forked from tensorflow/tensorboard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapplication.py
492 lines (416 loc) · 18.3 KB
/
application.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""TensorBoard WSGI Application Logic.
TensorBoardApplication constructs TensorBoard as a WSGI application.
It handles serving static assets, and implements TensorBoard data APIs.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import atexit
import json
import os
import re
import shutil
import sqlite3
import tempfile
import threading
import time
import six
from six.moves.urllib import parse as urlparse # pylint: disable=wrong-import-order
from werkzeug import wrappers
from tensorboard.backend import http_util
from tensorboard.backend.event_processing import db_import_multiplexer
from tensorboard.backend.event_processing import plugin_event_accumulator as event_accumulator # pylint: disable=line-too-long
from tensorboard.backend.event_processing import plugin_event_multiplexer as event_multiplexer # pylint: disable=line-too-long
from tensorboard.plugins import base_plugin
from tensorboard.plugins.audio import metadata as audio_metadata
from tensorboard.plugins.core import core_plugin
from tensorboard.plugins.histogram import metadata as histogram_metadata
from tensorboard.plugins.image import metadata as image_metadata
from tensorboard.plugins.pr_curve import metadata as pr_curve_metadata
from tensorboard.plugins.scalar import metadata as scalar_metadata
from tensorboard.util import tb_logging
DEFAULT_SIZE_GUIDANCE = {
event_accumulator.TENSORS: 10,
}
# TODO(@wchargin): Once SQL mode is in play, replace this with an
# alternative that does not privilege first-party plugins.
DEFAULT_TENSOR_SIZE_GUIDANCE = {
scalar_metadata.PLUGIN_NAME: 1000,
image_metadata.PLUGIN_NAME: 10,
audio_metadata.PLUGIN_NAME: 10,
histogram_metadata.PLUGIN_NAME: 500,
pr_curve_metadata.PLUGIN_NAME: 100,
}
DATA_PREFIX = '/data'
PLUGIN_PREFIX = '/plugin'
PLUGINS_LISTING_ROUTE = '/plugins_listing'
# Slashes in a plugin name could throw the router for a loop. An empty
# name would be confusing, too. To be safe, let's restrict the valid
# names as follows.
_VALID_PLUGIN_RE = re.compile(r'^[A-Za-z0-9_.-]+$')
logger = tb_logging.get_logger()
def tensor_size_guidance_from_flags(flags):
"""Apply user per-summary size guidance overrides."""
tensor_size_guidance = dict(DEFAULT_TENSOR_SIZE_GUIDANCE)
if not flags or not flags.samples_per_plugin:
return tensor_size_guidance
for token in flags.samples_per_plugin.split(','):
k, v = token.strip().split('=')
tensor_size_guidance[k] = int(v)
return tensor_size_guidance
def standard_tensorboard_wsgi(flags, plugin_loaders, assets_zip_provider):
"""Construct a TensorBoardWSGIApp with standard plugins and multiplexer.
Args:
flags: An argparse.Namespace containing TensorBoard CLI flags.
plugin_loaders: A list of TBLoader instances.
assets_zip_provider: See TBContext documentation for more information.
Returns:
The new TensorBoard WSGI application.
:type plugin_loaders: list[base_plugin.TBLoader]
:rtype: TensorBoardWSGI
"""
multiplexer = event_multiplexer.EventMultiplexer(
size_guidance=DEFAULT_SIZE_GUIDANCE,
tensor_size_guidance=tensor_size_guidance_from_flags(flags),
purge_orphaned_data=flags.purge_orphaned_data,
max_reload_threads=flags.max_reload_threads)
loading_multiplexer = multiplexer
reload_interval = flags.reload_interval
# For db import op mode, prefer reloading in a child process. See
# https://github.com/tensorflow/tensorboard/issues/1467
reload_task = flags.reload_task
if reload_task == 'auto' and flags.db_import and flags.db_import_use_op:
reload_task == 'process'
db_uri = flags.db
# For DB import mode, create a DB file if we weren't given one.
if flags.db_import and not flags.db:
tmpdir = tempfile.mkdtemp(prefix='tbimport')
atexit.register(shutil.rmtree, tmpdir)
db_uri = 'sqlite:%s/tmp.sqlite' % tmpdir
db_module, db_connection_provider = get_database_info(db_uri)
if flags.db_import:
# DB import mode.
if db_module != sqlite3:
raise base_plugin.FlagsError('--db_import is only compatible with sqlite DBs')
logger.info('Importing logdir into DB at %s', db_uri)
loading_multiplexer = db_import_multiplexer.DbImportMultiplexer(
db_connection_provider=db_connection_provider,
purge_orphaned_data=flags.purge_orphaned_data,
max_reload_threads=flags.max_reload_threads,
use_import_op=flags.db_import_use_op)
elif flags.db:
# DB read-only mode, never load event logs.
reload_interval = -1
plugin_name_to_instance = {}
context = base_plugin.TBContext(
db_module=db_module,
db_connection_provider=db_connection_provider,
db_uri=db_uri,
flags=flags,
logdir=flags.logdir,
multiplexer=multiplexer,
assets_zip_provider=assets_zip_provider,
plugin_name_to_instance=plugin_name_to_instance,
window_title=flags.window_title)
plugins = []
for loader in plugin_loaders:
plugin = loader.load(context)
if plugin is None:
continue
plugins.append(plugin)
plugin_name_to_instance[plugin.plugin_name] = plugin
return TensorBoardWSGIApp(flags.logdir, plugins, loading_multiplexer,
reload_interval, flags.path_prefix,
reload_task)
def TensorBoardWSGIApp(logdir, plugins, multiplexer, reload_interval,
path_prefix='', reload_task='auto'):
"""Constructs the TensorBoard application.
Args:
logdir: the logdir spec that describes where data will be loaded.
may be a directory, or comma,separated list of directories, or colons
can be used to provide named directories
plugins: A list of base_plugin.TBPlugin subclass instances.
multiplexer: The EventMultiplexer with TensorBoard data to serve
reload_interval: How often (in seconds) to reload the Multiplexer.
Zero means reload just once at startup; negative means never load.
path_prefix: A prefix of the path when app isn't served from root.
reload_task: Indicates the type of background task to reload with.
Returns:
A WSGI application that implements the TensorBoard backend.
Raises:
ValueError: If something is wrong with the plugin configuration.
:type plugins: list[base_plugin.TBPlugin]
:rtype: TensorBoardWSGI
"""
path_to_run = parse_event_files_spec(logdir)
if reload_interval >= 0:
# We either reload the multiplexer once when TensorBoard starts up, or we
# continuously reload the multiplexer.
start_reloading_multiplexer(multiplexer, path_to_run, reload_interval,
reload_task)
return TensorBoardWSGI(plugins, path_prefix)
class TensorBoardWSGI(object):
"""The TensorBoard WSGI app that delegates to a set of TBPlugin."""
def __init__(self, plugins, path_prefix=''):
"""Constructs TensorBoardWSGI instance.
Args:
plugins: A list of base_plugin.TBPlugin subclass instances.
flags: An argparse.Namespace containing TensorBoard CLI flags.
Returns:
A WSGI application for the set of all TBPlugin instances.
Raises:
ValueError: If some plugin has no plugin_name
ValueError: If some plugin has an invalid plugin_name (plugin
names must only contain [A-Za-z0-9_.-])
ValueError: If two plugins have the same plugin_name
ValueError: If some plugin handles a route that does not start
with a slash
:type plugins: list[base_plugin.TBPlugin]
"""
self._plugins = plugins
if path_prefix.endswith('/'):
self._path_prefix = path_prefix[:-1]
else:
self._path_prefix = path_prefix
self.data_applications = {
# TODO(@chihuahua): Delete this RPC once we have skylark rules that
# obviate the need for the frontend to determine which plugins are
# active.
self._path_prefix + DATA_PREFIX + PLUGINS_LISTING_ROUTE:
self._serve_plugins_listing,
}
# Serve the routes from the registered plugins using their name as the route
# prefix. For example if plugin z has two routes /a and /b, they will be
# served as /data/plugin/z/a and /data/plugin/z/b.
plugin_names_encountered = set()
for plugin in self._plugins:
if plugin.plugin_name is None:
raise ValueError('Plugin %s has no plugin_name' % plugin)
if not _VALID_PLUGIN_RE.match(plugin.plugin_name):
raise ValueError('Plugin %s has invalid name %r' % (plugin,
plugin.plugin_name))
if plugin.plugin_name in plugin_names_encountered:
raise ValueError('Duplicate plugins for name %s' % plugin.plugin_name)
plugin_names_encountered.add(plugin.plugin_name)
try:
plugin_apps = plugin.get_plugin_apps()
except Exception as e: # pylint: disable=broad-except
if type(plugin) is core_plugin.CorePlugin: # pylint: disable=unidiomatic-typecheck
raise
logger.warn('Plugin %s failed. Exception: %s',
plugin.plugin_name, str(e))
continue
for route, app in plugin_apps.items():
if not route.startswith('/'):
raise ValueError('Plugin named %r handles invalid route %r: '
'route does not start with a slash' %
(plugin.plugin_name, route))
if type(plugin) is core_plugin.CorePlugin: # pylint: disable=unidiomatic-typecheck
path = self._path_prefix + route
else:
path = (self._path_prefix + DATA_PREFIX + PLUGIN_PREFIX + '/' +
plugin.plugin_name + route)
self.data_applications[path] = app
@wrappers.Request.application
def _serve_plugins_listing(self, request):
"""Serves an object mapping plugin name to whether it is enabled.
Args:
request: The werkzeug.Request object.
Returns:
A werkzeug.Response object.
"""
response = {}
for plugin in self._plugins:
start = time.time()
response[plugin.plugin_name] = plugin.is_active()
elapsed = time.time() - start
logger.info(
'Plugin listing: is_active() for %s took %0.3f seconds',
plugin.plugin_name, elapsed)
return http_util.Respond(request, response, 'application/json')
def __call__(self, environ, start_response): # pylint: disable=invalid-name
"""Central entry point for the TensorBoard application.
This method handles routing to sub-applications. It does simple routing
using regular expression matching.
This __call__ method conforms to the WSGI spec, so that instances of this
class are WSGI applications.
Args:
environ: See WSGI spec.
start_response: See WSGI spec.
Returns:
A werkzeug Response.
"""
request = wrappers.Request(environ)
parsed_url = urlparse.urlparse(request.path)
clean_path = _clean_path(parsed_url.path, self._path_prefix)
# pylint: disable=too-many-function-args
if clean_path in self.data_applications:
return self.data_applications[clean_path](environ, start_response)
else:
logger.warn('path %s not found, sending 404', clean_path)
return http_util.Respond(request, 'Not found', 'text/plain', code=404)(
environ, start_response)
# pylint: enable=too-many-function-args
def parse_event_files_spec(logdir):
"""Parses `logdir` into a map from paths to run group names.
The events files flag format is a comma-separated list of path specifications.
A path specification either looks like 'group_name:/path/to/directory' or
'/path/to/directory'; in the latter case, the group is unnamed. Group names
cannot start with a forward slash: /foo:bar/baz will be interpreted as a
spec with no name and path '/foo:bar/baz'.
Globs are not supported.
Args:
logdir: A comma-separated list of run specifications.
Returns:
A dict mapping directory paths to names like {'/path/to/directory': 'name'}.
Groups without an explicit name are named after their path. If logdir is
None, returns an empty dict, which is helpful for testing things that don't
require any valid runs.
"""
files = {}
if logdir is None:
return files
# Make sure keeping consistent with ParseURI in core/lib/io/path.cc
uri_pattern = re.compile('[a-zA-Z][0-9a-zA-Z.]*://.*')
for specification in logdir.split(','):
# Check if the spec contains group. A spec start with xyz:// is regarded as
# URI path spec instead of group spec. If the spec looks like /foo:bar/baz,
# then we assume it's a path with a colon. If the spec looks like
# [a-zA-z]:\foo then we assume its a Windows path and not a single letter
# group
if (uri_pattern.match(specification) is None and ':' in specification and
specification[0] != '/' and not os.path.splitdrive(specification)[0]):
# We split at most once so run_name:/path:with/a/colon will work.
run_name, _, path = specification.partition(':')
else:
run_name = None
path = specification
if uri_pattern.match(path) is None:
path = os.path.realpath(os.path.expanduser(path))
files[path] = run_name
return files
def start_reloading_multiplexer(multiplexer, path_to_run, load_interval,
reload_task):
"""Starts automatically reloading the given multiplexer.
If `load_interval` is positive, the thread will reload the multiplexer
by calling `ReloadMultiplexer` every `load_interval` seconds, starting
immediately. Otherwise, reloads the multiplexer once and never again.
Args:
multiplexer: The `EventMultiplexer` to add runs to and reload.
path_to_run: A dict mapping from paths to run names, where `None` as the run
name is interpreted as a run name equal to the path.
load_interval: An integer greater than or equal to 0. If positive, how many
seconds to wait after one load before starting the next load. Otherwise,
reloads the multiplexer once and never again (no continuous reloading).
reload_task: Indicates the type of background task to reload with.
Raises:
ValueError: If `load_interval` is negative.
"""
if load_interval < 0:
raise ValueError('load_interval is negative: %d' % load_interval)
def _reload():
while True:
start = time.time()
logger.info('TensorBoard reload process beginning')
for path, name in six.iteritems(path_to_run):
multiplexer.AddRunsFromDirectory(path, name)
logger.info('TensorBoard reload process: Reload the whole Multiplexer')
multiplexer.Reload()
duration = time.time() - start
logger.info('TensorBoard done reloading. Load took %0.3f secs', duration)
if load_interval == 0:
# Only load the multiplexer once. Do not continuously reload.
break
time.sleep(load_interval)
if reload_task == 'process':
logger.info('Launching reload in a child process')
import multiprocessing
process = multiprocessing.Process(target=_reload, name='Reloader')
# Best-effort cleanup; on exit, the main TB parent process will attempt to
# kill all its daemonic children.
process.daemon = True
process.start()
elif reload_task in ('thread', 'auto'):
logger.info('Launching reload in a daemon thread')
thread = threading.Thread(target=_reload, name='Reloader')
# Make this a daemon thread, which won't block TB from exiting.
thread.daemon = True
thread.start()
elif reload_task == 'blocking':
if load_interval != 0:
raise ValueError('blocking reload only allowed with load_interval=0')
_reload()
else:
raise ValueError('unrecognized reload_task: %s' % reload_task)
def get_database_info(db_uri):
"""Returns TBContext fields relating to SQL database.
Args:
db_uri: A string URI expressing the DB file, e.g. "sqlite:~/tb.db".
Returns:
A tuple with the db_module and db_connection_provider TBContext fields. If
db_uri was empty, then (None, None) is returned.
Raises:
ValueError: If db_uri scheme is not supported.
"""
if not db_uri:
return None, None
scheme = urlparse.urlparse(db_uri).scheme
if scheme == 'sqlite':
return sqlite3, create_sqlite_connection_provider(db_uri)
else:
raise ValueError('Only sqlite DB URIs are supported now: ' + db_uri)
def create_sqlite_connection_provider(db_uri):
"""Returns function that returns SQLite Connection objects.
Args:
db_uri: A string URI expressing the DB file, e.g. "sqlite:~/tb.db".
Returns:
A function that returns a new PEP-249 DB Connection, which must be closed,
each time it is called.
Raises:
ValueError: If db_uri is not a valid sqlite file URI.
"""
uri = urlparse.urlparse(db_uri)
if uri.scheme != 'sqlite':
raise ValueError('Scheme is not sqlite: ' + db_uri)
if uri.netloc:
raise ValueError('Can not connect to SQLite over network: ' + db_uri)
if uri.path == ':memory:':
raise ValueError('Memory mode SQLite not supported: ' + db_uri)
path = os.path.expanduser(uri.path)
params = _get_connect_params(uri.query)
# TODO(@jart): Add thread-local pooling.
return lambda: sqlite3.connect(path, **params)
def _get_connect_params(query):
params = urlparse.parse_qs(query)
if any(len(v) > 2 for v in params.values()):
raise ValueError('DB URI params list has duplicate keys: ' + query)
return {k: json.loads(v[0]) for k, v in params.items()}
def _clean_path(path, path_prefix=""):
"""Cleans the path of the request.
Removes the ending '/' if the request begins with the path prefix and pings a
non-empty route.
Arguments:
path: The path of a request.
path_prefix: The prefix string that every route of this TensorBoard instance
starts with.
Returns:
The route to use to serve the request (with the path prefix stripped if
applicable).
"""
if path != path_prefix + '/' and path.endswith('/'):
return path[:-1]
return path