Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Top Countries daily incremental deaths #12

Open
kenarab opened this issue May 31, 2020 · 0 comments
Open

Top Countries daily incremental deaths #12

kenarab opened this issue May 31, 2020 · 0 comments
Labels

Comments

@kenarab
Copy link
Collaborator

kenarab commented May 31, 2020

library(COVID19analytics)
#> Warning: replacing previous import 'ggplot2::Layout' by 'lgr::Layout' when
#> loading 'COVID19analytics'
#> Warning: replacing previous import 'readr::col_factor' by 'scales::col_factor'
#> when loading 'COVID19analytics'
#> Warning: replacing previous import 'magrittr::equals' by 'testthat::equals' when
#> loading 'COVID19analytics'
#> Warning: replacing previous import 'magrittr::not' by 'testthat::not' when
#> loading 'COVID19analytics'
#> Warning: replacing previous import 'magrittr::is_less_than' by
#> 'testthat::is_less_than' when loading 'COVID19analytics'
#> Warning: replacing previous import 'dplyr::matches' by 'testthat::matches' when
#> loading 'COVID19analytics'
#> Warning: replacing previous import 'testthat::matches' by 'tidyr::matches' when
#> loading 'COVID19analytics'
#> Warning: replacing previous import 'magrittr::extract' by 'tidyr::extract' when
#> loading 'COVID19analytics'
library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
data.processor <- COVID19DataProcessor$new(provider = "JohnsHopkingsUniversity", missing.values = "imputation")

#dummy <- data.processor$preprocess() is setupData + transform is the preprocess made by data provider
dummy <- data.processor$setupData()
#> INFO  [18:42:12.269]  {stage: processor-setup}
#> INFO  [18:42:12.307] Checking required downloaded  {downloaded.max.date: 2020-05-30, daily.update.time: 21:00:00, current.datetime: 2020-05-31 1.., download.flag: FALSE}
#> INFO  [18:42:12.392] Checking required downloaded  {downloaded.max.date: 2020-05-30, daily.update.time: 21:00:00, current.datetime: 2020-05-31 1.., download.flag: FALSE}
#> INFO  [18:42:12.412] Checking required downloaded  {downloaded.max.date: 2020-05-30, daily.update.time: 21:00:00, current.datetime: 2020-05-31 1.., download.flag: FALSE}
#> INFO  [18:42:12.530]  {stage: data loaded}
#> INFO  [18:42:12.531]  {stage: data-setup}
dummy <- data.processor$transform()
#> INFO  [18:42:12.533] Executing transform 
#> INFO  [18:42:12.534] Executing consolidate 
#> INFO  [18:42:14.083]  {stage: consolidated}
#> INFO  [18:42:14.084] Executing standarize 
#> INFO  [18:42:14.545] gathering DataModel 
#> INFO  [18:42:14.546]  {stage: datamodel-setup}
# Curate is the process made by missing values method
dummy <- data.processor$curate()
#> INFO  [18:42:14.549]  {stage: loading-aggregated-data-model}
#> Warning in countrycode(x, origin = "country.name", destination = "continent"): Some values were not matched unambiguously: MS Zaandam
#> INFO  [18:42:16.315]  {stage: calculating-rates}
#> INFO  [18:42:16.507]  {stage: making-data-comparison}
#> INFO  [18:42:20.967]  {stage: applying-missing-values-method}
#> INFO  [18:42:20.968]  {stage: Starting first imputation}
#> INFO  [18:42:20.975]  {stage: calculating-rates}
#> INFO  [18:42:21.187]  {stage: making-data-comparison-2}
#> INFO  [18:42:25.729]  {stage: calculating-top-countries}
#> INFO  [18:42:25.754]  {stage: processed}

current.date <- max(data.processor$getData()$date)

rg <- ReportGeneratorEnhanced$new(data.processor)

top.countries <- data.processor$top.countries

top.countries
#>  [1] "US"             "Brazil"         "Russia"         "United Kingdom"
#>  [5] "Spain"          "Italy"          "France"         "Germany"       
#>  [9] "India"          "Turkey"         "Peru"           "Others"
# Top 10 daily deaths increment
(data.processor$getData() %>%
  filter(date == current.date) %>%
  select(country, date, rate.inc.daily, confirmed.inc, confirmed, deaths, deaths.inc) %>%
  arrange(desc(deaths.inc)))[1:10,]
#> # A tibble: 10 x 7
#> # Groups:   country [10]
#>    country   date       rate.inc.daily confirmed.inc confirmed deaths deaths.inc
#>    <chr>     <date>              <dbl>         <int>     <int>  <int>      <int>
#>  1 US        2020-05-30          0.014         24146   1770165 103776        967
#>  2 Brazil    2020-05-30          0.072         33274    498440  28834        956
#>  3 Mexico    2020-05-30          0.034          2885     87512   9779        364
#>  4 Peru      2020-05-30          0.098         13892    155671   4371        272
#>  5 United K… 2020-05-30          0.006          1612    274219  38458        215
#>  6 India     2020-05-30          0.048          8336    181827   5185        205
#>  7 Russia    2020-05-30          0.023          8952    396575   4555        181
#>  8 Italy     2020-05-30          0.002           416    232664  33340        111
#>  9 Pakistan  2020-05-30          0.038          2429     66457   1395         78
#> 10 France    2020-05-30          0.01           1829    188752  28774         57

rg$ggplotCountriesLines(field = "deaths.inc",
                        field.description = "new Deaths", log.scale = FALSE)

Created on 2020-05-31 by the reprex package (v0.3.0)

@kenarab kenarab added the RR label May 31, 2020
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

1 participant