-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest_3d_inference.py
308 lines (257 loc) · 12.9 KB
/
test_3d_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# python3.8
"""Test inference of 3d generation, including obtaining images, videos,
as well as geometries."""
import os
import argparse
import numpy as np
import cv2
import tqdm
import mrcfile
import skvideo.io
import torch
import torch.nn.functional as F
from utils.misc import bool_parser
from models import build_model
from models.rendering import PointSampler
from models.rendering.utils import LookAtPoseSampler
def create_voxel(N=256, voxel_corner=[0, 0, 0], voxel_length=2.0):
"""Creates a voxel grid.
Args:
N (int): Number of points in each side of the generated voxels.
Defaults to 256.
voxel_corner (list): Corner coordinate of the voxel, which represents
(bottom, left, down) of the voxel. Defaults to [0, 0, 0].
voxel_length (float): Side length of the voxel. Defaults to 2.0.
Returns:
A dictionary, containing:
- `voxel_grid`: voxel grid, with shape [1, N * N * N, 3].
- `voxel_origin`: origin of the voxel grid, with shape [3].
- `voxel_size`: voxel grid size, i.e. the distance between two
adjacent points in the voxel grid.
"""
voxel_origin = np.array(voxel_corner) - voxel_length / 2
voxel_size = voxel_length / (N - 1)
overall_index = torch.arange(0, N ** 3, 1, out=torch.LongTensor())
grid = torch.zeros(N ** 3, 3)
# Get the x, y, z index of each point in the grid.
grid[:, 2] = overall_index % N
grid[:, 1] = (overall_index.float() / N) % N
grid[:, 0] = ((overall_index.float() / N) / N) % N
# Get the x, y, z coordinate of each point in the grid.
grid[:, 0] = (grid[:, 0] * voxel_size) + voxel_origin[2]
grid[:, 1] = (grid[:, 1] * voxel_size) + voxel_origin[1]
grid[:, 2] = (grid[:, 2] * voxel_size) + voxel_origin[0]
voxel = {
'voxel_grid': grid.unsqueeze(0),
'voxel_origin': voxel_origin,
'voxel_size': voxel_size
}
return voxel
def postprocess_image(image, min_val=-1.0, max_val=1.0):
"""Post-processes image to pixel range [0, 255] with dtype `uint8`.
This function is particularly used to handle the results produced by deep
models.
NOTE: The input image is assumed to be with format `NCHW`, and the returned
image will always be with format `NHWC`.
Args:
image (np.ndarray): The input image for post-processing, with shape
[N, C, H, W].
min_val (float): Expected minimum value of the input image.
max_val (float): Expected maximum value of the input image.
Returns:
The post-processed image (np.ndarray), with shape [N, H, W, C].
"""
assert isinstance(image, np.ndarray)
image = image.astype(np.float64)
image = (image - min_val) / (max_val - min_val) * 255
image = np.clip(image + 0.5, 0, 255).astype(np.uint8)
assert image.ndim == 4 and image.shape[1] in [1, 3, 4]
return image.transpose(0, 2, 3, 1)
def sample_pose(point_sampling_kwargs=None):
"""Samples camera pose.
Args:
point_sampling_kwargs (dictionary): Point sampling related keywork
arguments. Defaults to None.
Returns:
cam2world_matrix: Camera to world matrix, with shape [N, 16].
"""
if point_sampling_kwargs is None:
point_sampling_kwargs = {}
point_sampler = PointSampler()
sampling_point_res = point_sampler(**point_sampling_kwargs)
cam2world_matrix = sampling_point_res['cam2world_matrix']
return cam2world_matrix.flatten(1)
def parse_args():
"""Parses arguments."""
parser = argparse.ArgumentParser(description='Run 3D inference.')
parser.add_argument('--model', type=str, required=True,
help='Path to the pre-trained model weights.')
parser.add_argument('--work_dir', type=str,
default='work_dirs/visualize_3d',
help='Working directory for 3D inference.')
parser.add_argument('--num', type=int, default=10,
help='Number of samples used for testing.')
parser.add_argument('--truncation_psi', type=float, default=0.7,
help='Truncation.')
parser.add_argument('--truncation_cutoff', type=int, default=14,
help='Number of fake data used for testing.')
parser.add_argument('--save_image', type=bool_parser, default=True,
help='Whether to test saving snapshot for scene.')
parser.add_argument('--save_shape', type=bool_parser, default=False,
help='Whether to test extracting shapes.')
parser.add_argument('--save_video', type=bool_parser, default=False,
help='Whether to test saving video.')
parser.add_argument('--rendering_resolution', type=int, default=64,
help='Neural rendering resolution.')
parser.add_argument('--num_points', type=int, default=48,
help='Number of uniform samples to take per ray.')
parser.add_argument('--ray_start', type=float, default=2.25,
help='Near point along each ray to start taking '
'samples.')
parser.add_argument('--ray_end', type=float, default=3.3,
help='Far point along each ray to end taking samples.')
parser.add_argument('--avg_camera_radius', type=float, default=2.7,
help='Specified camera orbit radius.'),
parser.add_argument('--avg_camera_pivot', type=list, default=[0, 0, 0.2],
help='Center of camera rotation.'),
parser.add_argument('--fov', type=float, default=12.0,
help='Field of view.')
parser.add_argument('--focal', type=float, default=4.2647,
help='Focal length of camera.')
parser.add_argument('--step', type=int, default=30,
help='Replica rank on the current node. This field is '
'required by `torch.distributed.launch`.')
parser.add_argument('--coordinate_scale', type=float, default=1.0,
help='The side-length of the bounding box spanned by '
'the tri-planes.')
parser.add_argument('--shape_res', type=int, default=512,
help='Resolution of the shape cube grid.')
parser.add_argument('--seed', type=int, default=0, help='Radom seed.')
return parser.parse_args()
def main():
args = parse_args()
device = "cuda" if torch.cuda.is_available() else "cpu"
os.makedirs(args.work_dir, exist_ok=True)
state_dict = torch.load(args.model)
G = build_model(**state_dict['model_kwargs_init']['generator'])
G.load_state_dict(state_dict['models']['generator_smooth'])
G.eval().cuda()
G_kwargs = dict(truncation_psi=args.truncation_psi,
truncation_cutoff=args.truncation_cutoff,
noise_mode='const')
assert (state_dict['models']['generator_smooth']['rendering_resolution'] ==
args.rendering_resolution)
# Create a tensor for padding to make the shape of pose to be [1, 25].
padding_tensor = torch.zeros((1, 9), device=device)
avg_camera_pivot = torch.tensor(args.avg_camera_pivot, device=device)
# Note: When generating multi-view images (in diffrent `poses) of the
# same identity (with same `batch_codes`), it is necessary to keep
# `label_swapped` fixed due to 'generator pose conditioning'.
# `label_swapped` is closely associated with the generation of latents
# in W+ space, which will affect the face identity of the generated
# images.
pose_swapped = LookAtPoseSampler.sample(np.pi / 2,
np.pi / 2,
avg_camera_pivot,
radius=args.avg_camera_radius,
device=device).flatten(1)
pose_swapped = torch.cat([pose_swapped, padding_tensor], dim=1)
# Predefine camera trajectory, used for saving videos.
trajectory = []
angle_p = -0.2
for angle_y in np.linspace(-0.5, 0.5, args.step):
video_pose = LookAtPoseSampler.sample(np.pi / 2 + angle_y,
np.pi / 2 + angle_p,
avg_camera_pivot,
radius=args.avg_camera_radius,
device=device).flatten(1)
video_pose = torch.cat([video_pose, padding_tensor], dim=1)
trajectory.append(video_pose)
for i in tqdm.tqdm(range(args.num)):
batch_codes = torch.from_numpy(
np.random.RandomState(args.seed + i).randn(1, G.z_dim)).to(device)
if args.save_image:
angle_p = -0.2
pose_idx = 0
for angle_y, angle_p in [(.4, angle_p), (0, angle_p),
(-.4, angle_p)]:
poses = LookAtPoseSampler.sample(np.pi / 2 + angle_y,
np.pi / 2 + angle_p,
avg_camera_pivot,
radius=args.avg_camera_radius,
device=device).flatten(1)
poses = torch.cat([poses, padding_tensor], dim=1)
images = G(batch_codes,
poses,
label_swapped=pose_swapped,
**G_kwargs)['image']
image = postprocess_image(images.detach().cpu().numpy())[0]
cv2.imwrite(
os.path.join(args.work_dir, f'{i:06d}_{pose_idx}.jpg'),
cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
pose_idx = pose_idx + 1
if args.save_video:
frames = []
for _, video_pose in enumerate(trajectory):
images = G(batch_codes,
video_pose,
label_swapped=pose_swapped,
**G_kwargs)['image'] # [N, C, H, W], N = batch_size
frames.append(images.detach().cpu())
frames = torch.stack(frames,
dim=0) # [n, N, C, H, W], n = len(trajectory)
frames = frames.permute(1, 0, 2, 3, 4) # [N, n, C, H, W]
frames = frames.detach().cpu().numpy()
for idx in range(frames.shape[0]):
traj_frames = frames[idx] # [n, C, H, W]
traj_frames = postprocess_image(traj_frames,
min_val=-1,
max_val=1)
writer = skvideo.io.FFmpegWriter(
os.path.join(args.work_dir, f'{i:06d}.mp4'),
outputdict={'-pix_fmt': 'yuv420p', '-crf': '21'})
for frame_idx in range(traj_frames.shape[0]):
writer.writeFrame(traj_frames[frame_idx])
writer.close()
if args.save_shape:
max_batch = 1000000
shape_res = args.shape_res
# Create a voxel grid and feed the coordinates of its points to the
# trained network to obtain the densities.
voxel = create_voxel(N=shape_res,
voxel_corner=[0, 0, 0],
voxel_length=args.coordinate_scale * 1)
voxel_grid = voxel['voxel_grid'].to(device) # [1, shape_res ** 3, 3]
densities = torch.zeros(
(voxel_grid.shape[0], voxel_grid.shape[1], 1), device=device)
head = 0
with tqdm.tqdm(total=voxel_grid.shape[1]) as pbar:
with torch.no_grad():
while head < voxel_grid.shape[1]:
density = G.sample(
voxel_grid[:, head:head + max_batch],
batch_codes,
pose_swapped,
**G_kwargs)['density']
densities[:, head:head + max_batch] = density
head = head + max_batch
pbar.update(max_batch)
densities = densities.reshape(
(shape_res, shape_res, shape_res)).cpu().numpy()
densities = np.flip(densities, 0)
# Trim the border of the extracted cube.
pad = int(30 * shape_res / 256)
pad_value = -1000
densities[:pad] = pad_value
densities[-pad:] = pad_value
densities[:, :pad] = pad_value
densities[:, -pad:] = pad_value
densities[:, :, :pad] = pad_value
densities[:, :, -pad:] = pad_value
with mrcfile.new_mmap(os.path.join(args.work_dir, f'{i:06d}.mrc'),
overwrite=True,
shape=densities.shape,
mrc_mode=2) as mrc:
mrc.data[:] = densities
if __name__ == '__main__':
main()