-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathpredict_new.py
47 lines (35 loc) · 1.43 KB
/
predict_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
"""
Summary: Predict on the feature of a new audio.
Author: Qiuqiang Kong
Created: 2017.11.12
Modified: -
"""
import os
import numpy as np
import argparse
from main import _attention
from hat import serializations
def predict_new(args):
workspace = args.workspace
# Load model.
md_path = os.path.join(workspace, "models", "main", args.model_name)
md = serializations.load(md_path)
# Simulate new data.
x_new = np.random.normal(size=(3, 10, 128)) # (n_clips, n_time, n_in)
# Obtain final classification probability on an audio clip.
[y] = md.predict(x_new) # (n_clips, n_out)
print("y.shape: %s" % (y.shape,))
# Obtain intermedial classification & attention value in the neural network.
observe_nodes = [md.find_layer('cla').output_,
md.find_layer('att').output_]
f_forward = md.get_observe_forward_func(observe_nodes) # Forward function.
[cla, att] = md.run_function(f_forward, x_new, batch_size=None, tr_phase=0.)
print("classification.shape: %s" % (cla.shape,)) # (n_clips, n_time, n_out)
print("attention.shape: %s" % (att.shape,)) # (n_clips, n_time, n_out)
if __name__ == '__main__':
# Arguments.
parser = argparse.ArgumentParser()
parser.add_argument('--workspace', type=str)
parser.add_argument('--model_name', type=str)
args = parser.parse_args()
predict_new(args)