-
Notifications
You must be signed in to change notification settings - Fork 5
/
test.py
303 lines (245 loc) · 11 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import pandas as pd
import pickle
import argparse
import glob
import torch.distributions.multivariate_normal as torchdist
from utils import *
from metrics import *
from model import social_stgcnn
import copy
import random
import time
os.environ['KMP_DUPLICATE_LIB_OK'] ='True' # debug
random_seed = 2021
random.seed(random_seed)
np.random.seed(random_seed)
torch.manual_seed(random_seed)
def interpolate_traj(traj, num_interp=4):
'''
Add linearly interpolated points of a trajectory
'''
sz = traj.shape
dense = np.zeros((sz[0], (sz[1] - 1) * (num_interp + 1) + 1, 2))
dense[:, :1, :] = traj[:, :1]
for i in range(num_interp+1):
ratio = (i + 1) / (num_interp + 1)
dense[:, i+1::num_interp+1, :] = traj[:, 0:-1] * (1 - ratio) + traj[:, 1:] * ratio
return dense
def compute_col(predicted_traj, predicted_trajs_all, thres=0.2):
'''
Input:
predicted_trajs: predicted trajectory of the primary agents, [12, 2]
predicted_trajs_all: predicted trajectory of all agents in the scene, [num_person, 12, 2]
'''
ph = predicted_traj.shape[0]
num_interp = 4
assert predicted_trajs_all.shape[0] > 1
dense_all = interpolate_traj(predicted_trajs_all, num_interp)
dense_ego = interpolate_traj(predicted_traj[None, :], num_interp)
distances = np.linalg.norm(dense_all - dense_ego, axis=-1) # [num_person, 12 * num_interp]
mask = distances[:, 0] > 0 # exclude primary agent itself
return (distances[mask].min(axis=0) < thres)
def test(KSTEPS=20):
global loader_test, model
model.eval()
ade_bigls = []
fde_bigls = []
coll_bigls = []
coll_step_bigls = []
raw_data_dict = {}
step = 0
for batch in loader_test:
step += 1
# Get data
batch = [tensor.to(device) for tensor in batch]
obs_traj, pred_traj_gt, obs_traj_rel, pred_traj_gt_rel, non_linear_ped, \
loss_mask, V_obs, A_obs, V_tr, A_tr = batch
num_of_objs = obs_traj_rel.shape[1]
# Forward
# V_obs = batch,seq,node,feat
# V_obs_tmp = batch,feat,seq,node
V_obs_tmp = V_obs.permute(0, 3, 1, 2)
V_pred, _ = model(V_obs_tmp, A_obs.squeeze())
V_pred = V_pred.detach().permute(0, 2, 3, 1)
# torch.Size([1, 12, 2, 5])>>seq,node,feat
V_tr = V_tr.squeeze()
V_pred = V_pred.squeeze()
num_of_objs = obs_traj_rel.shape[1]
V_pred, V_tr = V_pred[:, :num_of_objs, :], V_tr[:, :num_of_objs, :]
# For now I have my bi-variate parameters
sx = torch.exp(V_pred[:, :, 2]) # sx
sy = torch.exp(V_pred[:, :, 3]) # sy
corr = torch.tanh(V_pred[:, :, 4]) # corr
cov = torch.zeros(V_pred.shape[0], V_pred.shape[1], 2, 2).to(device)
cov[:, :, 0, 0] = sx * sx
cov[:, :, 0, 1] = corr * sx * sy
cov[:, :, 1, 0] = corr * sx * sy
cov[:, :, 1, 1] = sy * sy
mean = V_pred[:, :, 0:2]
mvnormal = torchdist.MultivariateNormal(mean, cov)
### Rel to abs
##obs_traj.shape = torch.Size([1, 6, 2, 8]) Batch, Ped ID, x|y, Seq Len
# Now sample 20 samples
ade_ls = {}
fde_ls = {}
coll_ls = {}
coll_step_ls = {}
V_x = seq_to_nodes(obs_traj.data.cpu().numpy().copy())
V_x_rel_to_abs = nodes_rel_to_nodes_abs(V_obs.data.cpu().numpy().squeeze().copy(),
V_x[0, :, :].copy())
V_y = seq_to_nodes(pred_traj_gt.data.cpu().numpy().copy())
V_y_rel_to_abs = nodes_rel_to_nodes_abs(V_tr.data.cpu().numpy().squeeze().copy(),
V_x[-1, :, :].copy())
raw_data_dict[step] = {}
raw_data_dict[step]['obs'] = copy.deepcopy(V_x_rel_to_abs)
raw_data_dict[step]['trgt'] = copy.deepcopy(V_y_rel_to_abs)
raw_data_dict[step]['pred'] = []
for n in range(num_of_objs):
ade_ls[n] = []
fde_ls[n] = []
coll_ls[n] = []
coll_step_ls[n] = []
for k in range(KSTEPS):
V_pred = mvnormal.sample()
V_pred_rel_to_abs = nodes_rel_to_nodes_abs(V_pred.data.cpu().numpy().squeeze().copy(),
V_x[-1, :, :].copy())
raw_data_dict[step]['pred'].append(copy.deepcopy(V_pred_rel_to_abs))
# print(V_pred_rel_to_abs.shape) #(12, 3, 2) = seq, ped, location
for n in range(num_of_objs):
pred = []
target = []
obsrvs = []
number_of = []
pred.append(V_pred_rel_to_abs[:, n:n + 1, :])
target.append(V_y_rel_to_abs[:, n:n + 1, :])
obsrvs.append(V_x_rel_to_abs[:, n:n + 1, :])
number_of.append(1)
ade_ls[n].append(ade(pred, target, number_of))
fde_ls[n].append(fde(pred, target, number_of))
######
predicted_traj = V_pred_rel_to_abs[:, n, :] # [12, 2]
predicted_trajs_all = V_pred_rel_to_abs.copy().transpose(1, 0, 2) # [num_person, 12, 2]
col_mask = compute_col(predicted_traj, predicted_trajs_all).astype(np.float64) # [56]
if col_mask.sum():
coll_ls[n].append(1)
else:
coll_ls[n].append(0)
coll_step_ls[n].append(col_mask)
######
for key, coll_step_data in zip(coll_step_ls.keys(), coll_step_ls.values()):
coll_step_ls[key] = np.stack(coll_step_data, axis=0) # [X, 56]
for n in range(num_of_objs):
ade_bigls.append(min(ade_ls[n]))
fde_bigls.append(min(fde_ls[n]))
coll_bigls.append(sum(coll_ls[n])/len(coll_ls[n]))
coll_step_bigls.append(np.concatenate([ls for ls in coll_step_ls.values()], axis=0)) # [X, 56]
coll_raw_ = np.concatenate(coll_step_bigls, axis=0) # [X, 56]
coll_step_ = np.mean(coll_raw_, axis=0) # [56]
coll_step_ = coll_step_[:-1].reshape(-1, 5).mean(axis=1) # [11]
coll_cumulative_ = np.asarray([np.mean(coll_raw_[:, :i * 5 + 6].max(axis=1)) for i in range(11)]) # [11]
ade_ = sum(ade_bigls) / len(ade_bigls)
fde_ = sum(fde_bigls) / len(fde_bigls)
coll_ = sum(coll_bigls) / len(coll_bigls)
return ade_, fde_, coll_, coll_step_, coll_cumulative_, raw_data_dict
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--prefix', type=str, default='',
help='prefix tag for the model ')
parser.add_argument('--tag', type=str, default='',
help='tag for csv path')
parser.add_argument('--mode', type=str, default='fde',
help='metrics used to select model')
##Hos
#############
collision_thrshld = 0.2
#############
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
opt = parser.parse_args()
opt.prefix = opt.prefix[0] if isinstance(opt.prefix, list) else opt.prefix
opt.tag = opt.tag[0] if isinstance(opt.tag, list) else opt.tag
assert isinstance(opt.prefix, str)
assert isinstance(opt.tag, str)
opt.tag = 'default' if opt.tag == '' else opt.tag
if opt.mode == 'snce':
paths = sorted(['./checkpoint-snce/snce-social-stgcnn*'])
elif opt.mode == 'baseline':
paths = sorted(['./checkpoint-baseline/*social-stgcnn*'])
elif opt.mode == 'random-sampling':
paths = sorted(['./checkpoint-random-sampling/*social-stgcnn*'])
else:
paths = sorted(['./checkpoint/{:s}-social-stgcnn*'.format(opt.prefix) if opt.prefix is not '' else './checkpoint/social-stgcnn*'])
KSTEPS=20
print("*" * 50)
print('Number of samples:', KSTEPS)
print("*" * 50)
df = pd.DataFrame(columns=['dataset', 'ade', 'fde', 'col', 'comment'])
for feta in range(len(paths)):
ade_ls = []
fde_ls = []
coll_ls = []
path = paths[feta]
exps = glob.glob(path)
print('Model being tested are:', exps)
for exp_path in exps:
time_start = time.time()
print("*" * 50)
print("Evaluating model:", exp_path)
model_path = exp_path + '/best{:s}_val_best.pth'.format(opt.mode)
stats = exp_path + '/best{:s}_constant_metrics.pkl'.format(opt.mode)
if not os.path.exists(model_path):
model_path = exp_path + '/val_best.pth'
stats = exp_path + '/constant_metrics.pkl'
print('Model weight for mode {:s} is not found. Use best validation model.'.format(opt.mode))
else:
print('Model weight for mode {:s} is loaded.'.format(opt.mode))
args_path = exp_path + '/args.pkl'
with open(args_path, 'rb') as f:
args = pickle.load(f)
with open(stats, 'rb') as f:
cm = pickle.load(f)
print("Stats:", cm)
# Data prep
obs_seq_len = args.obs_seq_len
pred_seq_len = args.pred_seq_len
data_set = './datasets/' + args.dataset + '/'
dset_test = TrajectoryDataset(
data_set + 'test/',
obs_len=obs_seq_len,
pred_len=pred_seq_len,
skip=1, norm_lap_matr=True)
loader_test = DataLoader(
dset_test,
batch_size=1, # This is irrelative to the args batch size parameter
shuffle=False,
num_workers=1)
# Defining the model
model = social_stgcnn(n_stgcnn=args.n_stgcnn, n_txpcnn=args.n_txpcnn,
output_feat=args.output_size, seq_len=args.obs_seq_len,
kernel_size=args.kernel_size, pred_seq_len=args.pred_seq_len).to(device)
model.load_state_dict(torch.load(model_path, map_location=device))
ade_ = 999999
fde_ = 999999
coll_ = 999999
print("Testing ....")
ad, fd, coll, coll_step, coll_cum, raw_data_dic_ = test()
ade_ = min(ade_, ad)
fde_ = min(fde_, fd)
coll_ = min(coll_, coll_cum[2]) # use the coll_joint_cum up to step 4 as the collision metric
ade_ls.append(ade_)
fde_ls.append(fde_)
coll_ls.append(coll_)
print("ADE:", ade_, " FDE:", fde_, " Coll:", coll_)
df.loc[len(df)] = [args.dataset, ade_, fde_, coll_, 'model={:s}'.format(model_path)]
time_elapsed = time.time() - time_start
print('Elasped time: {:.2f} s'.format(time_elapsed))
print("*" * 50)
print("Avg ADE:", sum(ade_ls) / 5)
print("Avg FDE:", sum(fde_ls) / 5)
print("Avg coll:", sum(coll_ls) / 5)
df = df.sort_values(by=['dataset'])
df.loc[len(df)] = ['AVG', sum(ade_ls)/5, sum(fde_ls)/5, sum(coll_ls)/5, '']
csv_path = 'results_{:s}.csv'.format(opt.tag)
if not os.path.exists(csv_path):
df.to_csv(csv_path, mode='a', index=False)
else:
df.to_csv(csv_path, mode='a', header=False, index=False)