-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest_3d_metrics.py
242 lines (226 loc) · 11.7 KB
/
test_3d_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# python3.8
"""Test 3D metrics."""
import argparse
import torch
from datasets import build_dataset
from models import build_model
from metrics import build_metric
from utils.loggers import build_logger
from utils.parsing_utils import parse_bool
from utils.parsing_utils import parse_json
from utils.dist_utils import init_dist
from utils.dist_utils import exit_dist
def parse_args():
"""Parses arguments."""
parser = argparse.ArgumentParser(description='Run 3D metric test.')
parser.add_argument('--eg3d_mode', type=parse_bool, default=True,
help='Whether to evaluate in EG3D mode. (default: '
'%(default)s)')
parser.add_argument('--random_pose', type=parse_bool, default=False,
help='Whether to evaluate with random pose. (default: '
'%(default)s)')
parser.add_argument('--dataset', type=str, required=True,
help='Path to the dataset used for metric computation.')
parser.add_argument('--model', type=str, required=True,
help='Path to the pre-trained model weights.')
parser.add_argument('--G_kwargs', type=parse_json, default={},
help='Runtime keyword arguments for generator. Please '
'wrap the argument into single quotes with '
'keywords in double quotes. Beside, remove any '
'whitespace to avoid mis-parsing. For example, to '
'turn on truncation with probability 0.5 on 2 '
'layers, pass '
'`--G_kwargs \'{"truncation_psi":0.5,\'`. '
'(default: %(default)s)')
parser.add_argument('--work_dir', type=str,
default='work_dirs/metric_tests',
help='Working directory for metric test. (default: '
'%(default)s)')
parser.add_argument('--seed', type=int, default=0,
help='Random seed for generating fake images. '
'(default: %(default)s)')
parser.add_argument('--real_num', type=int, default=-1,
help='Number of real data used for testing. Negative '
'means using all data. (default: %(default)s)')
parser.add_argument('--fake_num', type=int, default=1024,
help='Number of fake data used for testing. (default: '
'%(default)s)')
parser.add_argument('--batch_size', type=int, default=16,
help='Batch size used for metric computation. '
'(default: %(default)s)')
parser.add_argument('--test_fid', type=parse_bool, default=False,
help='Whether to test FID. (default: %(default)s)')
parser.add_argument('--test_identity', type=parse_bool, default=False,
help='Whether to test identity. (default: %(default)s)')
parser.add_argument('--align_face', type=parse_bool, default=False,
help='Whether to align face images before face '
'identity evluation. (default: %(defalut)s)')
parser.add_argument('--test_depth', type=parse_bool, default=False,
help='Whether to test depth. (default: %(default)s)')
parser.add_argument('--test_pose', type=parse_bool, default=False,
help='Whether to test pose. (default: %(default)s)')
parser.add_argument('--test_reprojection_error', type=parse_bool,
default=False, help='Whether to test reprojection '
'error. (default: %(default)s)')
parser.add_argument('--test_snapshot', type=parse_bool, default=False,
help='Whether to test saving snapshot. '
'(default: %(default)s)')
parser.add_argument('--test_snapshot_multiview', type=parse_bool,
default=False,
help='Whether to test saving multiview snapshot. '
'(default: %(default)s)')
parser.add_argument('--launcher', type=str, default='pytorch',
choices=['pytorch', 'slurm'],
help='Distributed launcher. (default: %(default)s)')
parser.add_argument('--backend', type=str, default='nccl',
choices=['nccl', 'gloo', 'mpi'],
help='Distributed backend. (default: %(default)s)')
parser.add_argument('--local_rank', type=int, default=0,
help='Replica rank on the current node. This field is '
'required by `torch.distributed.launch`. '
'(default: %(default)s)')
return parser.parse_args()
def main():
"""Main function."""
args = parse_args()
# Initialize distributed environment.
init_dist(launcher=args.launcher, backend=args.backend)
# CUDNN settings.
torch.backends.cudnn.enabled = True
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
state = torch.load(args.model)
G = build_model(**state['model_kwargs_init']['generator_smooth'])
G.load_state_dict(state['models']['generator_smooth'])
G.eval().cuda()
data_transform_kwargs = dict(
image_size=G.resolution, image_channels=G.image_channels)
dataset_kwargs = dict(dataset_type='EG3DDataset',
root_dir=args.dataset,
annotation_path=None,
annotation_meta=None,
max_samples=args.real_num,
mirror=False,
transform_kwargs=data_transform_kwargs)
data_loader_kwargs = dict(data_loader_type='iter',
repeat=1,
num_workers=4,
prefetch_factor=2,
pin_memory=True)
data_loader = build_dataset(for_training=False,
batch_size=args.batch_size,
dataset_kwargs=dataset_kwargs,
data_loader_kwargs=data_loader_kwargs)
if torch.distributed.get_rank() == 0:
logger = build_logger('normal', logfile=None, verbose_log=True)
else:
logger = build_logger('dummy')
real_num = (len(data_loader.dataset)
if args.real_num < 0 else args.real_num)
print(f'Image size: {G.resolution}')
if args.test_fid:
logger.info('========== Test FID ==========')
assert args.eg3d_mode == True and args.random_pose == False
metric = build_metric('FIDEG3DMetric',
name=f'fid{args.fake_num}_real{real_num}',
work_dir=args.work_dir,
logger=logger,
seed=args.seed,
batch_size=args.batch_size,
image_size=G.resolution,
latent_dim=G.z_dim,
label_dim=G.label_dim,
real_num=args.real_num,
fake_num=args.fake_num)
result = metric.evaluate(data_loader, G, args.G_kwargs)
metric.save(result)
if args.test_identity:
logger.info('========== Test Identity ==========')
metric = build_metric('FaceIDMetric',
name=f'faceid_{args.fake_num}',
work_dir=args.work_dir,
logger=logger,
seed=args.seed,
batch_size=args.batch_size,
latent_dim=G.z_dim,
label_dim=G.label_dim,
fake_num=args.fake_num,
align_face=args.align_face,
random_pose=args.random_pose,
eg3d_mode=args.eg3d_mode)
result = metric.evaluate(data_loader, G, args.G_kwargs)
metric.save(result)
if args.test_depth:
logger.info('========== Test Depth ==========')
metric = build_metric('DepthEG3DMetric',
name=f'depth_{args.fake_num}',
work_dir=args.work_dir,
logger=logger,
seed=args.seed,
batch_size=args.batch_size,
latent_dim=G.z_dim,
label_dim=G.label_dim,
fake_num=args.fake_num,
random_pose=args.random_pose,
eg3d_mode=args.eg3d_mode)
result = metric.evaluate(data_loader, G, args.G_kwargs)
metric.save(result)
if args.test_pose:
logger.info('========== Test Pose ==========')
metric = build_metric('PoseEG3DMetric',
name=f'pose_{args.fake_num}',
work_dir=args.work_dir,
logger=logger,
seed=args.seed,
batch_size=args.batch_size,
latent_dim=G.z_dim,
label_dim=G.label_dim,
fake_num=args.fake_num,
random_pose=args.random_pose,
eg3d_mode=args.eg3d_mode)
result = metric.evaluate(data_loader, G, args.G_kwargs)
metric.save(result)
if args.test_reprojection_error:
logger.info('========== Test Reprojection Error ==========')
metric = build_metric('ReprojectionError',
name=f'reproj_error_{args.fake_num}',
work_dir=args.work_dir,
logger=logger,
seed=args.seed,
batch_size=args.batch_size,
latent_dim=G.z_dim,
label_dim=G.label_dim,
fake_num=args.fake_num)
result = metric.evaluate(data_loader, G, args.G_kwargs)
metric.save(result)
if args.test_snapshot:
logger.info('========== Test GAN Snapshot ==========')
metric = build_metric('GANSnapshot_EG3D_Image',
name='eg3d_image_snapshot',
work_dir=args.work_dir,
logger=logger,
seed=args.seed,
batch_size=args.batch_size,
latent_dim=G.z_dim,
label_dim=G.label_dim,
latent_num=min(args.fake_num, 50))
result = metric.evaluate(data_loader, G, args.G_kwargs)
metric.save(result)
if args.test_snapshot_multiview:
logger.info('========== Test GAN Snapshot Multiview==========')
metric = build_metric('GANSnapshotMultiView',
name='snapshot_multiview',
work_dir=args.work_dir,
logger=logger,
batch_size=args.batch_size,
latent_dim=G.latent_dim,
label_dim=G.label_dim,
latent_num=4)
result = metric.evaluate(data_loader, G, args.G_kwargs)
metric.save(result)
# Exit distributed environment.
exit_dist()
if __name__ == '__main__':
main()