer_fn=layers.batch_norm,
normalizer_params=batch_norm_params,
weights_initializer=layers.xavier_initializer(uniform=False),
biases_initializer=tf.constant_initializer(0.1),
weights_regularizer=WEIGHTS_REGULARIZER
):
with tf.variable_scope('network') as scope:
self.x = tf.placeholder(tf.float32, shape=[None, dataset.IMAGE_HEIGHT, dataset.IMAGE_WIDTH, 3],
name='x')
conv = slim.conv2d(self.x, num_outputs=64, scope='conv1', kernel_size=7, stride=2,
activation_fn=tf.nn.relu)
print("conv1")
print(conv)
max1 = slim.max_pool2d(conv, kernel_size=3, stride=2, scope='maxpool1')
conv = self.resize_layer("resize1", max1, small_size=64, big_size=256)
print("conv2")
print(conv)
for i in range(2):
conv = self.non_resize_layer("resize2-" + str(i), conv, small_size=64, big_size=256)
conv = self.resize_layer("resize3", conv, small_size=128, big_size=512, stride=2)
l1concat = conv
print("l1concat")
print(l1concat)
for i in range(7):
conv = self.non_resize_layer("resize4-" + str(i), conv, small_size=128, big_size=512)
l2concat = conv
print("l2concat")
print(l2concat)
conv = self.resize_layer("resize5", conv, small_size=256, big_size=1024, rate=2)
l3concat = conv
print("l3concat")
print(l3concat)
for i in range(35):
conv = self.non_resize_layer("resize6-" + str(i), conv, small_size=256, big_size=1024, rate=2)
l4concat = conv
print("l4concat")
print(l4concat)
conv = self.resize_layer("resize7", conv, small_size=512, big_size=2048, rate=4)
l5concat = conv
print("l5concat")
print(l5concat)
for i in range(2):
conv = self.non_resize_layer("resize8-" + str(i), conv, small_size=512, big_size=2048, rate=4)
l6concat = conv
print("l6concat")
print(l6concat)
conv = tf.concat([l1concat, l2concat, l3concat, l4concat, l5concat, l6concat], axis=3)
conv = tf.layers.dropout(conv, rate=0.5)
if IS_VOXELMAP:
conv = slim.conv2d(conv, num_outputs=dataset.DEPTH_DIM, scope='convFinal', kernel_size=3, stride=1,
normalizer_fn=None, activation_fn=None)
print('shape before deconvs: ', conv.shape)
# experimentally adding one more layer
# conv = slim.conv2d_transpose(conv, num_outputs=int(dataset.DEPTH_DIM * 2), kernel_size=2, stride=2, # try these later
# conv = slim.conv2d_transpose(conv, num_outputs=int(dataset.DEPTH_DIM / 2), kernel_size=5, stride=1,
# normalizer_fn=None, activation_fn=tf.nn.leaky_relu, scope='deconv-prefinal')
print('shape before last deconv: ', conv.shape)
# conv = slim.conv2d_transpose(conv, num_outputs=dataset.DEPTH_DIM, kernel_size=8, stride=2,
conv = slim.conv2d_transpose(conv, num_outputs=dataset.DEPTH_DIM, kernel_size=8, stride=4,
normalizer_fn=None, activation_fn=None, scope='deconvFinal')
print('shape after last deconv: ', conv.shape)
else:
conv = slim.conv2d(conv, num_outputs=dataset.DEPTH_DIM + 1, scope='convFinal', kernel_size=3,
stride=1,
normalizer_fn=None, activation_fn=None)
conv = slim.conv2d_transpose(conv, num_outputs=dataset.DEPTH_DIM + 1, kernel_size=8, stride=4,
normalizer_fn=None, activation_fn=None, scope='deconvFinal')
if USE_SOFTMAX_OUTPUT:
probs = slim.softmax(conv, 'softmaxFinal')
else:
probs = conv
probs = tf.identity(probs, 'inference')
conv = tf.identity(conv, 'logits')
print('conv.shape', conv.shape)
return probs, conv
def loss(self, logits):
H = dataset.TARGET_HEIGHT
W = dataset.TARGET_WIDTH
# size is depth dim + 1, because 1 layer is for too distant points, outside of desired area
if IS_VOXELMAP:
self.y = tf.placeholder(tf.float32, shape=[None, H, W, dataset.DEPTH_DIM], name='y')
else:
self.y = tf.placeholder(tf.float32, shape=[None, H, W, dataset.DEPTH_DIM + 1], name='y')
self.y_image = tf.placeholder(tf.float32, shape=[None, H, W], name='y_image')
self.y_image_rank4 = tf.expand_dims(self.y_image, 3)
self.y_image_orig = tf.placeholder(tf.float32, shape=[None, H, W, 1], name='y_orig')
print('labels shape:', self.y.shape)
print('logits shape:', logits.shape)
# depth losses
# cost = self.softmax_loss(labels=self.y, logits=logits)
# cost = losses.information_gain_loss(labels=self.y, logits=logits)
# cost = losses.information_gain_loss_with_undefined(labels=self.y, logits=logits)
# voxelwise losses
cost = losses.logistic_voxelwise_loss_with_undefined(labels=self.y, predicted=logits)
# cost = losses.softmax_voxelwise_loss_with_undefined(labels=self.y, predicted=logits)
# cost = losses.l2_voxelwise_loss_with_undefined(labels=self.y, logits=logits)
tf.summary.scalar("cost", cost)
return cost
def train_op(self, total_loss, global_step, batch_size):
# decay_steps = ITERATIONS_PER_DECAY
# lr = tf.train.exponential_decay(
# INITIAL_LEARNING_RATE,
# global_step,
# decay_steps,
# LEARNING_RATE_DECAY_FACTOR,
# staircase=True)
lr = tf.constant(INITIAL_LEARNING_RATE)
tf.summary.scalar('learning_rate', lr)
# opt = tf.train.AdamOptimizer(lr, epsilon=1e-5)
opt = tf.contrib.opt.NadamOptimizer(lr, epsilon=1e-8)
# opt = tf.train.MomentumOptimizer(lr, momentum=0.9, use_nesterov=True)
return opt.minimize(total_loss, global_step=global_step)
def metrics(self, estimated_depths):
if IS_VOXELMAP:
fpr, tpr, iou, softmax, l1 = self.create_metrics(estimated_depths)
tf.summary.scalar("false positive rate", fpr)
tf.summary.scalar("true positive rate", tpr)
tf.summary.scalar("iou", iou)
tf.summary.scalar("softmax metric", softmax)
tf.summary.scalar("l1 dist on known", l1)
else:
treshold, mre, rms, rmls = self.create_metrics(estimated_depths)
tf.summary.scalar("under treshold 1.25", treshold)
tf.summary.scalar("mean relative error", mre)
tf.summary.scalar("root mean square error", rms)
tf.summary.scalar("root mean log square error", rmls)
def create_metrics(self, estimated_depths):
if IS_VOXELMAP:
voxelmap_pred = estimated_depths
print('self.y shape:', self.y.shape)
print('voxelmap_pred shape:', voxelmap_pred.shape)
fpr = metrics_tf.voxel_false_positive_error(self.y, voxelmap_pred)
tpr = metrics_tf.voxel_true_positive_error(self.y, voxelmap_pred)
iou = metrics_tf.voxel_iou_error(self.y, voxelmap_pred)
softmax = losses.softmax_voxelwise_loss_with_undefined(self.y, voxelmap_pred)
l1 = metrics_tf.voxel_l1_dist_with_unknown(self.y, voxelmap_pred)
return fpr, tpr, iou, softmax, l1
else:
estimated_depths_images = self.bins_to_depth(estimated_depths)
print('self.y_image_rank4 shape:', self.y_image_rank4.shape)
print('estimated_depths_images shape:', estimated_depths_images.shape)
treshold = metrics_tf.depth_accuracy_under_treshold(self.y_image_rank4, estimated_depths_images, 1.25)
mre = metrics_tf.depth_mean_relative_error(self.y_image_rank4, estimated_depths_images)
rms = metrics_tf.depth_root_mean_squared_error(self.y_image_rank4, estimated_depths_images)
rmls = metrics_tf.depth_root_mean_squared_log_error(self.y_image_rank4, estimated_depths_images)
return treshold, mre, rms, rmls
def test_metrics(self, cost, estimated_depths):
if IS_VOXELMAP:
fpr, tpr, iou, softmax, l1 = self.create_metrics(estimated_depths)
sum1 = tf.summary.scalar("test-cost", cost)
sum2 = tf.summary.scalar("test-false positive rate", fpr)
sum3 = tf.summary.scalar("test-true positive rate", tpr)
sum4 = tf.summary.scalar("test-iou", iou)
sum5 = tf.summary.scalar("test-softmax metric", softmax)
sum6 = tf.summary.scalar("test-l1 dist on known", l1)
return tf.summary.merge([sum1, sum2, sum3, sum4, sum5, sum6])
else:
treshold, mre, rms, rmls = self.create_metrics(estimated_depths)
sum1 = tf.summary.scalar("test-cost", cost)
sum2 = tf.summary.scalar("test-under treshold 1.25", treshold)
sum3 = tf.summary.scalar("test-mean relative error", mre)
sum4 = tf.summary.scalar("test-root mean square error", rms)
sum5 = tf.summary.scalar("test-root mean log square error", rmls)
sum6 = tf.summary.image("test-predicted_depths", tf.expand_dims(estimated_depths, 3))
return tf.summary.merge([sum1, sum2, sum3, sum4, sum5, sum6])
@staticmethod
def bins_to_depth(depth_bins):
weights = np.array(range(dataset.DEPTH_DIM)) * dataset.Q + np.log(dataset.D_MIN)
sth = tf.expand_dims(tf.constant(weights, dtype=tf.float32), 0)
sth = tf.expand_dims(sth, 0)
sth = tf.expand_dims(sth, 0)
mask = tf.tile(sth, [BATCH_SIZE, dataset.TARGET_HEIGHT, dataset.TARGET_WIDTH, 1])
depths_bins_without_last = depth_bins[:, :, :, 0:dataset.DEPTH_DIM]
# depths_bins_without_last = tf.slice(depth_bins, begin=[0, 0, 0, 0], size=[-1, -1, -1, dataset.DEPTH_DIM]) # stripping away the last layer, with not valid depth, no slicing in other dimensions
mask_multiplied = tf.multiply(mask, tf.cast(depths_bins_without_last, dtype=tf.float32))
mask_multiplied_sum = tf.reduce_sum(mask_multiplied, axis=3)
depth = tf.exp(mask_multiplied_sum)
depth = tf.expand_dims(depth, 3)
return depth
@staticmethod
def voxelmap_to_depth(voxels):
# this visualizes voxelmap as depth image
depth_size = voxels.shape[3].value
# by https://stackoverflow.com/questions/45115650/how-to-find-tensorflow-max-value-index-but-the-value-is-repeat
indices = tf.range(1, depth_size + 1) # so there is no multiplication by 0 on this side, only 0 in voxelmap will force the 0
indices = tf.expand_dims(indices, 0)
indices = tf.expand_dims(indices, 0)
indices = tf.expand_dims(indices, 0)
depth = tf.argmax(tf.multiply(
tf.cast(losses.is_obstacle(voxels), dtype=tf.int32),
tf.tile(indices, [BATCH_SIZE, dataset.TARGET_HEIGHT, dataset.TARGET_WIDTH, 1])
), axis=3, output_type=tf.int32)
depth = tf.scalar_mul(tf.constant(255 / depth_size, dtype=tf.float32),
tf.cast(depth, dtype=tf.float32)) # normalizing to use all of classing png values
return depth
def prepare(self):
data_set = DataSet(BATCH_SIZE)
global_step = tf.Variable(0, trainable=False)
train_dataset_size = DataSet.get_dataset_size(TRAIN_FILE)
if IS_VOXELMAP:
self.images, self.voxelmaps, self.depth_reconst = data_set.csv_inputs_voxels(TRAIN_FILE)
self.images_test, self.voxelmaps_test, self.depth_reconst_test = data_set.csv_inputs_voxels(TEST_FILE)
else:
self.images, self.depths, self.depth_bins, self.depth_reconst = data_set.csv_inputs(TRAIN_FILE)
self.images_test, self.depths_test, self.depth_bins_test, self.depth_reconst_test, = data_set.csv_inputs(
TEST_FILE)
estimated_depths, estimated_logits = self.inference()
loss = self.loss(estimated_depths)
train_op = self.train_op(loss, global_step, BATCH_SIZE)
self.saver = tf.train.Saver() # saver must be initialized after network is set up
# adding trainable weights to tensorboard
for var in tf.trainable_variables():
# print(var.op.name)
tf.summary.histogram(var.op.name, var)
if IS_VOXELMAP:
estimated_depths_images = self.voxelmap_to_depth(estimated_depths)
tf.summary.image('input_images', self.x)
tf.summary.image('ground_truth_depths', tf.expand_dims(self.y_image, 3))
tf.summary.image('predicted_voxelmap_depths', tf.expand_dims(estimated_depths_images, 3))
else:
estimated_depths_images = self.bins_to_depth(estimated_depths)
tf.summary.image('input_images', self.x)
tf.summary.image('ground_truth_depths', self.y_image_orig)
tf.summary.image('predicted_depths', estimated_depths_images)
self.metrics(estimated_depths)
# this is last layer, need to expand dim, so the tensor is in shape [batch size, height, width, 1]
for i in range(0, dataset.DEPTH_DIM, 20):
tf.summary.image('predicted_layer_' + str(i), tf.expand_dims(estimated_depths[:, :, :, i], 3))
if not IS_VOXELMAP:
tf.summary.image('predicted_invalid', tf.expand_dims(estimated_depths[:, :, :, dataset.DEPTH_DIM], 3))
print('model prepared, going to train')
return data_set, loss, estimated_depths, train_op, estimated_depths_images, train_dataset_size
def get_samples(self):
if IS_VOXELMAP:
images, voxelmaps, gt_depth_reconst = self.sess.run(
[self.images, self.voxelmaps, self.depth_reconst])
return images, voxelmaps, gt_depth_reconst
else:
images, depths_bins, gt_images, gt_depth_reconst = self.sess.run(
[self.images, self.depth_bins, self.depths, self.depth_reconst])
return images, depths_bins, gt_images, gt_depth_reconst
def get_samples_test(self):
if IS_VOXELMAP:
images_test, voxelmaps_test, gt_depth_reconst_test = self.sess.run(
[self.images_test, self.voxelmaps_test, self.depth_reconst_test])
return images_test, voxelmaps_test, gt_depth_reconst_test
else:
images_test, depths_bins_test, gt_images_test, gt_depth_reconst_test = self.sess.run(
[self.images_test, self.depth_bins_test, self.depths, self.depth_reconst_test])
return images_test, depths_bins_test, gt_images_test, gt_depth_reconst_test
def run_train_step(self, train_op, loss, estimated_depths_images, samples):
if IS_VOXELMAP:
images, voxelmaps, gt_depth_reconst = samples
_, loss_value, predicted_depths = self.sess.run(
[train_op, loss, estimated_depths_images],
feed_dict={
self.x: images,
self.y: voxelmaps,
self.y_image: gt_depth_reconst,
}
)
else:
images, depths_bins, gt_images, gt_depth_reconst = samples
_, loss_value, predicted_depths = self.sess.run(
[train_op, loss, estimated_depths_images],
feed_dict={
self.x: images,
self.y: depths_bins,
self.y_image: gt_depth_reconst,
}
)
return loss_value, predicted_depths
def run_summary_update(self, summary, samples):
if IS_VOXELMAP:
images, voxelmaps, gt_depth_reconst = samples
summary_str = self.sess.run(
summary,
feed_dict={
self.x: images,
self.y: voxelmaps,
self.y_image: gt_depth_reconst,
}
)
else:
images, depths_bins, gt_images, gt_depth_reconst = samples
summary_str = self.sess.run(
summary,
feed_dict={
self.x: images,
self.y: depths_bins,
self.y_image: gt_depth_reconst,
self.y_image_orig: gt_images,
}
)
return summary_str
def run_test_step(self, loss, estimated_depths_images, test_summary, samples):
if IS_VOXELMAP:
images_test, voxelmaps_test, gt_depth_reconst_test = samples
test_loss_value, test_predicted_depths, test_summary_str = self.sess.run(
[loss, estimated_depths_images, test_summary],
feed_dict={
self.x: images_test,
self.y: voxelmaps_test,
self.y_image: gt_depth_reconst_test,
}
)
else:
images_test, depths_bins_test, gt_images_test, gt_depth_reconst_test = samples
test_loss_value, test_predicted_depths, test_summary_str = self.sess.run(
[loss, estimated_depths_images, test_summary],
feed_dict={
self.x: images_test,
self.y: depths_bins_test,
self.y_image: gt_depth_reconst_test,
self.y_image_orig: gt_images_test,
}
)
return test_loss_value, test_predicted_depths, test_summary_str
def run_persist_step(self, samples, samples_test, data_set, predicted_depths, test_predicted_depths, epoch, i):
if IS_VOXELMAP:
images, voxelmaps, gt_depth_reconst = samples
images_test, voxelmaps_test, gt_depth_reconst_test = samples_test
data_set.output_predict(predicted_depths, images, gt_depth_reconst,
os.path.join(PREDICT_DIR, "iter_%05d_%05d" % (epoch, i)))
data_set.output_predict(test_predicted_depths, images_test, gt_depth_reconst_test,
os.path.join(PREDICT_DIR, "iter_%05d_%05d_test" % (epoch, i)))
else:
images, depths_bins, gt_depths, gt_depth_reconst = samples
images_test, depths_bins_test, gt_depths_test, gt_depth_reconst_test = samples_test
data_set.output_predict(predicted_depths, images, gt_depths,
os.path.join(PREDICT_DIR, "iter_%05d_%05d" % (epoch, i)))
data_set.output_predict(test_predicted_depths, images_test, gt_depths_test,
os.path.join(PREDICT_DIR, "iter_%05d_%05d_test" % (epoch, i)))
def train(self):
with tf.Graph().as_default() as g:
data_set, loss, estimated_depths, train_op, estimated_depths_images, train_dataset_size = self.prepare()
# Session
with tf.Session(config=self.config) as self.sess:
self.sess.run(tf.global_variables_initializer())
# self.initialize_by_resnet() # retraining trained network instead of running new training
self.initialize_by_last_version()
# parameters
summary = tf.summary.merge_all() # merge all summaries to dump them for tensorboard
test_summary = self.test_metrics(g.get_tensor_by_name('loss:0'), estimated_depths)
writer = tf.summary.FileWriter(os.path.join(LOGS_DIR, current_time), self.sess.graph)
test_predicted_depths = None
samples_test = None
index = 0
num_batches_per_epoch = int(float(train_dataset_size) / BATCH_SIZE)
for epoch in range(MAX_EPOCHS):
for i in range(num_batches_per_epoch):
# sending images to sess.run so new batch is loaded
samples = self.get_samples()
# training itself
loss_value, predicted_depths = self.run_train_step(train_op, loss, estimated_depths_images,
samples)
# updating summary
if index % 10 == 0:
summary_str = self.run_summary_update(summary, samples)
writer.add_summary(summary_str, index)
if index % 20 == 0:
# loading new test batch
samples_test = self.get_samples_test()
# testing itself
test_loss_value, test_predicted_depths, test_summary_str = self.run_test_step(loss,
estimated_depths_images,
test_summary,
samples_test)
writer.add_summary(test_summary_str, index)
print(
"%s: %d[epoch]: %d[iteration]: train loss %f" % (datetime.now(), epoch, i, loss_value))
print(
"%s: %d[epoch]: %d[iteration]: test loss %f" % (
datetime.now(), epoch, i, test_loss_value))
assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
if index % 500 == 0:
self.run_persist_step(samples, samples_test, data_set, predicted_depths,
test_predicted_depths, epoch, i)
self.save_model(self.sess, index)
index += 1
writer.flush()
writer.close()
def save_model(self, sess, counter):
self.saver.save(sess, os.path.join(CHECKPOINT_DIR, 'model'),
global_step=counter) # because if there is no folder specified, it is used only as a prefix. Only in folder/prefix combination it puts each run into separate folder