-
Notifications
You must be signed in to change notification settings - Fork 165
/
Copy pathmps_simulator.h
246 lines (214 loc) · 9.18 KB
/
mps_simulator.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// Copyright 2019 Google LLC. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef MPS_SIMULATOR_H_
#define MPS_SIMULATOR_H_
// For templates will take care of parallelization.
#define EIGEN_DONT_PARALLELIZE 1
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <memory>
#include <vector>
#include "../eigen/Eigen/Dense"
#include "../eigen/Eigen/SVD"
#include "mps_statespace.h"
namespace qsim {
namespace mps {
/**
* Truncated Matrix Product State (MPS) circuit simulator w/ vectorization.
*/
template <typename For, typename FP = float>
class MPSSimulator final {
public:
using MPSStateSpace_ = MPSStateSpace<For, FP>;
using State = typename MPSStateSpace_::MPS;
using fp_type = typename MPSStateSpace_::fp_type;
using Complex = std::complex<fp_type>;
using Matrix =
Eigen::Matrix<Complex, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
using ConstMatrixMap = Eigen::Map<const Matrix>;
using MatrixMap = Eigen::Map<Matrix>;
using OneQubitMatrix = Eigen::Matrix<Complex, 2, 2, Eigen::RowMajor>;
using ConstOneQubitMap = Eigen::Map<const OneQubitMatrix>;
// Note: ForArgs are currently unused.
template <typename... ForArgs>
explicit MPSSimulator(ForArgs&&... args) : for_(args...) {}
/**
* Applies a gate using non-vectorized instructions.
* @param qs Indices of the qubits affected by this gate.
* @param matrix Matrix representation of the gate to be applied.
* @param state The state of the system, to be updated by this method.
*/
void ApplyGate(const std::vector<unsigned>& qs, const fp_type* matrix,
State& state) const {
// Assume qs[0] < qs[1] < qs[2] < ... .
switch (qs.size()) {
case 1:
ApplyGate1(qs, matrix, state);
break;
case 2:
ApplyGate2(qs, matrix, state);
break;
// case 3:
// ApplyGate3(qs, matrix, state);
// break;
// case 4:
// ApplyGate4(qs, matrix, state);
// break;
// case 5:
// ApplyGate5(qs, matrix, state);
// break;
// case 6:
// ApplyGate6(qs, matrix, state);
// break;
default:
// Not implemented.
break;
}
}
/**
* Applies a controlled gate using eigen3 operations w/ instructions.
* @param qs Indices of the qubits affected by this gate.
* @param cqs Indices of control qubits.
* @param cmask Bit mask of control qubit values.
* @param matrix Matrix representation of the gate to be applied.
* @param state The state of the system, to be updated by this method.
*/
void ApplyControlledGate(const std::vector<unsigned>& qs,
const std::vector<unsigned>& cqs, uint64_t cmask,
const fp_type* matrix, State& state) const {
// TODO.
}
/**
* Computes the expectation value of an operator using eigen3 operations
* w/ vectorized instructions.
* @param qs Indices of the qubits the operator acts on.
* @param matrix The operator matrix.
* @param state The state of the system.
* @return The computed expectation value.
*/
std::complex<double> ExpectationValue(const std::vector<unsigned>& qs,
const fp_type* matrix,
const State& state) const {
// Assume qs[0] < qs[1] < qs[2] < ... .
// TODO.
return std::complex<double>(-10., -10.);
}
private:
void ApplyGate1(const std::vector<unsigned>& qs, const fp_type* matrix,
State& state) const {
if (qs[0] == state.num_qubits() - 1) {
Apply1Right(qs, matrix, state);
} else {
Apply1LeftOrInterior(qs, matrix, state);
}
}
void Apply1LeftOrInterior(const std::vector<unsigned>& qs,
const fp_type* matrix, State& state) const {
fp_type* raw_state = state.get();
const auto bond_dim = state.bond_dim();
const auto l_offset = MPSStateSpace_::GetBlockOffset(state, qs[0]);
const auto r_offset = MPSStateSpace_::GetBlockOffset(state, qs[0] + 1);
const auto end = MPSStateSpace_::Size(state);
ConstOneQubitMap gate_matrix((Complex*) matrix);
MatrixMap scratch_block((Complex*)(raw_state + end), 2, bond_dim);
for (unsigned block_sep = l_offset; block_sep < r_offset;
block_sep += 4 * bond_dim) {
fp_type* cur_block = raw_state + block_sep;
ConstMatrixMap mps_block((Complex*) cur_block, 2, bond_dim);
scratch_block.noalias() = gate_matrix * mps_block;
memcpy(cur_block, raw_state + end, sizeof(fp_type) * bond_dim * 4);
}
}
void Apply1Right(const std::vector<unsigned>& qs, const fp_type* matrix,
State& state) const {
fp_type* raw_state = state.get();
const auto bond_dim = state.bond_dim();
const auto offset = MPSStateSpace_::GetBlockOffset(state, qs[0]);
const auto end = MPSStateSpace_::Size(state);
ConstOneQubitMap gate_matrix((Complex*) matrix);
ConstMatrixMap mps_block((Complex*)(raw_state + offset), bond_dim, 2);
MatrixMap scratch_block((Complex*)(raw_state + end), bond_dim, 2);
scratch_block.noalias() = mps_block * gate_matrix.transpose();
memcpy(raw_state + offset, raw_state + end, sizeof(fp_type) * bond_dim * 4);
}
void ApplyGate2(const std::vector<unsigned>& qs, const fp_type* matrix,
State& state) const {
// TODO: micro-benchmark this function and improve performance.
const auto bond_dim = state.bond_dim();
const auto num_qubits = state.num_qubits();
fp_type* raw_state = state.get();
const auto i_dim = (qs[0] == 0) ? 1 : bond_dim;
const auto j_dim = 2;
const auto k_dim = bond_dim;
const auto l_dim = 2;
const auto m_dim = (qs[1] == num_qubits - 1) ? 1 : bond_dim;
const auto b_0_offset = MPSStateSpace_::GetBlockOffset(state, qs[0]);
const auto b_1_offset = MPSStateSpace_::GetBlockOffset(state, qs[1]);
const auto end = MPSStateSpace_::Size(state);
MatrixMap block_0((Complex*)(raw_state + b_0_offset), i_dim * j_dim, k_dim);
MatrixMap block_1((Complex*)(raw_state + b_1_offset), k_dim, l_dim * m_dim);
// Merge both blocks into scratch space.
MatrixMap scratch_c((Complex*)(raw_state + end), i_dim * j_dim, l_dim * m_dim);
scratch_c.noalias() = block_0 * block_1;
// Transpose inner dims in-place.
MatrixMap scratch_c_t((Complex*)(raw_state + end), i_dim * j_dim * l_dim, m_dim);
for (unsigned i = 0; i < i_dim * j_dim * l_dim; i += 4) {
scratch_c_t.row(i + 1).swap(scratch_c_t.row(i + 2));
}
// Transpose gate matrix and place in 3rd (last) scratch block.
const auto scratch3_offset = end + 8 * bond_dim * bond_dim;
ConstMatrixMap gate_matrix((Complex*) matrix, 4, 4);
MatrixMap gate_matrix_transpose((Complex*)(raw_state + scratch3_offset), 4, 4);
gate_matrix_transpose = gate_matrix.transpose();
gate_matrix_transpose.col(1).swap(gate_matrix_transpose.col(2));
// Contract gate and merged block tensors, placing result in B0B1.
for (unsigned i = 0; i < i_dim; ++i) {
fp_type* src_block = raw_state + end + i * 8 * m_dim;
fp_type* dest_block = raw_state + b_0_offset + i * 8 * m_dim;
MatrixMap block_b0b1((Complex*) dest_block, 4, m_dim);
ConstMatrixMap scratch_c_i((Complex*) src_block, 4, m_dim);
// [i, np, m] = [np, lj] * [i, lj, m]
block_b0b1.noalias() = gate_matrix_transpose * scratch_c_i;
}
// SVD B0B1.
MatrixMap full_b0b1((Complex*)(raw_state + b_0_offset), 2 * i_dim, 2 * m_dim);
Eigen::BDCSVD<Matrix> svd(full_b0b1, Eigen::ComputeThinU | Eigen::ComputeThinV);
const auto p = std::min(2 * i_dim, 2 * m_dim);
// Place U in scratch to truncate and then B0.
MatrixMap svd_u((Complex*)(raw_state + end), 2 * i_dim, p);
svd_u.noalias() = svd.matrixU();
block_0.fill(Complex(0, 0));
const auto keep_cols = (svd_u.cols() > bond_dim) ? bond_dim : svd_u.cols();
block_0.block(0, 0, svd_u.rows(), keep_cols).noalias() =
svd_u(Eigen::indexing::all, Eigen::seq(0, keep_cols - 1));
// Place row product of S V into scratch to truncate and then B1.
MatrixMap svd_v((Complex*)(raw_state + end), p, 2 * m_dim);
MatrixMap s_vector((Complex*)(raw_state + end + 8 * bond_dim * bond_dim), p, 1);
svd_v.noalias() = svd.matrixV().adjoint();
s_vector.noalias() = svd.singularValues();
block_1.fill(Complex(0, 0));
const auto keep_rows = (svd_v.rows() > bond_dim) ? bond_dim : svd_v.rows();
const auto row_seq = Eigen::seq(0, keep_rows - 1);
for (unsigned i = 0; i < keep_rows; ++i) {
svd_v.row(i) *= s_vector(i);
}
block_1.block(0, 0, keep_rows, svd_v.cols()).noalias() =
svd_v(row_seq, Eigen::indexing::all);
}
For for_;
};
} // namespace mps
} // namespace qsim
#endif // MPS_SIMULATOR_H_