diff --git a/.buildinfo b/.buildinfo index c359bee9..3ad08594 100644 --- a/.buildinfo +++ b/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 9819ffc6e12194ec337e2a6db159e35c +config: 29ed7a05517d7dde50ab7eb968f02f45 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/_images/tutorials_06_examples_max_cut_and_tsp_16_1.png b/_images/tutorials_06_examples_max_cut_and_tsp_16_1.png index dafaf7ec..e8303c9c 100644 Binary files a/_images/tutorials_06_examples_max_cut_and_tsp_16_1.png and b/_images/tutorials_06_examples_max_cut_and_tsp_16_1.png differ diff --git a/_images/tutorials_06_examples_max_cut_and_tsp_19_1.png b/_images/tutorials_06_examples_max_cut_and_tsp_19_1.png index 9cdc15a4..87afbb33 100644 Binary files a/_images/tutorials_06_examples_max_cut_and_tsp_19_1.png and b/_images/tutorials_06_examples_max_cut_and_tsp_19_1.png differ diff --git a/_images/tutorials_06_examples_max_cut_and_tsp_20_1.png b/_images/tutorials_06_examples_max_cut_and_tsp_20_1.png index dafaf7ec..e8303c9c 100644 Binary files a/_images/tutorials_06_examples_max_cut_and_tsp_20_1.png and b/_images/tutorials_06_examples_max_cut_and_tsp_20_1.png differ diff --git a/_images/tutorials_06_examples_max_cut_and_tsp_5_0.png b/_images/tutorials_06_examples_max_cut_and_tsp_5_0.png index a18b7f2f..47ba993a 100644 Binary files a/_images/tutorials_06_examples_max_cut_and_tsp_5_0.png and b/_images/tutorials_06_examples_max_cut_and_tsp_5_0.png differ diff --git a/_images/tutorials_06_examples_max_cut_and_tsp_8_1.png b/_images/tutorials_06_examples_max_cut_and_tsp_8_1.png index dafaf7ec..e8303c9c 100644 Binary files a/_images/tutorials_06_examples_max_cut_and_tsp_8_1.png and b/_images/tutorials_06_examples_max_cut_and_tsp_8_1.png differ diff --git a/_images/tutorials_12_quantum_random_access_optimizer_35_2.png b/_images/tutorials_12_quantum_random_access_optimizer_35_1.png similarity index 100% rename from _images/tutorials_12_quantum_random_access_optimizer_35_2.png rename to _images/tutorials_12_quantum_random_access_optimizer_35_1.png diff --git a/_sources/getting_started.rst.txt b/_sources/getting_started.rst.txt index 19c6a9d2..751d3118 100644 --- a/_sources/getting_started.rst.txt +++ b/_sources/getting_started.rst.txt @@ -7,9 +7,9 @@ Getting started Installation ============ -Qiskit Optimization depends Qiskit. which has its own -`Qiskit Getting Started `__ detailing the -installation options and its supported environments/platforms. You should refer to +Qiskit Optimization depends on Qiskit, which has its own +`installation instructions `__ detailing the +installation options for Qiskit and its supported environments/platforms. You should refer to that first. Then the information here can be followed which focuses on the additional installation specific to Qiskit Optimization. @@ -21,13 +21,9 @@ See :ref:`optional_installs` for more information. .. tab-item:: Start locally - The simplest way to get started is to first follow the `getting started 'Start locally' guide for - Qiskit `__ + The simplest way to get started is to follow the `Qiskit installation instructions `__ - In your virtual environment where you installed Qiskit simply add ``optimization`` to the - extra list in a similar manner to how the extra ``visualization`` support is installed for - Qiskit, i.e: - In your virtual environment, where you installed Qiskit, install Qiskit Optimization as follows: + In your virtual environment where you installed Qiskit, also install ``qiskit-optimization``: .. code:: sh @@ -48,7 +44,7 @@ See :ref:`optional_installs` for more information. Since Qiskit Optimization depends on Qiskit, and its latest changes may require new or changed features of Qiskit, you should first follow Qiskit's `"Install from source"` instructions - here `Qiskit Getting Started `__ + `here `__ .. raw:: html diff --git a/_sources/migration/01_migration_guide_to_v0.5.rst.txt b/_sources/migration/01_migration_guide_to_v0.5.rst.txt index 51f2a754..ea9db5e5 100644 --- a/_sources/migration/01_migration_guide_to_v0.5.rst.txt +++ b/_sources/migration/01_migration_guide_to_v0.5.rst.txt @@ -9,7 +9,7 @@ Overview Qiskit Terra v0.22 introduces new algorithm implementations that leverage `Qiskit -Primitives `__ +Primitives `__ (Estimator and Sampler). The former algorithm implementations that leverage opflow will be deprecated in the future release. @@ -19,7 +19,7 @@ of Qiskit Terra v0.22 until the former algorithms are deprecated. It is not the intention to provide detailed explanations of the primitives in this migration guide. We suggest that you read the `corresponding -resources `__ +resources `__ of the Qiskit Terra documentation instead. We use ``qiskit.primitives.Sampler`` in this guide as an example of diff --git a/_sources/tutorials/12_quantum_random_access_optimizer.ipynb.txt b/_sources/tutorials/12_quantum_random_access_optimizer.ipynb.txt index 44b1fe69..da7c3031 100644 --- a/_sources/tutorials/12_quantum_random_access_optimizer.ipynb.txt +++ b/_sources/tutorials/12_quantum_random_access_optimizer.ipynb.txt @@ -51,7 +51,7 @@ "To begin, we utilize the `Maxcut` class from Qiskit Optimization's application module. It allows us to generate a `QuadraticProgram` representation of the given graph.\n", "\n", "Note that once our problem has been represented as a `QuadraticProgram`, it will need to be converted to the correct type, a [quadratic unconstrained binary optimization (QUBO)](https://en.wikipedia.org/wiki/Quadratic_unconstrained_binary_optimization) problem, so that it is compatible with QRAO.\n", - "A `QuadraticProgram` generated by `Maxcut` is already a QUBO, but if you define your own problem be sure you convert it to a QUBO before proceeding. Here is [a tutorial](https://qiskit.org/documentation/optimization/tutorials/02_converters_for_quadratic_programs.html) on converting `QuadraticPrograms`." + "A `QuadraticProgram` generated by `Maxcut` is already a QUBO, but if you define your own problem be sure you convert it to a QUBO before proceeding. Here is [a tutorial](https://qiskit-community.github.io/qiskit-optimization/tutorials/02_converters_for_quadratic_programs.html) on converting `QuadraticPrograms`." ] }, { @@ -113,7 +113,7 @@ "\n", "Once we have appropriately configured our problem, we proceed to encode it using the `QuantumRandomAccessEncoding` class from the `qrao` module. This encoding step allows us to generate a quantum Hamiltonian operator that represents our problem. In particular, we employ a Quantum Random Access Code (QRAC) to encode multiple classical binary variables (corresponding to the nodes of our max-cut graph) into each qubit.\n", "\n", - "It's important to note that the resulting \"relaxed\" Hamiltonian, produced by this encoding, will not be diagonal. This differs from the standard workflow in `qiskit-optimization`, which typically generates a diagonal (Ising) Hamiltonian suitable for optimization using a `MinimumEigenOptimizer`. You can find a tutorial on the `MinimumEigenOptimizer` [here](https://qiskit.org/documentation/optimization/tutorials/03_minimum_eigen_optimizer.html).\n", + "It's important to note that the resulting \"relaxed\" Hamiltonian, produced by this encoding, will not be diagonal. This differs from the standard workflow in `qiskit-optimization`, which typically generates a diagonal (Ising) Hamiltonian suitable for optimization using a `MinimumEigenOptimizer`. You can find a tutorial on the `MinimumEigenOptimizer` [here](https://qiskit-community.github.io/qiskit-optimization/tutorials/03_minimum_eigen_optimizer.html).\n", "\n", "In our encoding process, we employ a $(3,1,p)-$QRAC, where each qubit can accommodate a maximum of 3 classical binary variables. The parameter $p$ represents the bit recovery probability achieved through measurement. Depending on the nature of the problem, some qubits may have fewer than 3 classical variables assigned to them. To evaluate the compression achieved, we can examine the `compression_ratio` attribute of the encoding, which provides the ratio between the number of original binary variables and the number of qubits used (at best, a factor of 3)." ] @@ -552,7 +552,7 @@ "\n", "By invoking `qrao.solve_relaxed()`, we obtain two essential outputs:\n", "\n", - "- `MinimumEigensolverResult`: This object contains the results of running the minimum eigen optimizer such as the VQE on the relaxed problem. It provides information about the eigenvalue, and other relevant details. You can refer to the Qiskit Algorithms [documentation](https://qiskit.org/documentation/stubs/qiskit.algorithms.MinimumEigensolverResult.html) for a comprehensive explanation of the entries within this object.\n", + "- `MinimumEigensolverResult`: This object contains the results of running the minimum eigen optimizer such as the VQE on the relaxed problem. It provides information about the eigenvalue, and other relevant details. You can refer to the Qiskit Algorithms [documentation](https://docs.quantum.ibm.com/api/qiskit/qiskit.algorithms.MinimumEigensolverResult) for a comprehensive explanation of the entries within this object.\n", "- `RoundingContext`: This object encapsulates essential information about the encoding and the solution of the relaxed problem in a form that is ready for consumption by the rounding schemes." ] }, diff --git a/getting_started.html b/getting_started.html index 9f2a90d9..93ffca80 100644 --- a/getting_started.html +++ b/getting_started.html @@ -432,9 +432,9 @@

Getting started#

Installation#

-

Qiskit Optimization depends Qiskit. which has its own -Qiskit Getting Started detailing the -installation options and its supported environments/platforms. You should refer to +

Qiskit Optimization depends on Qiskit, which has its own +installation instructions detailing the +installation options for Qiskit and its supported environments/platforms. You should refer to that first. Then the information here can be followed which focuses on the additional installation specific to Qiskit Optimization.

Qiskit Optimization has some functions that have been made optional where the dependent code and/or @@ -444,12 +444,8 @@

Installation
-

The simplest way to get started is to first follow the getting started ‘Start locally’ guide for -Qiskit

-

In your virtual environment where you installed Qiskit simply add optimization to the -extra list in a similar manner to how the extra visualization support is installed for -Qiskit, i.e: -In your virtual environment, where you installed Qiskit, install Qiskit Optimization as follows:

+

The simplest way to get started is to follow the Qiskit installation instructions

+

In your virtual environment where you installed Qiskit, also install qiskit-optimization:

pip install qiskit-optimization
 
@@ -469,7 +465,7 @@

InstallationQiskit Getting Started

+here

Installing Qiskit Optimization from Source

Using the same development environment that you installed Qiskit in you are ready to install Qiskit Optimization.

    diff --git a/migration/01_migration_guide_to_v0.5.html b/migration/01_migration_guide_to_v0.5.html index 1faaa2eb..c36f88c6 100644 --- a/migration/01_migration_guide_to_v0.5.html +++ b/migration/01_migration_guide_to_v0.5.html @@ -435,7 +435,7 @@

    Qiskit Optimization v0.5 Migration Guide

    Overview#

    Qiskit Terra v0.22 introduces new algorithm implementations that -leverage Qiskit +leverage Qiskit Primitives (Estimator and Sampler). The former algorithm implementations that leverage opflow will be deprecated in the future release.

    @@ -443,7 +443,7 @@

    Overviewcorresponding +corresponding resources of the Qiskit Terra documentation instead.

    We use qiskit.primitives.Sampler in this guide as an example of diff --git a/searchindex.js b/searchindex.js index 4e3c9817..06832710 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["apidocs/qiskit_optimization", "apidocs/qiskit_optimization.algorithms", "apidocs/qiskit_optimization.algorithms.qrao", "apidocs/qiskit_optimization.applications", "apidocs/qiskit_optimization.converters", "apidocs/qiskit_optimization.problems", "apidocs/qiskit_optimization.translators", "explanations/index", "explanations/qrao", "getting_started", "index", "migration/01_migration_guide_to_v0.5", "migration/02_migration_guide_to_v0.6", "migration/index", "release_notes", "stubs/qiskit_optimization.QiskitOptimizationError", "stubs/qiskit_optimization.QuadraticProgram", "stubs/qiskit_optimization.algorithms.ADMMOptimizationResult", "stubs/qiskit_optimization.algorithms.ADMMOptimizer", "stubs/qiskit_optimization.algorithms.ADMMParameters", "stubs/qiskit_optimization.algorithms.ADMMState", "stubs/qiskit_optimization.algorithms.BaseAggregator", "stubs/qiskit_optimization.algorithms.CobylaOptimizer", "stubs/qiskit_optimization.algorithms.CplexOptimizer", "stubs/qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult", "stubs/qiskit_optimization.algorithms.GoemansWilliamsonOptimizer", "stubs/qiskit_optimization.algorithms.GroverOptimizationResult", "stubs/qiskit_optimization.algorithms.GroverOptimizer", "stubs/qiskit_optimization.algorithms.GurobiOptimizer", "stubs/qiskit_optimization.algorithms.IntermediateResult", "stubs/qiskit_optimization.algorithms.MeanAggregator", "stubs/qiskit_optimization.algorithms.MinimumEigenOptimizationResult", "stubs/qiskit_optimization.algorithms.MinimumEigenOptimizer", "stubs/qiskit_optimization.algorithms.MultiStartOptimizer", "stubs/qiskit_optimization.algorithms.OptimizationAlgorithm", "stubs/qiskit_optimization.algorithms.OptimizationResult", "stubs/qiskit_optimization.algorithms.OptimizationResultStatus", "stubs/qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult", "stubs/qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizer", "stubs/qiskit_optimization.algorithms.ScipyMilpOptimizer", "stubs/qiskit_optimization.algorithms.SlsqpOptimizationResult", "stubs/qiskit_optimization.algorithms.SlsqpOptimizer", "stubs/qiskit_optimization.algorithms.SolutionSample", "stubs/qiskit_optimization.algorithms.WarmStartQAOAFactory", "stubs/qiskit_optimization.algorithms.WarmStartQAOAOptimizer", "stubs/qiskit_optimization.algorithms.qrao.EncodingCommutationVerifier", "stubs/qiskit_optimization.algorithms.qrao.MagicRounding", "stubs/qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding", "stubs/qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult", "stubs/qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer", "stubs/qiskit_optimization.algorithms.qrao.RoundingContext", "stubs/qiskit_optimization.algorithms.qrao.RoundingResult", "stubs/qiskit_optimization.algorithms.qrao.RoundingScheme", "stubs/qiskit_optimization.algorithms.qrao.SemideterministicRounding", "stubs/qiskit_optimization.applications.BinPacking", "stubs/qiskit_optimization.applications.Clique", "stubs/qiskit_optimization.applications.ExactCover", "stubs/qiskit_optimization.applications.GraphOptimizationApplication", "stubs/qiskit_optimization.applications.GraphPartition", "stubs/qiskit_optimization.applications.Knapsack", "stubs/qiskit_optimization.applications.Maxcut", "stubs/qiskit_optimization.applications.NumberPartition", "stubs/qiskit_optimization.applications.OptimizationApplication", "stubs/qiskit_optimization.applications.SKModel", "stubs/qiskit_optimization.applications.SetPacking", "stubs/qiskit_optimization.applications.StableSet", "stubs/qiskit_optimization.applications.Tsp", "stubs/qiskit_optimization.applications.VehicleRouting", "stubs/qiskit_optimization.applications.VertexCover", "stubs/qiskit_optimization.converters.InequalityToEquality", "stubs/qiskit_optimization.converters.IntegerToBinary", "stubs/qiskit_optimization.converters.LinearEqualityToPenalty", "stubs/qiskit_optimization.converters.LinearInequalityToPenalty", "stubs/qiskit_optimization.converters.MaximizeToMinimize", "stubs/qiskit_optimization.converters.MinimizeToMaximize", "stubs/qiskit_optimization.converters.QuadraticProgramConverter", "stubs/qiskit_optimization.converters.QuadraticProgramToQubo", "stubs/qiskit_optimization.infinity.INFINITY", "stubs/qiskit_optimization.problems.Constraint", "stubs/qiskit_optimization.problems.LinearConstraint", "stubs/qiskit_optimization.problems.LinearExpression", "stubs/qiskit_optimization.problems.QuadraticConstraint", "stubs/qiskit_optimization.problems.QuadraticExpression", "stubs/qiskit_optimization.problems.QuadraticObjective", "stubs/qiskit_optimization.problems.QuadraticProgramElement", "stubs/qiskit_optimization.problems.Variable", "stubs/qiskit_optimization.translators.from_docplex_mp", "stubs/qiskit_optimization.translators.from_gurobipy", "stubs/qiskit_optimization.translators.from_ising", "stubs/qiskit_optimization.translators.to_docplex_mp", "stubs/qiskit_optimization.translators.to_gurobipy", "stubs/qiskit_optimization.translators.to_ising", "tutorials/01_quadratic_program", "tutorials/02_converters_for_quadratic_programs", "tutorials/03_minimum_eigen_optimizer", "tutorials/04_grover_optimizer", "tutorials/05_admm_optimizer", "tutorials/06_examples_max_cut_and_tsp", "tutorials/07_examples_vehicle_routing", "tutorials/08_cvar_optimization", "tutorials/09_application_classes", "tutorials/10_warm_start_qaoa", "tutorials/11_using_classical_optimization_solvers_and_models", "tutorials/12_quantum_random_access_optimizer", "tutorials/index"], "filenames": ["apidocs/qiskit_optimization.rst", "apidocs/qiskit_optimization.algorithms.rst", "apidocs/qiskit_optimization.algorithms.qrao.rst", "apidocs/qiskit_optimization.applications.rst", "apidocs/qiskit_optimization.converters.rst", "apidocs/qiskit_optimization.problems.rst", "apidocs/qiskit_optimization.translators.rst", "explanations/index.rst", "explanations/qrao.rst", "getting_started.rst", "index.rst", "migration/01_migration_guide_to_v0.5.rst", "migration/02_migration_guide_to_v0.6.rst", "migration/index.rst", "release_notes.rst", "stubs/qiskit_optimization.QiskitOptimizationError.rst", "stubs/qiskit_optimization.QuadraticProgram.rst", "stubs/qiskit_optimization.algorithms.ADMMOptimizationResult.rst", "stubs/qiskit_optimization.algorithms.ADMMOptimizer.rst", "stubs/qiskit_optimization.algorithms.ADMMParameters.rst", "stubs/qiskit_optimization.algorithms.ADMMState.rst", "stubs/qiskit_optimization.algorithms.BaseAggregator.rst", "stubs/qiskit_optimization.algorithms.CobylaOptimizer.rst", "stubs/qiskit_optimization.algorithms.CplexOptimizer.rst", "stubs/qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.rst", "stubs/qiskit_optimization.algorithms.GoemansWilliamsonOptimizer.rst", "stubs/qiskit_optimization.algorithms.GroverOptimizationResult.rst", "stubs/qiskit_optimization.algorithms.GroverOptimizer.rst", "stubs/qiskit_optimization.algorithms.GurobiOptimizer.rst", "stubs/qiskit_optimization.algorithms.IntermediateResult.rst", "stubs/qiskit_optimization.algorithms.MeanAggregator.rst", "stubs/qiskit_optimization.algorithms.MinimumEigenOptimizationResult.rst", "stubs/qiskit_optimization.algorithms.MinimumEigenOptimizer.rst", "stubs/qiskit_optimization.algorithms.MultiStartOptimizer.rst", "stubs/qiskit_optimization.algorithms.OptimizationAlgorithm.rst", "stubs/qiskit_optimization.algorithms.OptimizationResult.rst", "stubs/qiskit_optimization.algorithms.OptimizationResultStatus.rst", "stubs/qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.rst", "stubs/qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizer.rst", "stubs/qiskit_optimization.algorithms.ScipyMilpOptimizer.rst", "stubs/qiskit_optimization.algorithms.SlsqpOptimizationResult.rst", "stubs/qiskit_optimization.algorithms.SlsqpOptimizer.rst", "stubs/qiskit_optimization.algorithms.SolutionSample.rst", "stubs/qiskit_optimization.algorithms.WarmStartQAOAFactory.rst", "stubs/qiskit_optimization.algorithms.WarmStartQAOAOptimizer.rst", "stubs/qiskit_optimization.algorithms.qrao.EncodingCommutationVerifier.rst", "stubs/qiskit_optimization.algorithms.qrao.MagicRounding.rst", "stubs/qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.rst", "stubs/qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.rst", "stubs/qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer.rst", "stubs/qiskit_optimization.algorithms.qrao.RoundingContext.rst", "stubs/qiskit_optimization.algorithms.qrao.RoundingResult.rst", "stubs/qiskit_optimization.algorithms.qrao.RoundingScheme.rst", "stubs/qiskit_optimization.algorithms.qrao.SemideterministicRounding.rst", "stubs/qiskit_optimization.applications.BinPacking.rst", "stubs/qiskit_optimization.applications.Clique.rst", "stubs/qiskit_optimization.applications.ExactCover.rst", "stubs/qiskit_optimization.applications.GraphOptimizationApplication.rst", "stubs/qiskit_optimization.applications.GraphPartition.rst", "stubs/qiskit_optimization.applications.Knapsack.rst", "stubs/qiskit_optimization.applications.Maxcut.rst", "stubs/qiskit_optimization.applications.NumberPartition.rst", "stubs/qiskit_optimization.applications.OptimizationApplication.rst", "stubs/qiskit_optimization.applications.SKModel.rst", "stubs/qiskit_optimization.applications.SetPacking.rst", "stubs/qiskit_optimization.applications.StableSet.rst", "stubs/qiskit_optimization.applications.Tsp.rst", "stubs/qiskit_optimization.applications.VehicleRouting.rst", "stubs/qiskit_optimization.applications.VertexCover.rst", "stubs/qiskit_optimization.converters.InequalityToEquality.rst", "stubs/qiskit_optimization.converters.IntegerToBinary.rst", "stubs/qiskit_optimization.converters.LinearEqualityToPenalty.rst", "stubs/qiskit_optimization.converters.LinearInequalityToPenalty.rst", "stubs/qiskit_optimization.converters.MaximizeToMinimize.rst", "stubs/qiskit_optimization.converters.MinimizeToMaximize.rst", "stubs/qiskit_optimization.converters.QuadraticProgramConverter.rst", "stubs/qiskit_optimization.converters.QuadraticProgramToQubo.rst", "stubs/qiskit_optimization.infinity.INFINITY.rst", "stubs/qiskit_optimization.problems.Constraint.rst", "stubs/qiskit_optimization.problems.LinearConstraint.rst", "stubs/qiskit_optimization.problems.LinearExpression.rst", "stubs/qiskit_optimization.problems.QuadraticConstraint.rst", "stubs/qiskit_optimization.problems.QuadraticExpression.rst", "stubs/qiskit_optimization.problems.QuadraticObjective.rst", "stubs/qiskit_optimization.problems.QuadraticProgramElement.rst", "stubs/qiskit_optimization.problems.Variable.rst", "stubs/qiskit_optimization.translators.from_docplex_mp.rst", "stubs/qiskit_optimization.translators.from_gurobipy.rst", "stubs/qiskit_optimization.translators.from_ising.rst", "stubs/qiskit_optimization.translators.to_docplex_mp.rst", "stubs/qiskit_optimization.translators.to_gurobipy.rst", "stubs/qiskit_optimization.translators.to_ising.rst", "tutorials/01_quadratic_program.ipynb", "tutorials/02_converters_for_quadratic_programs.ipynb", "tutorials/03_minimum_eigen_optimizer.ipynb", "tutorials/04_grover_optimizer.ipynb", "tutorials/05_admm_optimizer.ipynb", "tutorials/06_examples_max_cut_and_tsp.ipynb", "tutorials/07_examples_vehicle_routing.ipynb", "tutorials/08_cvar_optimization.ipynb", "tutorials/09_application_classes.ipynb", "tutorials/10_warm_start_qaoa.ipynb", "tutorials/11_using_classical_optimization_solvers_and_models.ipynb", "tutorials/12_quantum_random_access_optimizer.ipynb", "tutorials/index.rst"], "titles": ["Qiskit Optimization API Reference", "Optimization algorithms (qiskit_optimization.algorithms)", "Quantum Random Access Optimization (qiskit_optimization.algorithms.qrao)", "Optimization applications (qiskit_optimization.applications)", "Optimization converters (qiskit_optimization.converters)", "Optimization problems (qiskit_optimization.problems)", "Quadratic program translators (qiskit_optimization.translators)", "Qiskit Optimization Explanations", "Background on Quantum Random Access Optimization: Quantum relaxations, quantum random access codes, rounding schemes", "Getting started", "Qiskit Optimization overview", "Qiskit Optimization v0.5 Migration Guide", "Qiskit Optimization v0.6 Migration Guide", "Qiskit Optimization Migration Guide", "Release Notes", "QiskitOptimizationError", "QuadraticProgram", "ADMMOptimizationResult", "ADMMOptimizer", "ADMMParameters", "ADMMState", "BaseAggregator", "CobylaOptimizer", "CplexOptimizer", "GoemansWilliamsonOptimizationResult", "GoemansWilliamsonOptimizer", "GroverOptimizationResult", "GroverOptimizer", "GurobiOptimizer", "IntermediateResult", "MeanAggregator", "MinimumEigenOptimizationResult", "MinimumEigenOptimizer", "MultiStartOptimizer", "OptimizationAlgorithm", "OptimizationResult", "OptimizationResultStatus", "RecursiveMinimumEigenOptimizationResult", "RecursiveMinimumEigenOptimizer", "ScipyMilpOptimizer", "SlsqpOptimizationResult", "SlsqpOptimizer", "SolutionSample", "WarmStartQAOAFactory", "WarmStartQAOAOptimizer", "EncodingCommutationVerifier", "MagicRounding", "QuantumRandomAccessEncoding", "QuantumRandomAccessOptimizationResult", "QuantumRandomAccessOptimizer", "RoundingContext", "RoundingResult", "RoundingScheme", "SemideterministicRounding", "BinPacking", "Clique", "ExactCover", "GraphOptimizationApplication", "GraphPartition", "Knapsack", "Maxcut", "NumberPartition", "OptimizationApplication", "SKModel", "SetPacking", "StableSet", "Tsp", "VehicleRouting", "VertexCover", "InequalityToEquality", "IntegerToBinary", "LinearEqualityToPenalty", "LinearInequalityToPenalty", "MaximizeToMinimize", "MinimizeToMaximize", "QuadraticProgramConverter", "QuadraticProgramToQubo", "INFINITY", "Constraint", "LinearConstraint", "LinearExpression", "QuadraticConstraint", "QuadraticExpression", "QuadraticObjective", "QuadraticProgramElement", "Variable", "from_docplex_mp", "from_gurobipy", "from_ising", "to_docplex_mp", "to_gurobipy", "to_ising", "Quadratic Programs", "Converters for Quadratic Programs", "Minimum Eigen Optimizer", "Grover Optimizer", "ADMM Optimizer", "Max-Cut and Traveling Salesman Problem", "Vehicle Routing", "Improving Variational Quantum Optimization using CVaR", "Application Classes for Optimization Problems", "Warm-starting quantum optimization", "Using Classical Optimization Solvers and Models with Qiskit Optimization", "Quantum Random Access Optimization", "Optimization Tutorials"], "terms": {"0": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104], "6": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104], "cover": [0, 10, 14, 56, 68], "whole": [0, 10], "rang": [0, 10, 14, 16, 43, 44, 92, 97, 98, 99, 101], "from": [0, 2, 8, 9, 10, 11, 12, 14, 16, 17, 22, 23, 24, 25, 26, 28, 29, 31, 32, 33, 35, 37, 38, 39, 40, 41, 43, 44, 46, 48, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 86, 88, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103], "high": [0, 2, 10, 66, 67, 103], "level": [0, 2, 10, 85, 98, 99, 103], "model": [0, 6, 10, 14, 16, 23, 28, 55, 63, 72, 86, 87, 89, 90, 93, 95, 96, 97, 99, 101], "problem": [0, 1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 47, 48, 49, 50, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 84, 88, 91, 92, 93, 94, 96, 98, 99, 101, 102], "automat": [0, 2, 9, 10, 14, 71, 72, 76, 86, 94, 99, 102, 103], "convers": [0, 4, 8, 10, 71, 72, 75, 76, 92, 93, 94], "differ": [0, 2, 4, 8, 10, 11, 14, 27, 32, 38, 40, 44, 71, 72, 73, 74, 93, 94, 96, 97, 98, 99, 101, 103], "requir": [0, 2, 9, 10, 16, 46, 72, 75, 93, 95, 97, 98, 103], "represent": [0, 4, 10, 16, 63, 79, 80, 81, 82, 83, 85, 92, 93, 94, 97, 98, 99, 103], "suit": [0, 10], "easi": [0, 10, 57, 62, 97, 101], "us": [0, 2, 7, 8, 9, 10, 11, 12, 14, 16, 18, 19, 22, 23, 26, 27, 28, 32, 33, 34, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49, 51, 53, 57, 62, 69, 70, 71, 72, 75, 76, 78, 80, 82, 85, 86, 92, 93, 94, 96, 97, 101], "quantum": [0, 7, 10, 14, 18, 27, 43, 44, 46, 47, 48, 49, 70, 93, 94, 95, 100], "algorithm": [0, 8, 9, 10, 11, 12, 14, 17, 18, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 44, 48, 93, 94, 95, 97, 98, 99, 100, 101, 102, 103], "ar": [0, 5, 8, 9, 10, 11, 13, 14, 16, 19, 20, 22, 27, 29, 33, 38, 41, 46, 47, 49, 53, 63, 69, 71, 72, 76, 82, 88, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103], "readi": [0, 10, 98, 103], "run": [0, 9, 10, 14, 19, 22, 23, 27, 28, 32, 33, 34, 38, 39, 41, 44, 95, 96, 98, 99, 103], "classic": [0, 2, 8, 10, 14, 18, 94, 97, 99, 103], "simul": [0, 10, 46, 96, 98, 103], "well": [0, 10, 14, 16, 32, 92, 97, 103], "real": [0, 10, 97, 102], "devic": [0, 10, 94, 96, 97, 103], "via": [0, 2, 10, 16, 19, 22, 37, 41, 80, 82, 96, 98, 102, 103], "thi": [0, 2, 4, 7, 8, 9, 11, 12, 14, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 53, 55, 70, 72, 76, 85, 86, 87, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "enabl": [0, 2, 9, 10, 14, 97, 103], "effici": [0, 9, 10, 14, 96, 97], "docplex": [0, 10, 14, 86, 89, 93, 95, 96, 99, 101], "A": [0, 10, 16, 17, 18, 21, 22, 24, 25, 26, 27, 31, 32, 33, 35, 37, 38, 40, 41, 42, 43, 44, 47, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 72, 73, 74, 76, 77, 85, 91, 92, 94, 95, 96, 97, 98, 103], "uniform": [0, 10, 46], "interfac": [0, 10, 11, 12, 14, 84], "between": [0, 4, 6, 8, 10, 14, 43, 44, 93, 96, 97, 98, 99, 100, 103], "allow": [0, 2, 8, 9, 10, 11, 12, 14, 35, 94, 97, 98, 103], "user": [0, 2, 8, 10, 11, 12, 14, 29, 35, 44, 72, 100, 103], "solv": [0, 2, 8, 10, 11, 12, 14, 18, 19, 20, 22, 23, 25, 27, 28, 32, 33, 34, 35, 38, 39, 41, 44, 49, 69, 70, 71, 72, 76, 93, 95, 96, 97, 98, 99, 100, 101, 102], "larg": [0, 10, 14, 93, 97], "set": [0, 4, 8, 10, 11, 14, 15, 16, 19, 23, 27, 28, 39, 47, 60, 64, 65, 92, 96, 97, 98, 99, 100, 101, 102], "variat": [0, 10, 38, 94, 95, 96, 98, 103], "approxim": [0, 2, 8, 10, 14, 25, 32, 46, 93, 95, 98, 101, 103], "qaoa": [0, 8, 10, 14, 32, 38, 43, 44, 93, 94, 95, 96, 97, 100, 102], "grover": [0, 10, 26, 27], "adapt": [0, 10, 27, 97, 98], "search": [0, 10, 27, 97, 103], "groveroptim": [0, 10, 14, 26, 93, 94, 96], "leverag": [0, 2, 10, 11, 14, 94, 96, 101, 103], "fundament": [0, 10], "minimum": [0, 14, 27, 31, 32, 38, 44, 46, 47, 48, 49, 66, 67, 93, 96, 97, 98, 100, 103], "eigensolv": [0, 32, 44, 46, 48, 49, 95, 96, 97, 98, 99, 100, 103], "provid": [0, 2, 7, 8, 10, 11, 12, 13, 14, 16, 22, 23, 27, 28, 32, 39, 41, 49, 50, 93, 94, 96, 97, 98, 99, 100, 102, 103], "furthermor": [0, 10, 97], "modular": [0, 10], "design": [0, 2, 10, 47, 96, 98, 103], "easili": [0, 10, 92, 100], "extend": [0, 8, 9, 10, 98], "facilit": [0, 10], "rapid": [0, 10], "develop": [0, 9, 10, 14], "test": [0, 9, 10, 96, 99], "new": [0, 2, 8, 9, 10, 12, 35, 63, 70, 76, 80, 82, 85, 96, 97, 98, 103], "compat": [0, 9, 10, 18, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 44, 49, 76, 93, 98, 103], "also": [0, 8, 10, 11, 14, 28, 92, 93, 94, 95, 96, 97, 98, 100, 103], "valid": [0, 8, 10, 16, 96], "benchmark": [0, 10, 94, 96], "support": [0, 9, 11, 12, 14, 16, 39, 47, 49, 69, 70, 72, 86, 87, 89, 90, 92, 94, 96, 97, 102], "quadrat": [0, 8, 14, 16, 25, 32, 41, 47, 75, 79, 81, 82, 83, 86, 87, 88, 89, 90, 94, 95, 96, 97, 98, 101, 102, 103], "constrain": [0, 8, 16, 92, 95, 96], "program": [0, 9, 14, 16, 25, 75, 79, 81, 83, 86, 87, 88, 89, 90, 94, 96, 97, 98, 101], "simplic": 0, "we": [0, 2, 8, 11, 12, 14, 82, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "them": [0, 8, 11, 12, 22, 30, 41, 93, 98, 101, 103], "just": [0, 24, 93], "binari": [0, 2, 8, 11, 14, 16, 18, 19, 25, 32, 47, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 72, 86, 87, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103], "integ": [0, 14, 16, 32, 47, 49, 61, 69, 70, 86, 87, 91, 92, 93, 94, 95, 98, 100, 101, 102], "continu": [0, 8, 14, 16, 18, 19, 22, 41, 44, 69, 85, 86, 87, 91, 92, 96, 97, 98, 101], "variabl": [0, 2, 8, 11, 14, 16, 17, 19, 20, 22, 24, 26, 31, 32, 33, 35, 37, 38, 40, 41, 42, 43, 44, 47, 48, 49, 55, 56, 59, 64, 65, 68, 69, 70, 71, 72, 73, 74, 78, 79, 80, 81, 82, 83, 86, 87, 88, 91, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "equal": [0, 8, 14, 16, 19, 32, 35, 38, 54, 69, 71, 72, 76, 93, 94, 95, 96, 98, 100, 103], "inequ": [0, 14, 16, 69, 71, 72, 93, 96], "constraint": [0, 8, 11, 14, 16, 19, 22, 32, 38, 39, 47, 69, 70, 71, 72, 76, 79, 81, 86, 87, 91, 93, 94, 95, 96, 97, 98, 100, 101, 103], "class": [0, 2, 5, 9, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 92, 93, 94, 96, 98, 101, 103], "ha": [0, 2, 8, 9, 11, 12, 13, 14, 16, 27, 32, 33, 39, 46, 47, 49, 73, 74, 88, 92, 93, 94, 95, 97, 98, 100, 101, 102, 103], "vast": 0, "amount": [0, 95, 97], "relev": [0, 20, 97, 103], "applic": [0, 9, 14, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 103], "while": [0, 14, 93, 95, 98, 99, 101, 103], "still": [0, 14, 16, 95, 97, 99, 101], "being": [0, 9, 20, 37, 40, 92, 94, 95, 97, 98], "matric": [0, 8, 92, 94], "vector": [0, 32, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 92, 96, 98, 100, 101], "some": [0, 8, 9, 14, 16, 72, 92, 97, 98, 99, 102, 103], "veri": [0, 94], "interest": [0, 8, 94, 95, 97], "sub": [0, 33, 92, 98], "convex": [0, 23, 28, 39, 96, 101], "which": [0, 8, 9, 11, 13, 14, 16, 46, 49, 53, 72, 92, 93, 94, 95, 96, 97, 98, 101, 103], "can": [0, 2, 8, 9, 11, 12, 14, 16, 18, 19, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 43, 44, 46, 47, 49, 55, 57, 58, 60, 65, 66, 67, 68, 76, 80, 82, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103], "unconstrain": [0, 8, 32, 47, 71, 93, 94, 95, 99, 101, 103], "qubo": [0, 8, 14, 18, 19, 26, 27, 31, 32, 38, 44, 47, 49, 72, 76, 93, 96, 97, 98, 100, 103], "mani": [0, 8, 93, 94, 97, 98, 101, 103], "np": [0, 35, 48, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 94, 97, 98, 99, 101, 103], "complet": [0, 41, 97, 98, 100], "i": [0, 2, 4, 8, 9, 10, 11, 12, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 32, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 49, 50, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 82, 85, 86, 88, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "e": [0, 8, 9, 14, 16, 19, 22, 27, 32, 38, 41, 44, 49, 63, 76, 82, 88, 91, 92, 93, 94, 95, 96, 97, 98, 101, 102], "intract": 0, "In": [0, 8, 9, 38, 76, 92, 93, 94, 95, 96, 97, 98, 99, 103], "addit": [0, 8, 9, 14, 17, 24, 26, 31, 35, 37, 40, 48, 69, 92, 93, 97, 98, 103], "standard": [0, 2, 14, 43, 44, 94, 99, 103], "python": [0, 9, 11, 14, 102], "error": [0, 11, 14, 15, 92, 98], "rais": [0, 11, 14, 16, 18, 22, 23, 27, 28, 32, 33, 34, 35, 38, 39, 41, 43, 44, 46, 47, 49, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92], "circumst": 0, "cannot": [0, 9, 11, 12, 14, 16, 27, 92], "proce": [0, 98, 103], "The": [2, 5, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103], "modul": [2, 10, 12, 15, 22, 23, 28, 32, 34, 39, 41, 75, 92, 93, 97, 101, 103], "method": [2, 7, 9, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 92, 93, 94, 96, 97, 98, 103], "combinatori": [2, 8, 95, 97, 98], "1": [2, 11, 14, 16, 18, 19, 22, 23, 25, 29, 33, 35, 36, 37, 38, 41, 43, 44, 47, 49, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 70, 72, 82, 88, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103], "approach": [2, 8, 14, 93, 94, 98, 103], "incorpor": [2, 14, 103], "code": [2, 7, 9, 11, 12, 13, 14, 47, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "qrac": [2, 14, 47, 103], "tool": [2, 8, 11, 14, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "multipl": [2, 8, 14, 16, 92, 94, 103], "singl": [2, 8, 14, 94, 95, 97, 98, 101, 102, 103], "qubit": [2, 8, 14, 16, 26, 27, 47, 49, 88, 91, 95, 97, 98, 100, 101, 103], "therebi": [2, 14, 103], "save": [2, 14, 102, 103], "resourc": [2, 11, 12, 14, 103], "explor": [2, 14, 24, 95, 103], "larger": [2, 14, 103], "instanc": [2, 14, 16, 18, 27, 31, 32, 33, 37, 38, 44, 47, 49, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 84, 93, 94, 96, 97, 98, 99, 100, 101, 103], "comput": [2, 8, 14, 17, 18, 19, 20, 25, 32, 44, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 94, 96, 98, 100, 101, 103], "produc": [2, 14, 43, 101, 103], "local": [2, 9, 14, 22, 33, 41, 98, 103], "hamiltonian": [2, 14, 16, 32, 47, 49, 50, 63, 88, 91, 93, 94, 101], "whose": [2, 14, 32, 55, 56, 59, 61, 64, 65, 66, 68, 92, 97, 100, 103], "ground": [2, 14, 32, 93, 94, 101, 103], "state": [2, 11, 12, 14, 17, 20, 32, 38, 43, 44, 47, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 93, 94, 95, 96, 97, 98, 101, 103], "vqe": [2, 8, 14, 93, 94, 95, 96, 97, 98, 99, 103], "yield": [2, 8, 14, 97, 98, 103], "solut": [2, 8, 14, 16, 17, 19, 24, 26, 31, 32, 35, 36, 37, 40, 42, 43, 44, 46, 48, 49, 53, 54, 60, 66, 93, 94, 95, 97, 100, 101, 102], "origin": [2, 4, 8, 11, 14, 17, 24, 26, 31, 32, 35, 37, 40, 47, 48, 55, 57, 58, 60, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "through": [2, 11, 12, 97, 103], "seri": [2, 103], "3": [2, 11, 12, 19, 22, 27, 35, 47, 49, 69, 82, 92, 93, 94, 95, 97, 99, 100, 101, 102, 103], "quantumrandomaccessencod": [2, 14, 45, 48, 49, 50, 103], "relax": [2, 7, 19, 43, 44, 45, 47, 48, 49, 50], "fewer": [2, 95, 103], "semideterministicround": [2, 14, 49, 103], "magicround": 2, "obtain": [2, 8, 14, 31, 35, 36, 37, 43, 48, 51, 94, 96, 97, 98, 101, 102, 103], "back": [2, 8, 70, 71, 72, 73, 74, 93, 94, 98, 103], "quantumrandomaccessoptim": [2, 14], "perform": [2, 8, 14, 26, 46, 52, 53], "util": [2, 11, 14, 94, 95, 97, 98, 99, 100, 101, 103], "capabl": [2, 103], "two": [2, 8, 14, 58, 60, 92, 93, 94, 97, 98, 100, 102], "solve_relax": [2, 14, 49, 103], "seamless": [2, 14], "workflow": [2, 14, 98, 103], "manag": [2, 14], "procedur": [2, 8, 14, 48, 96], "demonstr": [2, 14, 96, 97, 98, 103], "exampl": [2, 8, 11, 14, 16, 22, 23, 28, 32, 35, 38, 41, 69, 70, 76, 82, 93, 94, 95, 97, 98, 100, 101, 103], "below": [2, 13, 14, 92, 94, 95, 98, 101, 103], "simplifi": [2, 14, 103], "streamlin": [2, 14, 103], "experi": [2, 14], "On": [2, 11, 12, 14], "other": [2, 6, 8, 11, 12, 16, 19, 33, 63, 92, 93, 94, 96, 97, 103], "hand": [2, 11, 12, 14, 16, 78, 79, 81, 92], "offer": [2, 8, 14, 93, 97], "flexibl": [2, 14, 103], "break": [2, 8, 14, 103], "process": [2, 8, 11, 12, 14, 19, 46, 49, 97, 102, 103], "distinct": [2, 8, 14, 98, 103], "step": [2, 14, 37, 95, 97, 101], "featur": [2, 9, 86, 101], "advantag": [2, 14, 97], "when": [2, 8, 14, 19, 22, 27, 32, 35, 38, 41, 43, 44, 55, 57, 58, 60, 65, 66, 67, 68, 92, 95, 101, 102, 103], "need": [2, 8, 11, 14, 16, 21, 30, 46, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "compar": [2, 14, 97, 101, 102, 103], "appli": [2, 8, 9, 14, 18, 22, 23, 27, 28, 32, 33, 34, 38, 39, 41, 44, 46, 93, 94, 95, 99, 100, 101, 102, 103], "potenti": [2, 8, 14, 22, 33, 41, 94, 97, 103], "For": [2, 8, 14, 44, 82, 92, 93, 94, 95, 96, 97, 98, 99, 101, 103], "qiskit_algorithm": [2, 12, 14, 32, 38, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "import": [2, 8, 11, 12, 14, 22, 23, 28, 32, 35, 38, 41, 69, 70, 76, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "cobyla": [2, 11, 12, 14, 22, 94, 96, 99, 100, 101, 102, 103], "qiskit": [2, 9, 14, 15, 16, 22, 23, 28, 32, 34, 39, 41, 75, 88, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103], "circuit": [2, 11, 12, 14, 27, 43, 44, 46, 47, 50, 94, 97, 98, 99, 101, 103], "librari": [2, 11, 12, 14, 97, 98, 99, 103], "realamplitud": [2, 11, 12, 14, 98, 99, 103], "primit": [2, 11, 12, 14, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "estim": [2, 8, 11, 14, 45, 97, 98, 103], "quadraticprogram": [2, 4, 5, 6, 11, 14, 18, 20, 22, 23, 25, 27, 28, 32, 33, 34, 35, 38, 39, 41, 44, 47, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 103], "binary_var": [2, 11, 14, 16, 35, 92, 93, 94, 95, 96, 98, 101, 102], "x": [2, 8, 11, 14, 16, 17, 24, 25, 26, 31, 35, 37, 40, 41, 42, 47, 48, 54, 60, 63, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 88, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103], "y": [2, 8, 11, 14, 16, 19, 41, 54, 72, 88, 92, 93, 94, 95, 97, 98, 102], "z": [2, 8, 14, 16, 66, 72, 88, 92, 93, 94, 97, 98, 102], "minim": [2, 14, 16, 22, 26, 32, 33, 35, 41, 73, 74, 76, 83, 92, 93, 94, 95, 96, 97, 98, 100, 101], "linear": [2, 11, 14, 16, 32, 35, 38, 39, 41, 72, 76, 79, 80, 81, 83, 86, 87, 88, 93, 94, 96, 97, 98, 100, 101, 102], "2": [2, 11, 16, 19, 22, 29, 35, 36, 41, 47, 49, 67, 72, 82, 88, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103], "ansatz": [2, 11, 12, 14, 97, 98, 99, 103], "min_eigen_solv": [2, 11, 12, 14, 32, 44, 49, 98, 100, 103], "result": [2, 4, 8, 11, 12, 14, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 44, 46, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102], "onli": [2, 8, 11, 12, 14, 22, 25, 29, 32, 39, 41, 44, 46, 69, 71, 73, 74, 87, 93, 94, 95, 97, 98, 102], "must": [2, 8, 11, 14, 44, 46, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "done": [2, 14, 97], "manual": [2, 14, 97], "max_vars_per_qubit": [2, 14, 47, 49, 103], "relaxed_result": [2, 14, 48, 49, 103], "rounding_context": [2, 14, 46, 52, 53, 103], "bryce": [2, 8, 103], "fuller": [2, 8, 103], "et": [2, 8, 38, 44, 72, 98, 99, 103], "al": [2, 8, 38, 44, 72, 98, 99, 103], "arxiv": [2, 8, 14, 18, 38, 44, 46, 53, 63, 70, 72, 93, 94, 95, 96, 97, 98, 101, 103], "2111": [2, 8, 46, 53, 103], "03167": [2, 8, 46, 53, 103], "common": [3, 93], "have": [4, 8, 9, 11, 14, 84, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "function": [4, 8, 9, 14, 16, 17, 22, 24, 26, 27, 31, 32, 35, 37, 39, 40, 41, 42, 45, 47, 48, 72, 83, 86, 87, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "go": 4, "given": [4, 8, 14, 16, 18, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 44, 46, 47, 49, 63, 69, 70, 71, 72, 73, 74, 76, 78, 79, 80, 81, 82, 83, 92, 93, 94, 96, 97, 98, 99, 100, 101, 103], "interpret": [4, 14, 16, 26, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 93, 97, 100], "befor": [4, 8, 14, 26, 44, 93, 94, 98, 102, 103], "return": [4, 8, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103], "an": [4, 5, 8, 9, 10, 11, 12, 14, 16, 17, 18, 22, 23, 24, 25, 27, 28, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 52, 53, 55, 56, 57, 58, 60, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 75, 76, 80, 82, 88, 91, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "appropri": [4, 8, 14, 97, 103], "optimizationresult": [4, 14, 17, 22, 23, 24, 26, 27, 28, 31, 33, 34, 37, 38, 39, 40, 41, 48, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 94, 96], "structur": 5, "defin": [5, 8, 14, 19, 26, 29, 40, 69, 76, 80, 82, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103], "follow": [5, 8, 9, 11, 12, 13, 14, 16, 35, 47, 72, 86, 87, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "intend": [5, 8], "instanti": [5, 16, 98], "directli": [5, 8, 14, 55, 57, 58, 60, 65, 66, 67, 68, 94, 97, 102, 103], "object": [5, 6, 8, 14, 16, 17, 19, 20, 21, 22, 24, 26, 30, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 45, 47, 48, 50, 51, 71, 72, 76, 83, 84, 86, 87, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "type": [5, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 98, 103], "avail": [5, 9, 53, 96, 97, 98, 100, 101, 103], "within": [5, 8, 22, 23, 28, 32, 39, 41, 98, 99, 100, 103], "optim": [6, 9, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 47, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 75, 76, 83, 92, 93, 98], "section": [7, 8, 13, 92, 95, 100, 102, 103], "document": [7, 8, 11, 12, 14, 40, 92, 103], "background": 7, "around": [7, 14, 95, 97, 98], "techniqu": [7, 95, 103], "etc": 7, "both": [7, 8, 11, 14, 27, 93, 94, 96, 97, 101, 102, 103], "random": [7, 14, 25, 46, 47, 48, 49, 53, 63, 66, 67, 95, 97, 98, 99, 100], "access": [7, 9, 11, 12, 14, 47, 48, 49, 92, 96], "round": [7, 14, 46, 48, 49, 50, 51, 52, 53], "scheme": [7, 14, 38, 46, 49, 52, 53, 94, 103], "materi": [8, 97], "deeper": 8, "look": [8, 92, 93, 101], "concept": [8, 94], "behind": 8, "consid": [8, 19, 94, 97, 98, 99, 103], "m_i": 8, "choic": [8, 97, 98], "pm": [8, 14, 63, 97], "instead": [8, 9, 11, 12, 14, 55, 94, 96, 103], "conveni": [8, 93, 97, 102, 103], "term": [8, 14, 16, 25, 32, 38, 71, 72, 81, 88, 92, 93, 94, 96, 97, 98, 99, 101], "notat": [8, 98], "begin": [8, 14, 72, 92, 95, 101, 103], "re": [8, 93, 94, 101], "cast": [8, 97], "observ": [8, 101, 103], "primarili": 8, "although": [8, 103], "idea": 8, "readili": 8, "more": [8, 9, 14, 16, 22, 33, 41, 47, 88, 92, 93, 94, 97, 98, 103], "than": [8, 16, 22, 25, 33, 41, 47, 85, 88, 94, 97, 98, 103], "non": [8, 14, 16, 23, 28, 47, 89, 90, 102], "often": [8, 96, 101, 103], "recast": 8, "though": [8, 9, 11, 94, 98], "incur": 8, "overhead": 8, "mathemat": [8, 92, 97, 98], "strategi": [8, 14, 97, 103], "take": [8, 14, 22, 32, 38, 41, 93, 94, 95, 96, 97, 98, 100, 103], "hard": [8, 97, 98, 101], "map": [8, 16, 19, 47, 70, 88, 91, 93, 94, 98, 103], "onto": 8, "similar": [8, 9, 98], "version": [8, 9, 11, 13, 14, 44, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "usual": [8, 94], "easier": [8, 101], "core": [8, 95, 97], "here": [8, 9, 14, 22, 23, 28, 32, 38, 41, 94, 96, 97, 98, 101, 103], "give": [8, 9, 93, 101], "inform": [8, 9, 14, 17, 23, 24, 26, 28, 31, 35, 37, 39, 40, 41, 46, 48, 50, 53, 66, 67, 75, 94, 95, 97, 103], "about": [8, 9, 35, 53, 93, 94, 95, 97, 103], "one": [8, 9, 11, 14, 16, 22, 24, 27, 32, 33, 38, 41, 44, 47, 69, 70, 76, 94, 95, 96, 97, 98, 100, 103], "heurist": [8, 18, 96, 97, 98, 103], "find": [8, 9, 14, 22, 27, 32, 36, 41, 92, 94, 97, 98, 100, 103], "better": [8, 94, 99], "could": [8, 14, 97, 98, 101, 103], "someth": 8, "discret": 8, "solver": [8, 14, 32, 38, 44, 94, 98, 101], "onc": [8, 38, 47, 94, 97, 100, 101, 103], "extract": 8, "valu": [8, 14, 16, 17, 19, 20, 22, 24, 25, 26, 27, 29, 31, 33, 35, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 53, 59, 66, 67, 72, 78, 79, 80, 81, 82, 83, 86, 88, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "": [8, 9, 14, 16, 19, 47, 55, 73, 74, 92, 94, 95, 96, 97, 98, 101, 102, 103], "admiss": 8, "concret": [8, 95], "see": [8, 9, 11, 14, 16, 23, 40, 88, 91, 93, 95, 97, 98, 102], "goeman": [8, 9, 24, 25], "williamson": [8, 9, 24, 25], "maxcut": [8, 97, 103], "without": [8, 14, 55, 57, 58, 60, 65, 66, 67, 68, 95, 102, 103], "loss": 8, "gener": [8, 14, 22, 25, 35, 39, 41, 43, 46, 47, 53, 63, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "rest": 8, "graph": [8, 9, 25, 55, 57, 58, 60, 63, 65, 66, 67, 68, 95, 97, 98, 100, 103], "g": [8, 14, 16, 32, 38, 63, 92, 93, 94, 95, 96, 97, 98, 102], "v": [8, 14, 94, 96, 97, 98], "our": [8, 93, 95, 97, 98, 101, 103], "goal": 8, "partit": [8, 58, 61, 97, 100, 103], "vertic": [8, 97, 103], "maxim": [8, 11, 14, 16, 41, 55, 59, 73, 74, 92, 93, 97, 99, 100, 101, 102, 103], "number": [8, 14, 16, 19, 22, 25, 26, 27, 33, 38, 40, 41, 44, 46, 47, 49, 51, 53, 54, 61, 63, 66, 67, 71, 72, 73, 74, 83, 93, 94, 97, 98, 99, 100, 102, 103], "edg": [8, 66, 97, 98, 100, 103], "connect": [8, 97, 98, 100], "each": [8, 19, 20, 26, 29, 30, 38, 41, 47, 51, 54, 67, 93, 94, 95, 96, 97, 98, 99, 100, 103], "v_i": 8, "assign": [8, 97, 103], "cut": [8, 25, 60, 93, 98, 100, 102, 103], "text": [8, 14, 16, 72, 92, 93], "m": [8, 14, 86, 92, 93, 95, 97, 98, 99, 101, 102], "sum_": [8, 14, 25, 63, 72, 97, 98], "ij": [8, 97, 98], "e_": 8, "frac": [8, 97], "m_j": 8, "do": [8, 9, 14, 35, 72, 93, 97, 98, 99, 101], "space": [8, 95, 97], "pauli": [8, 14, 16, 46, 53, 88, 94, 97, 103], "embed": 8, "feasibl": [8, 14, 16, 19, 22, 36, 96, 97, 98], "input": [8, 14, 16, 26, 47, 66, 67, 93, 94, 95, 103], "product": [8, 97, 102], "let": [8, 14, 92, 93, 98, 102, 103], "u": [8, 14, 93, 96, 97, 98, 100, 102, 103], "denot": [8, 16, 92, 94, 98], "f": [8, 92, 94, 98, 100, 101, 102, 103], "mapsto": 8, "mathcal": [8, 96], "d": [8, 95, 97, 98, 100, 101, 103], "mathbb": [8, 96, 98], "c": [8, 18, 92, 95, 96, 97, 98, 101, 102], "n": [8, 14, 19, 47, 63, 66, 67, 72, 92, 95, 96, 97, 98, 99, 100, 101, 103], "tr": 8, "big": [8, 14, 86, 98, 102], "h": [8, 14, 63, 97, 98], "cdot": 8, "where": [8, 9, 14, 19, 54, 63, 67, 72, 92, 93, 95, 97, 98, 103], "case": [8, 14, 17, 23, 24, 26, 31, 35, 37, 38, 40, 44, 48, 69, 70, 71, 72, 73, 74, 76, 92, 93, 94, 95, 96, 97, 98, 99, 103], "geq": [8, 14, 72, 92, 93], "qquad": 8, "foral": [8, 96, 97, 98], "order": [8, 14, 16, 35, 66, 88, 91, 92, 94, 96, 97, 103], "guarante": [8, 14, 19, 22, 96, 97, 98], "true": [8, 11, 12, 16, 18, 19, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 44, 49, 76, 88, 92, 94, 96, 97, 98, 101, 102, 103], "enforc": [8, 96, 98], "stronger": [8, 98], "condit": [8, 96, 97, 99], "word": [8, 103], "all": [8, 13, 14, 16, 19, 23, 24, 28, 29, 46, 67, 69, 84, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103], "rather": 8, "simpli": [8, 9, 13, 97], "upper": [8, 14, 16, 22, 33, 41, 80, 82, 92, 93], "bound": [8, 14, 16, 22, 33, 41, 46, 70, 80, 82, 85, 92, 93, 98, 101, 102, 103], "detail": [8, 9, 11, 12, 14, 16, 23, 46, 88, 91, 93, 94, 97, 102, 103], "becom": [8, 97, 101], "crucial": [8, 103], "further": [8, 14, 47, 99, 102], "down": [8, 95, 97, 103], "explicitli": [8, 103], "explic": 8, "full": [8, 96, 102], "base": [8, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 94, 96, 97, 98, 99, 103], "mai": [8, 9, 14, 23, 25, 28, 39, 40, 69, 70, 94, 98, 103], "help": [8, 19, 94], "first": [8, 9, 19, 22, 33, 37, 41, 92, 93, 94, 96, 97, 98, 100, 101, 102], "discuss": [8, 95, 96, 98], "familiar": 8, "languag": [8, 103], "rangl": [8, 95, 97, 98, 101], "otim": [8, 98], "quad": [8, 92, 96, 98], "z_i": [8, 97, 98], "z_j": [8, 97], "indic": [8, 14, 16, 47, 54, 55, 58, 59, 60, 65, 66, 68, 80, 82, 86, 92, 95, 97], "th": [8, 16, 88, 91], "ident": [8, 102], "It": [8, 11, 12, 14, 16, 32, 47, 55, 57, 58, 60, 65, 66, 67, 68, 94, 97, 101, 102, 103], "worth": [8, 97, 98, 103], "convinc": 8, "yourself": 8, "transform": [8, 98], "particular": [8, 14, 96, 98, 103], "sort": [8, 14, 25, 99, 101], "current": [8, 17, 18, 24, 26, 31, 35, 37, 40, 48, 93, 95], "includ": [8, 14, 92, 93, 97, 103], "how": [8, 9, 14, 32, 38, 92, 93, 94, 97, 98, 99, 101], "exactli": [8, 93, 98, 100], "reproduc": 8, "form": [8, 16, 27, 32, 38, 44, 75, 76, 82, 83, 93, 94, 97, 98, 100, 103], "free": [8, 97, 102], "evalu": [8, 14, 22, 78, 79, 80, 81, 82, 83, 97, 98, 99, 103], "superposit": [8, 95], "stand": [8, 96], "analogi": 8, "might": [8, 16, 94, 103], "thei": [8, 11, 14, 72, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "practic": [8, 70, 96, 97, 103], "wai": [8, 9, 82, 92, 93, 97, 98, 101], "measur": [8, 46, 51, 95, 103], "basi": [8, 46, 51, 97, 98, 103], "project": [8, 9, 14, 23, 102], "ani": [8, 11, 14, 16, 17, 22, 23, 24, 26, 31, 33, 35, 37, 40, 41, 48, 72, 78, 79, 80, 81, 82, 83, 85, 88, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "consequ": [8, 103], "imag": 8, "were": [8, 14, 18, 25, 33, 34, 92, 93], "outlin": [8, 32, 38], "1983": 8, "stephen": 8, "wiesner": 8, "context": [8, 14, 46, 49, 53, 95, 97, 103], "commun": [8, 9, 14], "complex": [8, 50, 51, 97], "theori": [8, 55, 65], "conceiv": 8, "co": 8, "opt": 8, "reason": [8, 22], "introduct": 8, "rac": 8, "encourag": [8, 103], "reader": 8, "seek": 8, "out": [8, 9, 14, 16, 55, 57, 58, 60, 65, 66, 67, 68, 92], "k": [8, 96, 98, 103], "copi": [8, 11, 16, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "you": [8, 9, 11, 12, 13, 14, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "probabl": [8, 14, 26, 30, 31, 42, 47, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 94, 95, 97, 99, 101, 102, 103], "previou": [8, 11, 14, 95, 98, 100, 103], "trivial": [8, 14], "write": [8, 16, 28, 98, 102], "854": 8, "789": 8, "respect": [8, 14, 54, 92, 93, 94, 95, 96, 97, 102, 103], "note": [8, 11, 12, 16, 72, 86, 87, 92, 93, 94, 95, 97, 98, 100, 101, 102, 103], "4": [8, 11, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103], "been": [8, 9, 11, 12, 14, 27, 47, 49, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "proven": 8, "imposs": 8, "As": [8, 9, 92, 93, 95, 96, 103], "abov": [8, 9, 93, 95, 96, 98, 101, 103], "decompos": 8, "hermitian": 8, "rho": [8, 14, 19, 20, 96], "left": [8, 16, 78, 79, 81, 93, 97], "ax": [8, 97], "bY": 8, "cz": [8, 97], "right": [8, 16, 78, 79, 81, 92, 93, 99], "b": [8, 19, 92, 93, 96, 97, 98, 102], "associ": [8, 14, 93, 98, 103], "now": [8, 14, 93, 96, 101], "written": [8, 16, 93, 98], "arrai": [8, 14, 25, 55, 57, 58, 60, 62, 65, 66, 67, 68, 72, 80, 82, 92, 93, 94, 98, 99, 101, 102, 103], "l": [8, 16, 96, 98], "ll": [8, 103], "vert": 8, "psi": [8, 97, 98], "langl": [8, 97, 98], "hline": 8, "_m": 8, "m_0": 8, "sqrt": [8, 14, 63, 101], "m_1": 8, "m_2": 8, "end": [8, 14, 16, 29, 36, 72, 92, 94, 95, 101, 102], "tabl": [8, 11, 12], "string": [8, 14, 16, 17, 22, 23, 24, 26, 28, 31, 35, 37, 39, 40, 41, 47, 48, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 92], "scale": [8, 32, 38, 71, 72, 76, 92, 98, 99], "natur": [8, 97, 98, 103], "composit": 8, "tensor": 8, "m_3": 8, "m_4": 8, "m_5": 8, "similarli": [8, 98], "nmid": 8, "pad": 8, "bitstr": [8, 14], "expect": [8, 14, 26, 46, 50, 51, 53, 84, 93, 97, 98, 99, 103], "correspond": [8, 11, 12, 16, 17, 24, 26, 31, 32, 35, 37, 38, 40, 43, 44, 47, 48, 50, 51, 55, 56, 59, 60, 64, 65, 66, 68, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 99, 100, 103], "factor": [8, 14, 19, 27, 32, 38, 44, 49, 71, 72, 76, 92, 93, 99, 103], "depend": [8, 9, 23, 28, 39, 93, 97, 98, 101, 102, 103], "densiti": 8, "recoveri": [8, 47, 103], "substitut": [8, 16, 37, 38], "decis": [8, 19, 47, 49, 96, 97, 98, 103], "uniqu": [8, 25], "under": [8, 9, 11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "p_": 8, "j": [8, 14, 19, 25, 44, 63, 72, 94, 96, 97, 98, 99, 100, 101, 103], "after": [8, 38, 47, 51, 93, 94, 95, 97, 102], "bracket": 8, "index": [8, 9, 16, 35, 67, 80, 82, 92, 98], "make": [8, 16, 47, 55, 92, 97, 98, 103], "clear": [8, 16, 103], "necessarili": 8, "act": 8, "becaus": [8, 11, 12, 14, 93, 96, 103], "longer": [8, 14, 47, 101], "relationship": 8, "mean": [8, 9, 14, 16, 63, 93, 94, 95, 97, 103], "subset": [8, 56, 61, 64, 93, 97, 100, 103], "same": [8, 9, 14, 16, 47, 88, 91, 92, 93, 94, 96, 98, 100, 101, 102], "pose": 8, "try": [8, 11, 22, 23, 27, 28, 32, 33, 34, 38, 39, 41, 44, 92, 94, 97, 98, 100, 103], "ensur": [8, 14, 47, 93, 97, 101], "earlier": [8, 94, 95, 103], "x_i": [8, 14, 63, 72, 92, 93, 97, 101], "x_j": [8, 14, 72, 97], "If": [8, 9, 13, 14, 16, 18, 19, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 44, 46, 47, 49, 53, 66, 69, 71, 72, 76, 86, 88, 91, 92, 94, 96, 98, 100, 102, 103], "behav": [8, 14], "howev": [8, 46, 93, 97, 101, 103], "compos": 8, "recal": 8, "group": [8, 14, 58], "self": [8, 15, 98], "invers": 8, "thu": [8, 25, 92, 93, 94, 99], "deduc": 8, "anoth": [8, 75, 92, 94], "element": [8, 16, 37, 47, 86, 87, 89, 90, 95], "restor": 8, "introduc": [8, 11, 14, 18, 38, 69, 92, 93, 94, 96, 99, 100], "specif": [8, 9, 26, 40, 92, 95, 96, 97, 98], "share": [8, 103], "dot": [8, 92, 98], "accomplish": [8, 47], "color": [8, 55, 57, 58, 60, 65, 66, 67, 68, 95, 97, 98], "final": [8, 22, 40, 41, 93, 94, 96, 97, 98, 99, 103], "rho_": 8, "unlik": [8, 103], "so": [8, 14, 49, 92, 93, 97, 98, 100, 103], "propos": [8, 70, 93, 96, 97], "describ": [8, 22, 27, 32, 38, 39, 40, 41, 44, 46, 49, 76, 95, 97], "wa": [8, 14, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "arbitrari": 8, "close": [8, 28, 97, 98, 103], "would": [8, 93, 97, 98, 99, 103], "handl": [8, 11, 12, 14, 93, 96], "sign": [8, 93], "lead": 8, "rl": 8, "sim": [8, 98], "either": [8, 37, 44, 46, 53, 80, 82, 92, 103], "notic": [8, 11, 63, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "faithfulli": 8, "failur": [8, 17, 24, 26, 31, 35, 36, 37, 40, 48, 69, 70, 71, 72, 73, 74, 94], "decreas": [8, 95], "exponenti": [8, 97, 101], "shot": [8, 11, 12, 46, 51, 99, 103], "three": [8, 92, 93, 95], "One": [8, 97, 103], "per": [8, 26, 47, 49, 103], "taken": [8, 16, 93, 94, 97], "independ": [8, 9, 14, 63, 65, 95], "distinguish": 8, "randomli": [8, 98], "select": [8, 19, 69, 96, 98, 100, 103], "perfectli": 8, "pair": [8, 92, 98], "orthogon": 8, "bar": 8, "everi": [8, 38, 71, 72, 76, 95, 97, 98, 103], "flip": [8, 73, 74], "sampl": [8, 11, 14, 17, 21, 24, 26, 27, 30, 31, 35, 37, 40, 42, 46, 48, 51, 97, 98, 101, 102, 103], "rightarrow": [8, 14, 72, 95, 97], "choos": [8, 46, 69, 96, 97, 98, 103], "essenti": [8, 93, 103], "equival": [8, 93, 94, 95, 97], "pick": 8, "correct": [8, 44, 93, 98], "put": [8, 95, 97, 98], "unknown": [8, 97], "far": 8, "like": [8, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 93], "low": [8, 66, 67], "odd": 8, "fortun": 8, "doe": [8, 11, 14, 16, 19, 32, 49, 71, 83, 94, 95, 97, 103], "lower": [8, 14, 16, 22, 33, 41, 80, 82, 85, 92, 93, 99], "ratio": [8, 47, 103], "certain": [8, 93, 95, 96], "highest": [8, 95, 103], "energi": [8, 14, 97], "eigenst": [8, 32, 97, 99], "t": [8, 9, 14, 16, 44, 92, 96, 97, 98, 99, 101], "leq": [8, 14, 72, 92, 93, 96, 98], "fval": [8, 11, 14, 17, 24, 26, 31, 35, 37, 40, 42, 48, 93, 94, 96, 99, 101, 102, 103], "5": [8, 12, 43, 44, 70, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103], "9": [8, 11, 14, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "2021": 8, "conjug": 8, "sigact": 8, "vol": 8, "15": [8, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "issu": [8, 14, 16, 18, 25, 33, 34, 88, 91, 103], "pp": 8, "78": [8, 93, 100], "88": 8, "link": [8, 98, 102], "masahito": 8, "hayashi": 8, "exist": [8, 11, 12, 14, 16, 71, 72, 91, 93, 97, 101], "enough": [8, 97, 98, 101], "four": 8, "journal": 8, "physic": [8, 94, 97], "8": [8, 14, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "129": 8, "2006": [8, 98], "its": [9, 14, 16, 19, 40, 66, 80, 82, 94, 97, 98], "own": [9, 44, 103], "environ": 9, "platform": 9, "should": [9, 14, 19, 29, 33, 35, 43, 44, 89, 90, 94, 95, 97, 103], "refer": [9, 16, 18, 22, 38, 39, 41, 44, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 70, 72, 80, 82, 93, 97, 103], "Then": [9, 94, 95, 96], "focus": [9, 99], "made": [9, 97, 98], "default": [9, 14, 16, 19, 27, 32, 38, 41, 44, 46, 47, 49, 54, 55, 88, 92, 93, 97, 98, 103], "those": [9, 93], "ibm": [9, 11, 14, 23, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103], "cplex": [9, 14, 16, 23, 92, 94, 96, 102], "cvxpy": 9, "matplotlib": [9, 96, 97, 98, 99, 100], "simplest": [9, 98], "guid": [9, 10, 14], "your": [9, 11, 12, 14, 92, 100], "virtual": 9, "add": [9, 14, 16, 92, 93, 94, 98], "extra": [9, 14], "list": [9, 16, 17, 21, 24, 25, 26, 27, 30, 31, 32, 35, 37, 38, 40, 43, 44, 47, 48, 50, 51, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78, 79, 80, 81, 82, 83, 92, 93, 94, 97, 98], "manner": 9, "visual": [9, 94, 95, 96, 97, 98], "pip": [9, 14, 98, 102], "alreadi": [9, 14, 16, 43, 49, 103], "sourc": [9, 10, 11, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "most": [9, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 95, 98], "recent": [9, 97], "updat": [9, 14, 16, 19, 20, 95, 96, 102], "packag": [9, 96, 97, 98, 100], "pypi": [9, 23, 102], "repositori": 9, "abil": 9, "inspect": 9, "latest": 9, "sinc": [9, 16, 23, 28, 46, 88, 93, 95, 97, 103], "chang": [9, 14, 22, 43, 44, 95, 101], "instruct": [9, 13], "clone": 9, "git": 9, "http": [9, 11, 14, 16, 22, 23, 39, 41, 46, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 88, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "github": [9, 14, 16, 88, 91, 92, 103], "com": [9, 14, 16, 23, 88, 91], "creat": [9, 16, 27, 32, 38, 43, 44, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 80, 82, 85, 88, 94, 95, 96, 97, 99, 101, 103], "folder": 9, "call": [9, 14, 38, 47, 49, 92, 93, 94, 97, 103], "cd": 9, "want": [9, 14, 94, 100, 102, 103], "lint": 9, "check": [9, 14, 18, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 44, 49, 76, 98, 103], "r": [9, 94, 95, 96, 97, 98, 99, 102], "dev": 9, "txt": [9, 11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "edit": 9, "mode": [9, 40, 69], "don": 9, "reinstal": 9, "read": [9, 11, 12, 14, 60, 66, 102], "lp": [9, 16, 102], "file": [9, 11, 14, 16, 60, 66, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "usag": [9, 63], "cplexoptim": [9, 14, 35, 93, 96, 101, 102], "wrapper": [9, 22, 23, 28, 32, 39, 41, 93], "separ": [9, 96], "command": 9, "effect": [9, 18], "yet": [9, 47], "cvx": 9, "goemanswilliamsonoptim": [9, 14], "draw": [9, 55, 57, 58, 60, 65, 66, 67, 68, 100, 101, 103], "gurobipi": [9, 14, 28, 87, 90], "gurobi": [9, 14, 28, 102], "gurobioptim": [9, 14, 102], "dive": 9, "tutori": [9, 10, 11, 12, 14, 72, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "open": [10, 14, 16, 102], "framework": [10, 95], "get": [10, 14, 16, 17, 24, 26, 31, 35, 37, 40, 48, 54, 60, 92, 94, 97, 98, 102], "start": [10, 19, 22, 33, 41, 43, 44, 92, 93, 94, 97, 103], "migrat": [10, 14], "terra": [11, 12, 14, 16, 88, 91, 94], "22": [11, 14, 93, 94, 97, 101, 102], "implement": [11, 18, 19, 20, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 43, 44, 49, 76, 94, 95, 96, 97], "sampler": [11, 12, 14, 27, 46, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "opflow": [11, 14], "deprec": [11, 12, 13, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "futur": [11, 14, 97], "releas": [11, 94], "until": [11, 38, 95, 96, 97, 98, 103], "intent": [11, 12], "explan": [11, 12, 103], "suggest": [11, 12, 97], "basesampl": [11, 14, 27, 46], "backendsampl": 11, "aersampl": 11, "aer": [11, 103], "runtim": [11, 14, 103], "minimum_eigen_solv": 11, "minimum_eigensolv": [11, 12, 14, 103], "minimumeigensolv": [11, 12, 14, 48, 49, 94, 96, 99], "samplingminimumeigensolv": [11, 12, 14, 31, 32, 94], "basic": [11, 12, 87, 93, 94, 98], "But": [11, 12, 94], "except": [11, 12, 15, 23, 27, 28, 39, 92, 93, 94, 98, 100], "inherit": [11, 44, 94], "extens": [11, 12, 97], "eigen": [11, 12, 31, 32, 37, 38, 93, 96, 97, 100, 103], "setup": [11, 92, 99], "qiskit_optim": [11, 12, 14, 22, 23, 28, 32, 35, 38, 41, 69, 70, 76, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "print": [11, 12, 14, 16, 17, 23, 24, 26, 28, 31, 35, 37, 39, 40, 41, 48, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "prettyprint": [11, 14, 16, 17, 24, 26, 31, 35, 37, 40, 48, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103], "name": [11, 14, 16, 17, 24, 26, 31, 35, 37, 40, 41, 48, 60, 66, 70, 78, 79, 80, 81, 82, 85, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103], "subject": [11, 14, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103], "No": [11, 29, 92, 93, 94, 95, 97, 100, 101, 103], "previous": [11, 12, 13, 14, 103], "me": [11, 12], "meo": [11, 12, 100, 102], "statu": [11, 14, 16, 17, 24, 26, 31, 35, 36, 37, 40, 41, 42, 48, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103], "success": [11, 14, 36, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103], "basica": 11, "quantuminst": [11, 14], "backend": [11, 14, 46, 96, 103], "get_backend": [11, 14], "qasm_simul": [11, 14], "1000": [11, 12, 19, 22, 96, 97, 103], "qin": 11, "quantum_inst": [11, 14], "occur": [11, 97], "due": [11, 16, 23, 27, 28, 38, 39, 92, 93, 97, 98], "cell": [11, 92, 98], "typeerror": [11, 27, 32, 38, 49, 84], "ex": 11, "slsqpoptim": [11, 12, 18], "pre_solv": [11, 12, 44, 101], "relax_for_pre_solv": [11, 12, 44, 101], "epsilon": [11, 12, 43, 44, 101], "25": [11, 12, 44, 94, 98, 99, 102], "specifi": [11, 16, 18, 22, 23, 27, 28, 32, 33, 35, 38, 41, 44, 47, 51, 55, 57, 58, 60, 65, 66, 67, 68, 69, 79, 81, 92, 97, 100, 103], "num_value_qubit": [11, 12, 27], "num_iter": [11, 12, 27, 95], "valueerror": [11, 27, 33, 46, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68], "pass": [11, 14, 22, 28, 41, 44, 71, 72, 76, 93, 101, 103], "jupyt": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "qiskit_version_t": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "qiskit_copyright": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "informationqiskit": 11, "softwareversionqiskit": 11, "terra0": 11, "23": [11, 101], "0qiskit": 11, "aer0": 11, "11": [11, 14, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "1qiskit": 11, "optimization0": 11, "machin": [11, 19, 96], "learning0": 11, "0system": [11, 92, 93, 94, 97, 98, 99, 101, 102, 103], "informationpython": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "version3": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "15python": 11, "compilerclang": 11, "14": [11, 22, 92, 93, 94, 97, 98, 99, 100, 101, 103], "clang": 11, "1400": 11, "29": 11, "102": 11, "buildmain": 11, "oct": 11, "2022": [11, 102], "27": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "25osdarwincpus4memori": 11, "gb": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "16": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "0tue": 11, "dec": 11, "06": [11, 41], "08": [11, 53, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "13": [11, 41, 92, 93, 94, 96, 97, 98, 100, 101, 103], "jst": 11, "part": [11, 14, 16, 81, 83, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "copyright": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "2017": [11, 70, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "licens": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "apach": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "mayobtain": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "root": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "directori": [11, 16, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "tree": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "www": [11, 23, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "org": [11, 14, 22, 23, 39, 41, 46, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 70, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "modif": [11, 47, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "deriv": [11, 86, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "work": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "retain": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "thiscopyright": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "modifi": [11, 19, 43, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "carri": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "indicatingthat": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "alter": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "supersed": [12, 14], "standalon": 12, "replac": [12, 16, 22, 33, 37, 41, 92, 93, 94], "former": [12, 14], "switch": [13, 14], "over": [13, 63, 97, 99, 103], "remov": [13, 14, 16, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "organ": 14, "emphas": 14, "driven": 14, "To": [14, 69, 92, 93, 96, 97, 101, 102, 103], "reflect": 14, "board": 14, "owner": 14, "maintain": [14, 35], "decid": 14, "regardless": 14, "time": [14, 16, 19, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103], "member": 14, "team": 14, "bulk": 14, "legaci": 14, "thing": 14, "noth": 14, "reli": [14, 103], "otherwis": [14, 16, 18, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 44, 49, 69, 72, 73, 74, 76, 88, 99], "immedi": 14, "pin": 14, "sure": [14, 16, 47, 98, 103], "blog": 14, "post": 14, "drop": 14, "scipymilpoptim": 14, "scipi": [14, 22, 39, 40, 41], "milp": [14, 39, 98], "mix": [14, 18, 96, 98], "ad": [14, 16, 32, 71, 72, 76, 93, 97, 98, 101], "encod": [14, 25, 45, 47, 48, 49, 50, 70, 92, 93, 95, 98, 102], "qrao": [14, 103], "7": [14, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "repres": [14, 16, 17, 24, 26, 31, 32, 35, 37, 40, 43, 48, 51, 54, 55, 57, 58, 60, 65, 66, 67, 68, 93, 94, 95, 97, 101, 103], "Ising": [14, 16, 32, 88, 91, 93, 94, 99, 103], "quantum_info": [14, 93], "sparsepauliop": [14, 91, 93, 97, 100, 103], "vqeclient": 14, "qaoaclient": 14, "vqeruntimeresult": 14, "session": 14, "to_is": [14, 16, 94, 97, 99, 100], "oper": [14, 16, 26, 41, 47, 49, 88, 91, 94, 95, 96, 97, 98, 101, 103], "from_is": [14, 16, 94], "accept": [14, 23, 28, 93], "minimumeigenoptim": [14, 18, 37, 38, 44, 95, 96, 97, 98, 99, 100, 101, 102, 103], "numpyminimumeigensolv": [14, 18, 31, 32, 38, 94, 95, 96, 97, 99, 100, 101], "argument": [14, 22, 41, 94, 96, 103], "warmstartqaoaoptim": [14, 101], "incorrect": 14, "vary_rho": [14, 19], "update_rho_by_residu": [14, 19], "admmoptim": [14, 17, 96], "popul": [14, 96], "y_save": 14, "admmstat": [14, 17], "inequalitytoequ": 14, "convert": [14, 16, 27, 32, 35, 38, 44, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 86, 95, 97, 99, 100, 101, 102, 103], "slack": [14, 69, 72, 93], "caus": [14, 103], "turn": [14, 98], "along": [14, 16], "pend": 14, "subsequ": 14, "samplingvq": [14, 94, 96, 97, 98], "keyword": 14, "calcul": [14, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 76, 93, 103], "accordingli": [14, 16, 99], "vqeprogram": 14, "qaoaprogram": 14, "parse_tsplib_format": [14, 66], "did": [14, 46, 93], "pars": 14, "tsplib": [14, 66], "correctli": [14, 16, 93, 95], "whitespac": 14, "eof": 14, "present": [14, 16, 96, 98], "pretti": [14, 16, 17, 24, 26, 31, 35, 37, 40, 48, 102], "qp": [14, 93, 94, 95, 96, 97, 99, 100, 101, 102], "integer_var": [14, 16, 70, 92, 93, 102], "continuous_var": [14, 16, 41, 92, 96], "binary_var_list": [14, 16, 99], "10": [14, 19, 70, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "integer_var_list": [14, 16], "continuous_var_list": [14, 16], "constant": [14, 16, 47, 77, 83, 88, 91, 92, 94, 98], "linear_constraint": [14, 16, 92, 93, 98, 102], "lin_g": 14, "lin_eq": [14, 92], "quadratic_constraint": [14, 16, 92], "quad_l": 14, "output": [14, 16, 22, 23, 26, 28, 39, 41, 82, 93, 97, 101, 103], "x5": [14, 101], "x6": 14, "q1": 14, "x15": 14, "x16": 14, "x17": 14, "x18": 14, "x19": 14, "x20": 14, "12": [14, 92, 93, 94, 96, 97, 98, 99, 100, 101, 103], "x7": 14, "x8": 14, "x9": 14, "x10": 14, "x11": 14, "x12": 14, "x13": 14, "x14": 14, "format": [14, 16, 55, 57, 58, 60, 62, 65, 66, 67, 68, 76, 92, 93, 94, 99, 102], "str": [14, 16, 17, 18, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 44, 46, 48, 49, 51, 60, 66, 69, 76, 78, 79, 80, 81, 82, 83, 85, 97, 98, 101], "repr": 14, "id": 14, "friendli": 14, "line": [14, 96], "linearconstraint": [14, 16], "linearexpress": 14, "quadraticconstraint": [14, 16], "quadraticexpress": 14, "quadraticobject": 14, "displai": [14, 23, 28, 39, 92, 95, 96, 102], "multi": [14, 18, 22, 33, 41, 96], "empti": [14, 16, 18, 23, 25, 28, 33, 34, 39, 92], "x0": [14, 16, 94, 95, 101], "x1": [14, 35, 94, 95, 101], "x2": [14, 35, 94, 95, 101], "At": [14, 95, 98], "didn": 14, "fail": 14, "insid": [14, 98], "mp": [14, 86, 89, 92, 93, 95, 96, 99, 101, 102], "pleas": [14, 93, 98], "optimizationresultstatu": [14, 17, 24, 26, 31, 35, 37, 40, 42, 48, 94, 102, 103], "q0": [14, 16, 92], "basebackend": 14, "18": [14, 93, 94, 97, 101, 103], "instal": [14, 16, 23, 28, 96, 98, 100, 102], "wrong": 14, "show": [14, 92, 93, 94, 95, 96, 97, 98, 99, 101], "warn": [14, 98], "messag": [14, 15, 18, 22, 25, 27, 32, 33, 34, 38, 40, 41, 44, 49, 76, 102], "printabl": [14, 16], "alwai": [14, 96, 100, 103], "reword": 14, "bin": [14, 54, 97], "pack": [14, 54, 64, 98, 100], "binpack": 14, "en": [14, 23, 54, 55, 56, 58, 59, 60, 61, 64, 65, 66, 67, 68], "wikipedia": [14, 54, 55, 56, 58, 59, 60, 61, 64, 65, 66, 67, 68], "wiki": [14, 54, 55, 56, 58, 59, 60, 61, 64, 65, 66, 67, 68], "bin_packing_problem": [14, 54], "client": [14, 98], "execut": 14, "dedic": 14, "transpil": 14, "swap": 14, "puls": 14, "cross": [14, 97], "reson": 14, "hardwar": [14, 46, 97, 103], "significantli": [14, 103], "reduc": [14, 94], "depth": [14, 94, 97, 98], "improv": [14, 27], "cvar": 14, "ibmq": 14, "load_account": 14, "get_provid": 14, "hub": 14, "q": [14, 82, 92, 95, 96, 98, 99], "main": 14, "ibmq_qasm_simul": 14, "diagon": [14, 101, 103], "eigenvalu": [14, 97, 103], "op": [14, 20, 94, 100], "up": [14, 82, 95, 97], "rep": [14, 97, 99, 100], "p": [14, 47, 72, 96, 97, 99, 103], "repetit": 14, "alpha": [14, 97, 99], "75": [14, 94, 97], "best": [14, 94, 95, 97, 98, 99, 102, 103], "readout": 14, "compute_minimum_eigenvalu": [14, 97], "doc": [14, 22, 23, 39, 41, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "12_qaoa_runtim": 14, "ipynb": [14, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "translat": [14, 32, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 99, 101], "from_docplex_mp": [14, 92, 95, 96, 99, 101, 102], "logic": [14, 32, 44, 86, 103], "express": [14, 79, 80, 81, 82, 86, 92], "logical_and": [14, 86], "logical_or": [14, 86], "logical_not": [14, 86], "mod": [14, 92], "add_constraint": [14, 92, 96, 99, 101, 102], "sherrington": [14, 63], "kirkpatrick": [14, 63], "sk": [14, 63], "skmodel": 14, "ferromagnet": 14, "antiferromagnet": 14, "interact": [14, 97, 98], "disord": [14, 63], "field": [14, 96, 97], "spin": [14, 63, 94], "glass": 14, "configur": [14, 46, 63, 103], "site": [14, 63], "w_": [14, 63, 97, 98], "x_ix_j": [14, 63], "chosen": [14, 63, 97, 98], "uniformli": [14, 22, 33, 41, 46, 63], "dmitri": [14, 63], "panchenko": [14, 63], "overview": [14, 63, 93], "ab": [14, 46, 53, 63, 98], "1211": [14, 63], "1094": [14, 63], "from_docplex": 14, "to_docplex": 14, "These": [14, 93, 98, 103], "to_docplex_mp": [14, 93, 102], "renam": 14, "avoid": 14, "confus": 14, "fact": 14, "cloud": 14, "vqeprogramresult": 14, "integertobinari": 14, "zero": [14, 16, 22, 33, 41, 53, 97, 98, 99], "ind": [14, 99], "sens": [14, 16, 69, 73, 74, 78, 79, 81, 83, 92, 93, 98], "_le": 14, "_ge": 14, "linear_ct": 14, "coeffici": [14, 16, 70, 79, 80, 81, 82, 83, 88, 92, 93, 97], "properli": [14, 96], "userwarn": 14, "dictionari": [14, 16, 17, 24, 26, 31, 35, 37, 40, 48, 80, 82, 92, 94, 99], "formul": [14, 72, 86, 92, 93, 94, 97, 102], "from_gurobipi": [14, 102], "to_gurobipi": [14, 102], "minimizetomaxim": [14, 93], "linearinequalitytopenalti": [14, 93], "penalti": [14, 27, 32, 38, 44, 49, 71, 72, 76, 93, 94, 97, 98, 99, 101], "maximizetominim": [14, 93], "quadraticprogramtoqubo": [14, 27, 32, 38, 44, 49, 93, 97, 100, 101], "intern": [14, 17, 20, 27, 32, 38, 44, 80, 82, 99, 101, 103], "fallback": 14, "found": [14, 17, 18, 19, 24, 25, 26, 31, 33, 34, 35, 37, 40, 48, 95, 96, 97, 98, 102, 103], "cplex_paramet": [14, 23, 102], "paramet": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 97, 98, 101, 102, 103], "limit": [14, 97, 98, 102], "thread": [14, 102], "pprint_as_str": 14, "aqua": 14, "octob": 14, "2020": [14, 18, 96, 99], "minimumeigenoptimizationresult": [14, 21, 30, 32, 37, 44], "raw_sampl": [14, 26, 31], "bit": [14, 103], "pull": 14, "97": 14, "evaluate_gradi": [14, 80, 82, 83], "qiskitoptimizationerror": [14, 16, 18, 22, 23, 27, 28, 32, 33, 34, 35, 38, 39, 41, 43, 44, 46, 47, 53, 66, 69, 70, 71, 72, 73, 74, 76, 80, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 94], "rotation_count": 14, "algorithm_glob": [14, 94, 97, 98, 99, 100, 101], "get_count": 14, "qc": 14, "determinist": [14, 53, 103], "count": [14, 16, 26, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 98, 103], "probabilist": 14, "with_traceback": 15, "tb": 15, "__traceback__": 15, "attribut": [16, 17, 18, 22, 23, 24, 26, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 55, 57, 58, 59, 60, 63, 65, 66, 67, 68, 69, 71, 72, 76, 78, 79, 80, 81, 82, 83, 84, 85, 94, 96, 103], "linear_constraints_index": 16, "quadratic_constraints_index": 16, "infeas": [16, 36, 38, 92, 94], "variables_index": 16, "none": [16, 17, 18, 22, 23, 24, 26, 27, 28, 31, 32, 35, 37, 38, 40, 44, 46, 48, 49, 50, 51, 53, 54, 55, 57, 58, 60, 63, 65, 66, 67, 68, 71, 72, 76, 83, 86, 98, 103], "occupi": 16, "binary_var_dict": 16, "kei": [16, 37, 80, 82, 92, 98, 101], "key_format": 16, "var_dict": 16, "construct": [16, 26, 33, 37, 40, 43, 47, 72, 81, 83, 94, 95, 96, 97, 103], "int": [16, 19, 22, 25, 26, 27, 33, 37, 38, 40, 41, 44, 46, 47, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 78, 79, 80, 81, 82, 83, 85, 93, 94, 97, 98, 101, 102], "sequenc": 16, "less": [16, 25], "attempt": [16, 46, 94], "nest": 16, "dict": [16, 23, 26, 37, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 78, 79, 80, 81, 82, 83, 92], "var_list": 16, "delet": 16, "lowerbound": [16, 22, 33, 41, 70, 85, 92, 93, 102], "upperbound": [16, 22, 33, 41, 70, 85, 92, 93, 102], "1e": [16, 41, 53, 77, 85], "20": [16, 23, 77, 85, 93, 94, 96, 97, 98, 101, 103], "float": [16, 17, 19, 20, 22, 24, 25, 26, 27, 31, 32, 33, 35, 37, 38, 40, 41, 42, 43, 44, 48, 49, 53, 66, 69, 70, 71, 72, 73, 74, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 91, 94, 99], "continuous_var_dict": 16, "export_as_lp_str": [16, 92, 102], "qubit_op": [16, 47, 88, 91, 103], "offset": [16, 47, 83, 88, 91, 92, 94, 95, 97, 98, 99, 100, 103], "fals": [16, 18, 19, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 44, 49, 76, 80, 82, 88, 96], "shift": [16, 88, 94, 95], "1148": [16, 88, 91], "baseoper": [16, 88], "bool": [16, 18, 19, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 44, 49, 76, 80, 82, 88, 102], "treat": [16, 88], "els": [16, 23, 28, 97, 98, 99], "notimplementederror": 16, "listop": 16, "get_feasibility_info": 16, "whether": [16, 18, 22, 23, 25, 27, 28, 29, 32, 33, 34, 38, 39, 41, 44, 47, 49, 53, 76, 80, 82, 92, 93], "violat": [16, 22, 103], "param": [16, 18, 66, 96, 99], "len": [16, 97, 98, 101, 103], "total": [16, 61, 66, 97, 100, 101, 102, 103], "var": [16, 35, 70, 94, 102], "get_linear_constraint": [16, 92], "indexerror": 16, "size": [16, 22, 35, 55, 94, 95, 98, 100], "keyerror": 16, "get_num_binary_var": 16, "get_num_continuous_var": 16, "get_num_integer_var": 16, "get_num_linear_constraint": 16, "get_num_quadratic_constraint": 16, "get_num_var": 16, "vartyp": [16, 85, 101], "filter": [16, 94], "get_quadratic_constraint": [16, 92], "get_vari": 16, "integer_var_dict": 16, "is_feas": [16, 97], "ndarrai": [16, 17, 22, 24, 25, 26, 31, 33, 35, 37, 40, 41, 42, 43, 48, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83], "rh": [16, 78, 79, 81, 92, 93, 98], "spmatrix": [16, 79, 80, 81, 82, 83], "side": [16, 78, 79, 81, 92, 93], "constraintsens": [16, 78, 79, 81, 92], "eq": [16, 70, 92, 93], "ge": [16, 92, 93], "greater": [16, 85, 97, 103], "le": [16, 92, 93], "c0": [16, 92, 97, 100, 101, 102], "tupl": [16, 22, 33, 37, 41, 49, 81, 82, 83, 85, 91, 94, 97], "wrap": [16, 22, 23, 28, 39, 41, 94, 96], "80": 16, "width": 16, "disabl": 16, "exce": 16, "long": [16, 96], "won": 16, "read_from_lp_fil": 16, "filenam": [16, 60, 66], "load": [16, 86, 87, 96, 98, 102], "filenotfounderror": 16, "pythonpath": 16, "remove_linear_constraint": [16, 92], "remove_quadratic_constraint": [16, 92], "substitute_vari": [16, 92], "weight": [16, 32, 37, 46, 54, 59, 66, 98, 100, 103], "everyth": 16, "match": [16, 35, 72, 83, 103], "invalid": [16, 27, 32, 38], "write_to_lp_fil": 16, "my_problem": 16, "append": [16, 94, 98, 99, 101], "suffix": [16, 102], "oserror": 16, "docplexexcept": 16, "admm": [17, 18, 19, 20], "termin": [17, 24, 26, 31, 35, 36, 37, 40, 48, 95, 96], "raw_result": [17, 24, 26, 31, 35, 37, 40, 48], "dump": [17, 24, 26, 31, 35, 37, 40, 48], "leftov": [17, 24, 26, 31, 35, 37, 40, 48], "variable_nam": [17, 24, 26, 31, 35, 37, 40, 48], "variables_dict": [17, 24, 26, 31, 35, 37, 40, 48], "get_correl": [17, 24, 26, 31, 35, 37, 40, 48], "zi": [17, 24, 26, 31, 35, 37, 40, 48], "zj": [17, 24, 26, 31, 35, 37, 40, 48], "correl": [17, 24, 26, 31, 35, 37, 40, 48], "matrix": [17, 24, 25, 26, 31, 35, 37, 40, 48, 60, 66, 80, 82, 92, 96, 97, 99, 101], "qubo_optim": [18, 96], "continuous_optim": [18, 96], "optimizationalgorithm": [18, 22, 23, 25, 27, 28, 32, 33, 38, 39, 41, 44, 49], "gambella": [18, 96], "simonetto": [18, 96], "block": [18, 19, 96], "preprint": [18, 94, 95, 96], "2001": [18, 96], "02069": [18, 96], "initi": [18, 19, 20, 22, 23, 28, 32, 33, 38, 39, 41, 43, 44, 78, 84, 94, 95, 97, 99, 101], "admmparamet": [18, 96], "get_compatibility_msg": [18, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 44, 49, 76], "incompat": [18, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 44, 49, 76], "is_compat": [18, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 44, 49, 76], "tri": [18, 22, 23, 27, 28, 32, 33, 34, 38, 39, 41, 44, 97], "admmoptimizationresult": 18, "rho_initi": [19, 20, 96], "10000": [19, 103], "factor_c": [19, 96], "100000": 19, "beta": [19, 96, 101], "maxit": [19, 96, 97, 99, 102], "tol": [19, 96], "0001": [19, 22], "max_tim": 19, "inf": 19, "three_block": [19, 96], "tau_incr": 19, "tau_decr": 19, "mu_r": 19, "mu_merit": 19, "warm_start": 19, "penal": [19, 96], "maximum": [19, 22, 41, 47, 49, 54, 59, 60, 66, 67, 95, 100, 103], "iter": [19, 26, 27, 29, 37, 38, 40, 41, 95, 96, 99, 103], "toler": [19, 22, 53, 96], "residu": [19, 96], "converg": [19, 96, 97, 103], "second": [19, 37, 93, 98], "boolean": 19, "flag": [19, 95], "rule": 19, "increas": [19, 94, 103], "accord": [19, 25, 43, 44, 94], "primal": [19, 96], "dual": [19, 96], "boyd": [19, 96], "parikh": [19, 96], "chu": [19, 96], "peleato": [19, 96], "eckstein": [19, 96], "2011": [19, 96], "distribut": [19, 63, 94, 95, 96, 97, 98, 101, 103], "statist": [19, 94, 96, 97], "learn": [19, 96], "altern": [19, 96, 98], "direct": [19, 96], "multipli": [19, 92, 95, 96, 101], "foundat": [19, 96], "trend": [19, 96], "122": [19, 96], "merit": 19, "pre": [19, 44, 98], "option": [19, 32, 44, 69, 103], "even": [19, 93, 96, 97, 98], "tune": 19, "hint": 19, "keep": [20, 75, 98], "track": 20, "variou": [20, 100], "store": [20, 22, 29, 38, 41, 80, 82, 92, 99], "dure": [20, 32, 98], "recreat": 20, "third": [20, 98], "abc": [21, 33, 34, 52, 62, 75], "abstract": [21, 33, 34, 52, 57, 62, 75, 78, 97], "aggreg": [21, 30, 44, 93, 94, 99], "combin": [21, 30, 97, 98, 100, 103], "solutionsampl": [21, 24, 26, 30, 31, 35, 48, 51, 94, 102, 103], "rhobeg": 22, "rhoend": 22, "maxfun": 22, "disp": [22, 23, 28, 39, 102], "catol": 22, "0002": 22, "trial": [22, 33, 41, 97, 98], "clip": [22, 33, 41], "100": [22, 33, 41, 66, 67, 96, 98, 99, 102], "multistartoptim": [22, 41], "fmin_cobyla": 22, "html": [22, 39, 41, 92], "constructor": [22, 41, 85, 96], "later": [22, 41, 96], "invok": [22, 37, 41, 92, 96, 103], "optimum": [22, 41, 95, 97, 99], "consist": [22, 26, 32, 41, 81, 85, 101], "accuraci": [22, 41], "precis": [22, 92], "trust": 22, "region": 22, "control": [22, 97, 98, 101, 103], "frequenc": 22, "impli": [22, 93], "absolut": [22, 53], "guess": [22, 33, 41], "drawn": [22, 33, 41, 97], "unbound": [22, 33, 41, 80, 82], "correspondingli": [22, 33, 41], "contain": [22, 24, 37, 41, 46, 47, 50, 53, 69, 70, 71, 80, 82, 86, 87, 89, 93, 94, 95, 96, 98, 103], "explain": [22, 27, 32, 38, 41, 44, 49, 76, 92, 93, 98, 103], "multi_start_solv": [22, 33, 41], "callabl": [22, 33, 41], "is_cplex_instal": 23, "ico": 23, "topic": 23, "throw": 23, "determin": [23, 53, 72, 80, 82, 98, 103], "static": [23, 25, 28, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 76], "sdp_solut": 24, "properti": [24, 26, 40, 96], "possibl": [24, 69, 94, 95, 97, 98, 103], "sdp": 24, "num_cut": 25, "sort_cut": 25, "unique_cut": 25, "seed": [25, 46, 53, 63, 66, 67, 97, 98, 99, 100, 103], "max": [25, 60, 95, 98, 100, 103], "w": [25, 92, 96, 97, 98, 99, 101], "therefor": [25, 101], "neg": [25, 95, 97], "adjac": [25, 60, 66], "max_cut_valu": 25, "adj_matrix": [25, 66, 97], "numpi": [25, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 94, 97, 98, 99, 100, 101, 103], "operation_count": 26, "n_input_qubit": 26, "n_output_qubit": 26, "intermediate_fv": 26, "threshold": [26, 38, 94, 95], "intermedi": [26, 29, 37, 38, 94, 99, 100], "getter": [26, 55, 57, 58, 59, 60, 63, 65, 66, 67, 68], "raw": [26, 31], "ga": [27, 95], "quadraticprogramconvert": [27, 32, 38, 44, 69, 70, 71, 72, 76], "By": [27, 32, 38, 44, 93, 97, 103], "attributeerror": 27, "is_gurobi_instal": 28, "suppress": 28, "info": 28, "stdout": 28, "sy": 28, "devnul": 28, "def": [28, 94, 97, 98, 99, 101, 102], "noop": 28, "arg": 28, "kwarg": 28, "flush": 28, "writelin": 28, "enum": [29, 36], "recursiveminimumeigenoptim": 29, "no_iter": 29, "last_iter": [29, 38], "last": [29, 37, 94, 97, 98], "all_iter": 29, "baseaggreg": [30, 44], "averag": [30, 99], "min_eigen_solver_result": [31, 99, 100], "samplingminimumeigensolverresult": 31, "numpyminimumeigensolverresult": 31, "underli": [31, 48, 93, 101], "assum": [32, 97, 103], "thereof": 32, "expand": 32, "good": [32, 97], "todo": 32, "smaller": 33, "_": [35, 98, 99, 101, 103], "x3": [35, 101], "union": 35, "possibli": 35, "succeed": 36, "histori": [37, 38, 96, 99], "recurs": [37, 38, 94], "minimumeigenoptimizerresult": 37, "min_num_vars_optim": [37, 38, 94], "min_num_var": [38, 94], "intermediateresult": 38, "meta": [38, 44], "top": [38, 85, 92, 103], "internal_optim": 38, "bravyi": [38, 94], "2019": [38, 72, 94, 95], "obstacl": [38, 94], "prepar": [38, 47, 94, 95, 98, 99, 103], "symmetri": [38, 94], "protect": [38, 94], "1910": [38, 94], "08980": [38, 94], "reach": [38, 97, 98], "remain": [38, 95, 101], "num_min_var": 38, "fx": 40, "imod": 40, "smode": 40, "slsqp": [40, 41], "exit": 40, "fmin_slsqp": [40, 41], "actual": [40, 95, 98, 100], "acc": 41, "iprint": 41, "full_output": 41, "request": 41, "verbos": 41, "silent": 41, "summari": 41, "upon": 41, "func": 41, "factori": [43, 44, 98], "overridden": 43, "behavior": [43, 101, 103], "mixer": [43, 44, 101], "warm": [43, 44], "regular": [43, 44], "xi": [43, 44], "create_initial_st": 43, "initial_vari": 43, "quantumcircuit": [43, 47, 50, 101], "create_initial_vari": 43, "create_mix": 43, "evolv": 43, "ry": [43, 97, 101], "theta": [43, 97, 98, 101], "rz": [43, 101], "2beta": 43, "num_initial_solut": 44, "warm_start_factori": 44, "daniel": 44, "egger": [44, 101], "2009": [44, 101], "10095": [44, 101], "circuit_factori": 44, "explicit": 44, "warmstartqaoacircuitfactori": 44, "ignor": [44, 49], "warmstartqaoafactori": 44, "sever": [44, 93], "next": [44, 94, 95, 101, 103], "presolv": 44, "verifi": [45, 95, 98], "commut": [45, 47, 103], "baseestim": 45, "verif": 45, "basis_sampl": 46, "roundingschem": [46, 49, 53], "magic": [46, 51, 103], "strateg": 46, "roundingcontext": [46, 49, 53, 103], "roundingresult": [46, 48, 49, 52, 53], "compression_ratio": [47, 103], "compress": [47, 82, 92, 103], "divid": [47, 58, 92, 103], "frozen": 47, "minimum_recovery_prob": 47, "num_qubit": [47, 97, 100, 103], "num_var": [47, 103], "runtimeerror": 47, "q2var": [47, 103], "var2op": 47, "qubit_index": 47, "freez": 47, "prevent": 47, "state_preparation_circuit": 47, "relaxed_fv": [48, 103], "rounding_result": [48, 49, 103], "minimumeigensolverresult": [48, 49, 103], "rounding_schem": [49, 103], "auxiliari": 49, "process_result": [49, 103], "quantumrandomaccessoptimizationresult": [49, 103], "expectation_valu": [50, 51], "basis_shot": 51, "basis_count": 51, "atol": 53, "semi": [53, 101, 103], "resolv": 53, "max_weight": [54, 59, 100], "max_number_of_bin": 54, "optimizationappl": [54, 56, 57, 59, 61, 63, 64], "item": [54, 59, 100], "capac": [54, 59, 97, 100], "get_figur": 54, "plot": [54, 96, 97, 98, 99], "sum": [54, 61, 82, 93, 97, 98, 99, 100, 101, 103], "fig": 54, "items_in_bin": 54, "sample_most_lik": [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 97], "state_vector": [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68], "quasidistribut": [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 94], "statevector": [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68], "quasi": [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68], "to_quadratic_program": [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 97, 100, 103], "graphoptimizationappl": [55, 58, 60, 65, 66, 67, 68, 100], "networkx": [55, 57, 58, 60, 65, 66, 67, 68, 97, 100, 103], "clique_": 55, "graph_theori": [55, 65], "suitabl": [55, 57, 58, 60, 65, 66, 67, 68, 94, 96, 98, 103], "build": [55, 57, 58, 60, 65, 66, 67, 68, 92, 101], "po": [55, 57, 58, 60, 65, 66, 67, 68, 97, 100, 103], "posit": [55, 57, 58, 60, 65, 66, 67, 68, 82, 93, 98, 100, 101], "node": [55, 57, 58, 60, 65, 66, 67, 68, 97, 98, 100, 102, 103], "exact": [56, 94, 96, 97, 98, 100], "exact_cov": 56, "answer": [57, 62, 97, 98], "understand": [57, 62, 94, 103], "graph_partit": 58, "knapsack_problem": 59, "maximum_cut": 60, "get_gset_result": 60, "gset": 60, "parse_gset_format": 60, "2d": 60, "number_set": 61, "partition_problem": 61, "half": 61, "num_sit": 63, "rng_or_se": 63, "variant": [63, 96], "normal": [63, 98], "varianc": [63, 103], "pseudo": 63, "default_rng": 63, "set_pack": 64, "stabl": [65, 100], "independent_set_": 65, "travel": [66, 98, 100], "salesman": [66, 98, 100], "travelling_salesman_problem": 66, "create_random_inst": [66, 67, 97], "coordin": [66, 67], "prospect": [66, 97], "cycl": [66, 97], "euc_2d": 66, "data": [66, 94, 98], "tsp_valu": [66, 97], "citi": [66, 97, 100], "length": [66, 97], "num_vehicl": 67, "depot": [67, 98, 100], "vehicl": [67, 100], "rout": [67, 100], "vehicle_routing_problem": 67, "depart": 67, "vertex": [68, 97], "vertex_cov": [68, 100], "auto": 69, "conv": [69, 70, 76, 93, 100], "problem2": [69, 70, 76], "There": [69, 72, 97, 98], "unsupport": [69, 72, 86, 87], "sahar": 70, "karimi": 70, "pooya": 70, "ronagh": 70, "anneal": [70, 97], "1706": [70, 93], "01945": [70, 93], "suppli": 72, "pattern": 72, "kept": 72, "fred": 72, "glover": 72, "1811": 72, "11538": 72, "_flipproblemsens": [73, 74], "unchang": [73, 74], "quadratic_program": [78, 79, 80, 81, 82, 83, 84, 85, 89, 90, 92], "quadraticprogramel": [78, 80, 82, 83, 85], "parent": [78, 79, 80, 81, 82, 83, 84, 85], "spars": [80, 82, 92], "dok_matrix": [80, 82], "gradient": [80, 82, 83], "to_arrai": [80, 82, 92], "to_dict": [80, 82, 92], "use_nam": [80, 82, 92], "symmetr": [82, 92, 96], "triangl": 82, "objsens": 83, "shape": 83, "expos": 85, "meant": 85, "extern": 85, "as_tupl": 85, "indicator_big_m": 86, "imaginari": 88, "never": [89, 90], "happen": [89, 90, 98], "quad_prog": 91, "compris": [91, 98], "page": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "01_quadratic_program": 92, "briefli": 92, "deal": [92, 97, 101], "align": [92, 97, 101], "q_0": [92, 103], "q_i": [92, 98], "a_i": [92, 93, 95], "r_i": 92, "l_i": 92, "u_i": [92, 98], "dimension": 92, "ibmdecisionoptim": 92, "io": [92, 102], "mdl": [92, 96, 99, 101, 102], "lb": [92, 98, 102], "ub": [92, 98, 102], "iso": [92, 102], "8859": [92, 102], "obj": [92, 98, 99, 102], "c1": [92, 97, 100], "qc1": 92, "lt": [92, 93, 94, 96, 100, 101, 102, 103], "comprehens": [92, 96, 103], "39": [92, 93, 94, 96, 97, 100, 101, 102, 103], "gt": [92, 93, 94, 96, 100, 102, 103], "my": 92, "again": [92, 93, 97, 98], "piec": 92, "qx": 92, "declar": 92, "dens": 92, "lin_leq": 92, "lin_geq": 92, "quad_eq": 92, "quad_leq": 92, "quad_geq": 92, "leftarrow": 92, "quadraticprogramstatu": 92, "itself": [92, 103], "ones": [92, 98], "infin": 92, "charact": 92, "_e": 92, "17": [92, 93, 94, 97, 101, 103], "tmp": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "ipykernel_2278": 92, "1492642725": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "py": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "deprecationwarn": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "informationsoftwareversionqiskit0": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "46": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "0qiskit_optimization0": [92, 95, 96, 100], "18python": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "compilergcc": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "0python": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "builddefault": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "aug": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "28": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "2023": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "22oslinuxcpus2memori": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "60690689086914fri": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "feb": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "09": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "51": [92, 93, 94, 95], "30": [92, 97], "2024": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "utc": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "02_converters_for_quadratic_program": 93, "power": [93, 97], "commonli": 93, "known": [93, 95, 96, 98, 103], "routin": [93, 97], "varieti": 93, "inequalitytoequalityconvert": 93, "symbol": 93, "With": [93, 97], "docplex_mp": 93, "xyz_leq": 93, "xyz_geq": 93, "ineq2eq": 93, "qp_eq": 93, "int_slack": [93, 100], "xyz": 93, "_leg": 93, "_slack": 93, "_geq": 93, "abl": [93, 98, 103], "satisfi": 93, "off": 93, "decim": 93, "point": [93, 97, 98], "minu": 93, "purpos": [93, 103], "cplex_optim": 93, "result_orig": 93, "result_eq": 93, "paper": 93, "_leq": 93, "int2bin": 93, "qp_eq_bin": 93, "ldot": [93, 96, 98], "result_eq_bin": 93, "sum_i": [93, 97], "1e5": 93, "lineq2penalti": 93, "26": [93, 100], "52": [93, 96, 100], "104": [93, 100], "208": [93, 100], "156": [93, 100], "117": [93, 100], "416": [93, 100], "312": [93, 100], "211": 93, "234": [93, 100, 101], "130": [93, 100], "260": [93, 100, 101], "210": 93, "209": 93, "418": [93, 101], "836": 93, "442": 93, "19": [93, 94, 97, 101, 103], "result_qubo": 93, "anymor": 93, "21": [93, 94, 97, 101, 103], "ipykernel_2560": 93, "0qiskit_algorithms0": [93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "2qiskit_optimization0": [93, 94, 97, 98, 99, 101, 102, 103], "34": [93, 103], "03_minimum_eigen_optim": 94, "address": 94, "chemistri": 94, "illustr": [94, 101], "mention": [94, 103], "thrown": 94, "prohibit": 94, "workaround": 94, "luca": [94, 97], "front": 94, "phy": [94, 97], "2014": [94, 97, 98], "kliesch": 94, "koenig": 94, "tang": 94, "plot_histogram": [94, 97], "account": [94, 103], "iiz": 94, "izi": 94, "zii": 94, "izz": 94, "ziz": 94, "zzi": 94, "coeff": [94, 97, 100, 103], "sometim": 94, "random_se": [94, 97, 98, 99, 100, 101], "10598": [94, 97, 98], "qaoa_m": [94, 101], "initial_point": [94, 101], "exact_m": [94, 101, 103], "small": [94, 98, 101], "exact_result": [94, 95, 103], "qaoa_result": [94, 101], "fraction": 94, "consolid": [94, 103], "441060556229305": 94, "2276358338592764": 94, "1413286540160573": 94, "125721012041142": 94, "0205135502889646": 94, "0304358403671234": 94, "012388100140798": 94, "0009164530573331": 94, "get_filtered_sampl": 94, "allowed_statu": 94, "filtered_sampl": 94, "005": 94, "perspect": 94, "deviat": 94, "std": 94, "9364916731037085": 94, "despit": 94, "crunch": 94, "earli": [94, 97], "samples_for_plot": 94, "join": [94, 98, 101], "enumer": [94, 101], "ipykernel_2809": 94, "365850440": 94, "probdistribut": 94, "month": 94, "date": 94, "plot_distribut": 94, "rqaoa": 94, "rqaoa_result": 94, "40": [94, 100], "04_grover_optim": 95, "alongsid": 95, "oracl": 95, "recogn": 95, "min": 95, "notebook": [95, 98, 99, 103], "compon": [95, 97, 98, 100, 103], "gilliam": 95, "woerner": [95, 101], "gonciulea": 95, "polynomi": [95, 97, 98], "1912": 95, "04088": 95, "ingredi": 95, "o": [95, 102], "amplitud": 95, "diffus": 95, "rangle_n": [95, 101], "vari": 95, "loos": 95, "quadraticprogramtonegativevalueoracl": 95, "regist": 95, "rangle_m": 95, "o_i": 95, "clariti": 95, "formal": [95, 97, 98], "toi": 95, "eqnarrai": 95, "min_": [95, 96, 98, 101], "2x_0x_2": 95, "x_1x_2": 95, "1x_0": 95, "2x_1": 95, "3x_2": 95, "docplex_model1": [95, 101], "progress": [95, 99], "grover_optim": 95, "x_0": [95, 97, 99, 100, 103], "x_1": [95, 97, 99, 100, 103], "x_2": [95, 97, 99, 100, 103], "custom": [95, 96], "counter": 95, "shown": [95, 99, 101], "titl": [95, 98], "axi": [95, 98], "101": 95, "intens": 95, "bright": 95, "phase": [95, 96, 97, 98], "wheel": 95, "exact_solv": 95, "ipykernel_3386": 95, "2system": [95, 96, 100], "45": 95, "05_admm_optim": 96, "hereaft": 96, "mbco": 96, "appear": [96, 97, 101], "logist": [96, 98], "financ": [96, 97], "research": 96, "tackl": 96, "subseteq": 96, "varphi": 96, "mathrm": [96, 97, 98], "ell": 96, "assumpt": 96, "interc": 96, "squar": 96, "x_": [96, 97, 98, 99], "jointli": 96, "mbo": 96, "split": 96, "hold": [96, 103], "devis": 96, "decomposit": 96, "subproblem": 96, "cost": [96, 98, 101], "pyplot": [96, 97, 98, 99], "plt": [96, 97, 98, 99], "cobylaoptim": 96, "admm_optim": 96, "uncom": 96, "plan": 96, "simpl": [96, 97], "report": 96, "ex6": 96, "cons1": 96, "cons2": 96, "cons3": 96, "1001": 96, "gx": 96, "900": 96, "theorem": 96, "activ": [96, 98], "admm_param": 96, "0e": 96, "convex_optim": 96, "xlabel": [96, 99], "ylabel": [96, 99], "admm_q": 96, "result_q": 96, "clf": 96, "ipykernel_3495": 96, "41": 96, "06_examples_max_cut_and_tsp": 97, "quantit": 97, "engin": 97, "lie": 97, "definit": [97, 101], "finit": 97, "countabl": 97, "infinit": 97, "criterion": 97, "typic": [97, 98, 103], "distanc": [97, 98, 100], "travers": 97, "consumpt": [97, 103], "profit": 97, "cluster": 97, "network": 97, "scienc": 97, "grasp": 97, "system": 97, "peopl": 97, "influenc": 97, "individu": [97, 98], "seen": 97, "pairwis": [97, 100], "mind": [97, 98], "market": 97, "suppos": 97, "bui": 97, "knowledg": 97, "strong": 97, "predict": 97, "outcom": [97, 98, 103], "ask": [97, 100], "revenu": 97, "undirect": [97, 100], "ji": [97, 98], "global": [97, 98], "summat": 97, "tild": 97, "textbf": 97, "person": 97, "principl": 97, "themselv": 97, "regard": 97, "likelihood": 97, "grant": 97, "w_i": 97, "const": 97, "z_iz_j": 97, "extent": 97, "consider": 97, "sai": 97, "speedup": 97, "target": [97, 98], "investig": [97, 98, 103], "inde": 97, "speed": [97, 98], "farhi": [97, 98], "goldston": [97, 98], "gutmann": [97, 98], "frame": 97, "higher": [97, 101, 103], "boldsymbol": [97, 98], "built": [97, 98, 101], "gate": [97, 98], "rotat": [97, 98, 101], "parameter": [97, 98], "togeth": [97, 98], "belief": 97, "difficulti": 97, "come": [97, 102], "wavefunct": [97, 98], "entangl": [97, 98], "u_": [97, 98], "collect": [97, 98, 100, 103], "fulli": [97, 98], "prod_": [97, 98], "theta_": [97, 98], "motiv": 97, "exploit": 97, "faster": 97, "adiabat": 97, "z_iz_jz_k": 97, "wherea": 97, "impract": 97, "frontier": 97, "1411": [97, 98], "4028": [97, 98], "wecker": 97, "hast": 97, "troyer": 97, "rev": 97, "94": 97, "022309": 97, "2016": 97, "neven": 97, "1703": 97, "06199": 97, "nx": [97, 100, 103], "twoloc": 97, "tsp": 97, "spsa": [97, 98], "add_nodes_from": 97, "arang": 97, "elist": 97, "add_weighted_edges_from": 97, "spring_layout": [97, 100, 103], "draw_graph": 97, "default_ax": 97, "frameon": 97, "draw_networkx": 97, "node_color": 97, "node_s": 97, "600": 97, "edge_label": 97, "get_edge_attribut": 97, "draw_networkx_edge_label": 97, "temp": 97, "get_edge_data": 97, "071509e": 97, "best_cost_brut": 97, "revers": [97, 99], "zfill": 97, "xbest_brut": 97, "nbest": 97, "max_cut": 97, "x_3": [97, 99, 100, 103], "qubitop": 97, "iizz": 97, "iziz": 97, "izzi": 97, "ziiz": 97, "zzii": 97, "lowest": 97, "eigenvector": 97, "ee": 97, "feedback": 97, "loop": [97, 99], "123": [97, 99, 100], "300": 97, "optimizer_tim": [97, 100, 103], "4996861455587294": 97, "03641676902771": 97, "999686145558729": 97, "vqe_optim": 97, "notori": 97, "attent": 97, "scientist": 97, "mathematician": 97, "centuri": 97, "bear": 97, "colloqui": 97, "speak": [97, 98], "goe": 97, "sell": 97, "merchandis": 97, "shortest": 97, "path": [97, 98], "visit": [97, 98, 100], "hometown": 97, "he": 97, "sale": 97, "least": [97, 100], "ubiquit": 97, "aris": [97, 103], "analysi": [97, 99], "hamilton": 97, "19th": 97, "whenev": 97, "summand": 97, "notin": 97, "boundari": 97, "equiv": 97, "sum_p": 97, "to_numpy_arrai": 97, "48": 97, "91": 97, "63": 97, "itertool": 97, "permut": 97, "brute_force_tsp": 97, "last_best_dist": 97, "1e10": 97, "pre_j": 97, "best_ord": 97, "best_dist": 97, "draw_tsp_solut": 97, "g2": 97, "digraph": 97, "add_edg": 97, "edge_color": 97, "font_color": 97, "202": 97, "x_0_0": 97, "x_1_1": 97, "x_1_2": 97, "x_2_1": 97, "x_2_2": 97, "x_0_1": 97, "x_1_0": 97, "x_2_0": 97, "x_0_2": 97, "c2": [97, 100], "c3": [97, 100], "c4": [97, 100], "c5": [97, 100], "qp2qubo": 97, "7581": 97, "iiiiiiiiz": [97, 100], "iiiiiiizi": [97, 100], "iiiiiizii": [97, 100], "iiiiiziii": [97, 100], "iiiiziiii": [97, 100], "iiiziiiii": [97, 100], "iiziiiiii": [97, 100], "iziiiiiii": [97, 100], "ziiiiiiii": [97, 100], "iiiiiiizz": [97, 100], "iiiiiiziz": [97, 100], "iiiiiizzi": [97, 100], "iiiiiziiz": [97, 100], "iiiiizizi": [97, 100], "iiiiizzii": [97, 100], "iiiiziiiz": [97, 100], "iiiiziizi": [97, 100], "iiiizizii": [97, 100], "iiiizziii": [97, 100], "iiiziiiiz": [97, 100], "iiiziiizi": [97, 100], "iiiziizii": [97, 100], "iiiziziii": [97, 100], "iiizziiii": [97, 100], "iiziiiiiz": [97, 100], "iiziiiizi": [97, 100], "iiziiizii": [97, 100], "iiziiziii": [97, 100], "iiziziiii": [97, 100], "iizziiiii": [97, 100], "iziiiiiiz": [97, 100], "iziiiiizi": [97, 100], "iziiiizii": [97, 100], "iziiiziii": [97, 100], "iziiziiii": [97, 100], "iziziiiii": [97, 100], "izziiiiii": [97, 100], "ziiiiiiiz": [97, 100], "ziiiiiizi": [97, 100], "ziiiiizii": [97, 100], "ziiiiziii": [97, 100], "ziiiziiii": [97, 100], "ziiziiiii": [97, 100], "ziziiiiii": [97, 100], "zziiiiiii": [97, 100], "1282": 97, "1268": 97, "1290": 97, "606": 97, "7379": 97, "7326": 97, "02469952184": 97, "17830228805542": 97, "ipykernel_10116": 97, "53": [97, 98, 99, 100], "07_examples_vehicle_rout": 98, "major": 98, "industri": 98, "usd": 98, "8183": 98, "billion": 98, "2015": 98, "servic": 98, "truck": 98, "ship": 98, "overnight": 98, "serv": 98, "locat": 98, "dai": 98, "computation": 98, "challeng": 98, "mile": 98, "spent": 98, "ideal": 98, "showcas": 98, "overal": 98, "establish": 98, "ahead": 98, "deliveri": 98, "databas": 98, "wise": 98, "euclidean": 98, "crow": 98, "fli": 98, "perhap": 98, "twice": 98, "hybrid": 98, "partli": 98, "simplist": 98, "requisit": 98, "vrp": 98, "wherein": 98, "sought": 98, "appleg": 98, "mtz": 98, "miller": 98, "tucker": 98, "zemlin": 98, "1960": 98, "segment": 98, "convent": 98, "delta": 98, "elimin": [98, 103], "tour": 98, "0i": 98, "j0": 98, "u_j": 98, "q_j": 98, "neq": 98, "weigh": 98, "arch": 98, "branch": [98, 102], "sake": [98, 103], "bf": 98, "01": 98, "02": 98, "dimens": 98, "stress": 98, "emploi": [98, 103], "worthwhil": 98, "summar": 98, "necessari": [98, 99, 100], "throughout": 98, "notabl": 98, "augment": 98, "lagrangian": 98, "ih": 98, "_i": [98, 101], "_n": 98, "_0": 98, "That": 98, "2an": 98, "2ak": 98, "stack": 98, "acm": 98, "326": 98, "329": 98, "doi": 98, "1145": 98, "321043": 98, "321046": 98, "bixbi": 98, "chv\u00e1tal": 98, "cook": 98, "princeton": 98, "univers": 98, "press": 98, "isbn": 98, "978": 98, "691": 98, "12993": 98, "cplexerror": 98, "math": 98, "place": [98, 103], "plane": 98, "__init__": 98, "generate_inst": 98, "33": [98, 99], "1543": [98, 99], "xc": 98, "rand": 98, "yc": 98, "ii": 98, "jj": 98, "classicaloptim": 98, "compute_allowed_combin": 98, "cplex_solut": 98, "refactor": 98, "my_obj": 98, "reshap": 98, "my_ub": 98, "my_lb": 98, "my_ctyp": 98, "my_rh": 98, "my_sens": 98, "my_prob": 98, "populatebyrow": 98, "exc": 98, "get_valu": 98, "get_objective_valu": 98, "prob": [98, 100], "set_sens": 98, "set_log_stream": 98, "set_error_stream": 98, "set_warning_stream": 98, "set_results_stream": 98, "row": 98, "col": 98, "coef": 98, "lin_expr": 98, "classical_optim": 98, "fashion": 98, "classical_cost": 98, "miss": 98, "visualize_solut": 98, "title_str": 98, "figur": [98, 99], "scatter": 98, "200": 98, "annot": 98, "grid": 98, "ix": 98, "arrow": 98, "length_includes_head": 98, "head_width": 98, "star": 98, "quantumoptim": 98, "binary_represent": 98, "algebra": 98, "construct_problem": 98, "solve_problem": 98, "minimuneigenoptim": 98, "x_sol": 98, "instance_vec": 98, "w_list": 98, "id_n": 98, "ey": 98, "im_n_1": 98, "iv_n_1": 98, "iv_n": 98, "neg_iv_n_1": 98, "vn": 98, "kron": 98, "contribut": 98, "fun": [98, 103], "lambda": [98, 99, 101], "quantum_optim": 98, "saniti": [98, 103], "binary_cost": 98, "unavail": 98, "nameerror": 98, "132": 98, "11148115684045": 98, "1114811568365": 98, "hour": 98, "log": 98, "what": 98, "quantum_solut": 98, "quantum_cost": 98, "x_quantum": 98, "kk": 98, "comparison": [98, 103], "coincid": 98, "ilp": 98, "optima": 98, "harder": 98, "wave": 98, "ipykernel_12741": 98, "08_cvar_optim": 99, "risk": 99, "particularli": 99, "confid": 99, "tradeoff": 99, "smoothen": 99, "landscap": 99, "barkoutso": 99, "256": 99, "linearequalitytopenalti": 99, "123456": 99, "asset": 99, "budget": 99, "mu": [99, 101], "7313": 99, "9893": 99, "2725": 99, "8750": 99, "7667": 99, "3622": 99, "sigma": [99, 101], "7312": 99, "6233": 99, "4689": 99, "5452": 99, "0082": 99, "3809": 99, "4732": 99, "7538": 99, "4659": 99, "0733": 99, "8945": 99, "4095": 99, "0007": 99, "4301": 99, "5067": 99, "2012": 99, "0922": 99, "6231": 99, "1509": 99, "8992": 99, "random_model": 99, "covari": 99, "portfolio_optim": 99, "opt_result": 99, "27835": 99, "x_4": [99, 100, 103], "x_5": [99, 100, 103], "linear2penalti": 99, "num_paramet": 99, "50": 99, "callback": 99, "stddev": 99, "real_if_clos": 99, "opt_alg": 99, "2783500000000174": 99, "figsiz": 99, "linewidth": 99, "label": 99, "2f": [99, 103], "legend": 99, "loc": 99, "fontsiz": 99, "xlim": 99, "xtick": 99, "ytick": 99, "objective_valu": 99, "x_bin": 99, "sb": 99, "argsort": 99, "fromit": 99, "binary_prob": 99, "dtype": 99, "4f": 99, "00": [99, 102], "0000": 99, "2895": 99, "ipykernel_13106": 99, "09_application_class": 100, "subcollect": 100, "multiset": 100, "disjoint": 100, "cliqu": 100, "induc": 100, "subgraph": 100, "endpoint": 100, "beforehand": 100, "vertexcov": 100, "random_regular_graph": [100, 103], "c6": 100, "c7": 100, "c8": 100, "nsolut": 100, "ntime": 100, "3467717170715332": 100, "916522741317749": 100, "624": 100, "520": 100, "468": 100, "780": 100, "936": 100, "832": 100, "1040": 100, "1248": 100, "650": 100, "1560": 100, "2080": 100, "1043": 100, "1564": 100, "2085": 100, "2606": 100, "3127": 100, "2600": 100, "num": 100, "1417": 100, "258": [100, 101], "388": 100, "517": 100, "647": 100, "776": 100, "390": 100, "195": 100, "65": 100, "ipykernel_13753": 100, "10_warm_start_qaoa": 101, "tx": 101, "Such": 101, "marecek": 101, "quadratic_program_to_qubo": 101, "create_problem": 101, "relax_problem": 101, "relaxed_problem": 101, "deepcopi": 101, "0913": 101, "2415": 101, "4436": 101, "892": 101, "4051": 101, "07978412": 101, "00768914": 101, "11227606": 101, "06842969": 101, "01016793": 101, "00839765": 101, "10922887": 101, "03043424": 101, "0020045": 101, "00670929": 101, "0147937": 101, "985353": 101, "02307313": 101, "05249785": 101, "00904119": 101, "6043817": 101, "03740115": 101, "00945322": 101, "79839634": 101, "07616951": 101, "08464544": 101, "15956824": 101, "03075656": 101, "44910424": 101, "27371876": 101, "04067172": 101, "x4": 101, "0335906": 101, "21845774": 101, "12173696": 101, "008018": 101, "02683716": 101, "0591748": 101, "970706": 101, "09229252": 101, "2099914": 101, "03616476": 101, "2087634": 101, "1496046": 101, "03781288": 101, "59679268": 101, "30467804": 101, "16929088": 101, "7689322": 101, "44": [101, 103], "848800180000005": 101, "85": 101, "40922044000001": 101, "82756812000001": 101, "10474512000002": 101, "33779216000002": 101, "34487328000002": 101, "42": 101, "907689680000004": 101, "25672692": 101, "37044588": 101, "40530104000001": 101, "43763868000002": 101, "659937940000006": 101, "47075640000001": 101, "16847248000002": 101, "41462864000002": 101, "43": 101, "89799534000001": 101, "52806848000002": 101, "34065100000001": 101, "286024620000006": 101, "68314192000001": 101, "858522820000005": 101, "259": 101, "55339164000003": 101, "22669164": 101, "262": 101, "37689164": 101, "57899164": 101, "267": 101, "02739164": 101, "54049164": 101, "384": 101, "20308746000006": 101, "sol": 101, "012055025682855": 101, "1752499576180142": 101, "4803888163988428e": 101, "07": 101, "9709053264087596": 101, "7384168677494174": 101, "9999999916475085": 101, "14438904470168756": 101, "c_star": 101, "12345": 101, "768932200000002": 101, "phi": 101, "bigotimes_": 101, "r_y": 101, "theta_i": 101, "angl": 101, "arcsin": 101, "init_qc": 101, "idx": 101, "mpl": 101, "style": 101, "clifford": 101, "chose": 101, "h_": 101, "pmatrix": 101, "2c_i": 101, "c_i": 101, "\u03b2": 101, "ws_mixer": 101, "ws_qaoa_m": 101, "initial_st": 101, "ws_qaoa": 101, "ws_qaoa_result": 101, "much": 101, "format_qaoa_sampl": 101, "max_len": 101, "qaoa_r": 101, "3f": 101, "1e2": 101, "1f": 101, "001110": 101, "769": 101, "011010": 101, "744": 101, "001011": 101, "671": 101, "101010": 101, "626": 101, "010110": 101, "100110": 101, "953": 101, "000111": 101, "349": 101, "110010": 101, "410": 101, "010011": 101, "013": 101, "100011": 101, "559": 101, "79": 101, "ws_result": 101, "ipykernel_14175": 101, "54": [101, 102, 103], "11_using_classical_optimization_solvers_and_model": 102, "api": 102, "cplex_result": 102, "gurobi_result": 102, "restrict": 102, "expir": 102, "2025": 102, "24": 102, "timelimit": 102, "identifi": [102, 103], "03": 102, "54982fbec": 102, "cpxparam_read_datacheck": 102, "cpxparam_thread": 102, "cpxparam_timelimit": 102, "10000000000000001": 102, "incumb": 102, "000000": 102, "sec": 102, "tick": 102, "amp": 102, "sequenti": 102, "ndisplai": 102, "051276918982979904": 102, "057468569687663": 102, "1352112491092225": 102, "13617505365527624": 102, "0776693319328813": 102, "docplex_model": 102, "dvar": 102, "stringio": 102, "tempfil": 102, "namedtemporaryfil": 102, "gp": 102, "gpy_displai": 102, "tmp_file": 102, "gurobipy_model": 102, "addvar": 102, "vtype": 102, "grb": 102, "setobject": 102, "addconstr": 102, "brows": 102, "captur": 102, "r0": 102, "docpblex": 102, "qp2": 102, "too": 102, "gmod": 102, "dmod": 102, "nconvert": 102, "ind_mod": 102, "add_ind": 102, "lc1": 102, "nativ": 102, "ncplex": 102, "optimal_solut": 102, "ipykernel_20358": 102, "12_quantum_random_access_optim": 103, "proceed": 103, "num_nod": 103, "with_label": 103, "accommod": 103, "achiev": 103, "examin": 103, "aka": 103, "xx": 103, "xy": 103, "xz": 103, "yx": 103, "zx": 103, "yy": 103, "yz": 103, "zy": 103, "zz": 103, "successfulli": 103, "desir": 103, "pdf": 103, "03167v2": 103, "semidterministic_round": 103, "move": 103, "forward": 103, "flow": 103, "adjust": 103, "unit": 103, "999999981905706": 103, "tell": 103, "belong": 103, "maxcut_partit": 103, "vqeresult": 103, "0x7ff4ccb3c190": 103, "semideterministricround": 103, "candid": 103, "assess": 103, "impact": 103, "divers": 103, "enhanc": 103, "aim": 103, "largest": 103, "tail": 103, "magic_round": 103, "99999793369987": 103, "nondeterminist": 103, "duplic": 103, "empir": 103, "56": 103, "0094": 103, "0111": 103, "0198": 103, "0209": 103, "0204": 103, "0213": 103, "0197": 103, "0208": 103, "0207": 103, "0217": 103, "benefici": 103, "especi": 103, "across": 103, "focu": 103, "sole": 103, "entri": 103, "encapsul": 103, "dir": 103, "startswith": 103, "getattr": 103, "aux_operators_evalu": 103, "010926743078980372": 103, "9999999999974761": 103, "02598343694328881": 103, "999999999997472": 103, "01044933784106082": 103, "9999999999999999": 103, "04120945001189341": 103, "02855644212815068": 103, "9999999946088998": 103, "014189027484473498": 103, "9999999946088955": 103, "algorithmresult": 103, "0x7ff4a1f3ebe0": 103, "cost_function_ev": 103, "116": 103, "499996924994738": 103, "optimal_circuit": 103, "\u03b8": 103, "q_1": 103, "optimal_paramet": 103, "parametervectorel": 103, "0471560643273947": 103, "4129824997448401": 103, "7765382357072699": 103, "9443520433144783": 103, "5720037072214055": 103, "069849316982238": 103, "9345584128886406": 103, "1995660862499935": 103, "optimal_point": 103, "04715606": 103, "4129825": 103, "77653824": 103, "94435204": 103, "57200371": 103, "06984932": 103, "93455841": 103, "19956609": 103, "optimal_valu": 103, "optimizer_ev": 103, "optimizer_result": 103, "jac": 103, "nfev": 103, "nit": 103, "njev": 103, "3176090717315674": 103, "sdr_result": 103, "qrao_results_sdr": 103, "999996924994738": 103, "mr_result": 103, "qrao_results_mr": 103, "pedagog": 103, "unexpect": 103, "bug": 103, "discov": 103, "submit": 103, "encodingcommutationverifi": 103, "discrep": 103, "str_dvar": 103, "obj_val": 103, "encoded_obj_v": 103, "isclos": 103, "quit": 103, "greatli": 103, "appreci": 103, "ipykernel_20758": 103}, "objects": {"": [[0, 0, 0, "-", "qiskit_optimization"]], "qiskit_optimization": [[15, 1, 1, "", "QiskitOptimizationError"], [16, 3, 1, "", "QuadraticProgram"], [1, 0, 0, "-", "algorithms"], [3, 0, 0, "-", "applications"], [4, 0, 0, "-", "converters"], [5, 0, 0, "-", "problems"], [6, 0, 0, "-", "translators"]], "qiskit_optimization.QiskitOptimizationError": [[15, 2, 1, "", "with_traceback"]], "qiskit_optimization.QuadraticProgram": [[16, 2, 1, "", "binary_var"], [16, 2, 1, "", "binary_var_dict"], [16, 2, 1, "", "binary_var_list"], [16, 2, 1, "", "clear"], [16, 2, 1, "", "continuous_var"], [16, 2, 1, "", "continuous_var_dict"], [16, 2, 1, "", "continuous_var_list"], [16, 2, 1, "", "export_as_lp_string"], [16, 2, 1, "", "from_ising"], [16, 2, 1, "", "get_feasibility_info"], [16, 2, 1, "", "get_linear_constraint"], [16, 2, 1, "", "get_num_binary_vars"], [16, 2, 1, "", "get_num_continuous_vars"], [16, 2, 1, "", "get_num_integer_vars"], [16, 2, 1, "", "get_num_linear_constraints"], [16, 2, 1, "", "get_num_quadratic_constraints"], [16, 2, 1, "", "get_num_vars"], [16, 2, 1, "", "get_quadratic_constraint"], [16, 2, 1, "", "get_variable"], [16, 2, 1, "", "integer_var"], [16, 2, 1, "", "integer_var_dict"], [16, 2, 1, "", "integer_var_list"], [16, 2, 1, "", "is_feasible"], [16, 2, 1, "", "linear_constraint"], [16, 4, 1, "", "linear_constraints"], [16, 4, 1, "", "linear_constraints_index"], [16, 2, 1, "", "maximize"], [16, 2, 1, "", "minimize"], [16, 4, 1, "", "name"], [16, 4, 1, "", "objective"], [16, 2, 1, "", "prettyprint"], [16, 2, 1, "", "quadratic_constraint"], [16, 4, 1, "", "quadratic_constraints"], [16, 4, 1, "", "quadratic_constraints_index"], [16, 2, 1, "", "read_from_lp_file"], [16, 2, 1, "", "remove_linear_constraint"], [16, 2, 1, "", "remove_quadratic_constraint"], [16, 4, 1, "", "status"], [16, 2, 1, "", "substitute_variables"], [16, 2, 1, "", "to_ising"], [16, 4, 1, "", "variables"], [16, 4, 1, "", "variables_index"], [16, 2, 1, "", "write_to_lp_file"]], "qiskit_optimization.algorithms": [[17, 3, 1, "", "ADMMOptimizationResult"], [18, 3, 1, "", "ADMMOptimizer"], [19, 3, 1, "", "ADMMParameters"], [20, 3, 1, "", "ADMMState"], [21, 3, 1, "", "BaseAggregator"], [22, 3, 1, "", "CobylaOptimizer"], [23, 3, 1, "", "CplexOptimizer"], [24, 3, 1, "", "GoemansWilliamsonOptimizationResult"], [25, 3, 1, "", "GoemansWilliamsonOptimizer"], [26, 3, 1, "", "GroverOptimizationResult"], [27, 3, 1, "", "GroverOptimizer"], [28, 3, 1, "", "GurobiOptimizer"], [29, 3, 1, "", "IntermediateResult"], [30, 3, 1, "", "MeanAggregator"], [31, 3, 1, "", "MinimumEigenOptimizationResult"], [32, 3, 1, "", "MinimumEigenOptimizer"], [33, 3, 1, "", "MultiStartOptimizer"], [34, 3, 1, "", "OptimizationAlgorithm"], [35, 3, 1, "", "OptimizationResult"], [36, 3, 1, "", "OptimizationResultStatus"], [37, 3, 1, "", "RecursiveMinimumEigenOptimizationResult"], [38, 3, 1, "", "RecursiveMinimumEigenOptimizer"], [39, 3, 1, "", "ScipyMilpOptimizer"], [40, 3, 1, "", "SlsqpOptimizationResult"], [41, 3, 1, "", "SlsqpOptimizer"], [42, 3, 1, "", "SolutionSample"], [43, 3, 1, "", "WarmStartQAOAFactory"], [44, 3, 1, "", "WarmStartQAOAOptimizer"], [2, 0, 0, "-", "qrao"]], "qiskit_optimization.algorithms.ADMMOptimizationResult": [[17, 4, 1, "", "fval"], [17, 2, 1, "", "get_correlations"], [17, 2, 1, "", "prettyprint"], [17, 4, 1, "", "raw_results"], [17, 4, 1, "", "samples"], [17, 4, 1, "", "state"], [17, 4, 1, "", "status"], [17, 4, 1, "", "variable_names"], [17, 4, 1, "", "variables"], [17, 4, 1, "", "variables_dict"], [17, 4, 1, "", "x"]], "qiskit_optimization.algorithms.ADMMOptimizer": [[18, 2, 1, "", "get_compatibility_msg"], [18, 2, 1, "", "is_compatible"], [18, 4, 1, "", "parameters"], [18, 2, 1, "", "solve"]], "qiskit_optimization.algorithms.BaseAggregator": [[21, 2, 1, "", "aggregate"]], "qiskit_optimization.algorithms.CobylaOptimizer": [[22, 4, 1, "", "clip"], [22, 2, 1, "", "get_compatibility_msg"], [22, 2, 1, "", "is_compatible"], [22, 2, 1, "", "multi_start_solve"], [22, 2, 1, "", "solve"], [22, 4, 1, "", "trials"]], "qiskit_optimization.algorithms.CplexOptimizer": [[23, 4, 1, "", "cplex_parameters"], [23, 4, 1, "", "disp"], [23, 2, 1, "", "get_compatibility_msg"], [23, 2, 1, "", "is_compatible"], [23, 2, 1, "", "is_cplex_installed"], [23, 2, 1, "", "solve"]], "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult": [[24, 4, 1, "", "fval"], [24, 2, 1, "", "get_correlations"], [24, 2, 1, "", "prettyprint"], [24, 4, 1, "", "raw_results"], [24, 4, 1, "", "samples"], [24, 4, 1, "", "sdp_solution"], [24, 4, 1, "", "status"], [24, 4, 1, "", "variable_names"], [24, 4, 1, "", "variables"], [24, 4, 1, "", "variables_dict"], [24, 4, 1, "", "x"]], "qiskit_optimization.algorithms.GoemansWilliamsonOptimizer": [[25, 2, 1, "", "get_compatibility_msg"], [25, 2, 1, "", "is_compatible"], [25, 2, 1, "", "max_cut_value"], [25, 2, 1, "", "solve"]], "qiskit_optimization.algorithms.GroverOptimizationResult": [[26, 4, 1, "", "fval"], [26, 2, 1, "", "get_correlations"], [26, 4, 1, "", "intermediate_fval"], [26, 4, 1, "", "n_input_qubits"], [26, 4, 1, "", "n_output_qubits"], [26, 4, 1, "", "operation_counts"], [26, 2, 1, "", "prettyprint"], [26, 4, 1, "", "raw_results"], [26, 4, 1, "", "raw_samples"], [26, 4, 1, "", "samples"], [26, 4, 1, "", "status"], [26, 4, 1, "", "threshold"], [26, 4, 1, "", "variable_names"], [26, 4, 1, "", "variables"], [26, 4, 1, "", "variables_dict"], [26, 4, 1, "", "x"]], "qiskit_optimization.algorithms.GroverOptimizer": [[27, 2, 1, "", "get_compatibility_msg"], [27, 2, 1, "", "is_compatible"], [27, 2, 1, "", "solve"]], "qiskit_optimization.algorithms.GurobiOptimizer": [[28, 4, 1, "", "disp"], [28, 2, 1, "", "get_compatibility_msg"], [28, 2, 1, "", "is_compatible"], [28, 2, 1, "", "is_gurobi_installed"], [28, 2, 1, "", "solve"]], "qiskit_optimization.algorithms.IntermediateResult": [[29, 4, 1, "", "ALL_ITERATIONS"], [29, 4, 1, "", "LAST_ITERATION"], [29, 4, 1, "", "NO_ITERATIONS"]], "qiskit_optimization.algorithms.MeanAggregator": [[30, 2, 1, "", "aggregate"]], "qiskit_optimization.algorithms.MinimumEigenOptimizationResult": [[31, 4, 1, "", "fval"], [31, 2, 1, "", "get_correlations"], [31, 4, 1, "", "min_eigen_solver_result"], [31, 2, 1, "", "prettyprint"], [31, 4, 1, "", "raw_results"], [31, 4, 1, "", "raw_samples"], [31, 4, 1, "", "samples"], [31, 4, 1, "", "status"], [31, 4, 1, "", "variable_names"], [31, 4, 1, "", "variables"], [31, 4, 1, "", "variables_dict"], [31, 4, 1, "", "x"]], "qiskit_optimization.algorithms.MinimumEigenOptimizer": [[32, 2, 1, "", "get_compatibility_msg"], [32, 2, 1, "", "is_compatible"], [32, 4, 1, "", "min_eigen_solver"], [32, 2, 1, "", "solve"]], "qiskit_optimization.algorithms.MultiStartOptimizer": [[33, 4, 1, "", "clip"], [33, 2, 1, "", "get_compatibility_msg"], [33, 2, 1, "", "is_compatible"], [33, 2, 1, "", "multi_start_solve"], [33, 2, 1, "", "solve"], [33, 4, 1, "", "trials"]], "qiskit_optimization.algorithms.OptimizationAlgorithm": [[34, 2, 1, "", "get_compatibility_msg"], [34, 2, 1, "", "is_compatible"], [34, 2, 1, "", "solve"]], "qiskit_optimization.algorithms.OptimizationResult": [[35, 4, 1, "", "fval"], [35, 2, 1, "", "get_correlations"], [35, 2, 1, "", "prettyprint"], [35, 4, 1, "", "raw_results"], [35, 4, 1, "", "samples"], [35, 4, 1, "", "status"], [35, 4, 1, "", "variable_names"], [35, 4, 1, "", "variables"], [35, 4, 1, "", "variables_dict"], [35, 4, 1, "", "x"]], "qiskit_optimization.algorithms.OptimizationResultStatus": [[36, 4, 1, "", "FAILURE"], [36, 4, 1, "", "INFEASIBLE"], [36, 4, 1, "", "SUCCESS"]], "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult": [[37, 4, 1, "", "fval"], [37, 2, 1, "", "get_correlations"], [37, 4, 1, "", "history"], [37, 2, 1, "", "prettyprint"], [37, 4, 1, "", "raw_results"], [37, 4, 1, "", "replacements"], [37, 4, 1, "", "samples"], [37, 4, 1, "", "status"], [37, 4, 1, "", "variable_names"], [37, 4, 1, "", "variables"], [37, 4, 1, "", "variables_dict"], [37, 4, 1, "", "x"]], "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizer": [[38, 2, 1, "", "get_compatibility_msg"], [38, 2, 1, "", "is_compatible"], [38, 2, 1, "", "solve"]], "qiskit_optimization.algorithms.ScipyMilpOptimizer": [[39, 4, 1, "", "disp"], [39, 2, 1, "", "get_compatibility_msg"], [39, 2, 1, "", "is_compatible"], [39, 2, 1, "", "solve"]], "qiskit_optimization.algorithms.SlsqpOptimizationResult": [[40, 4, 1, "", "fval"], [40, 4, 1, "", "fx"], [40, 2, 1, "", "get_correlations"], [40, 4, 1, "", "imode"], [40, 4, 1, "", "its"], [40, 2, 1, "", "prettyprint"], [40, 4, 1, "", "raw_results"], [40, 4, 1, "", "samples"], [40, 4, 1, "", "smode"], [40, 4, 1, "", "status"], [40, 4, 1, "", "variable_names"], [40, 4, 1, "", "variables"], [40, 4, 1, "", "variables_dict"], [40, 4, 1, "", "x"]], "qiskit_optimization.algorithms.SlsqpOptimizer": [[41, 4, 1, "", "clip"], [41, 2, 1, "", "get_compatibility_msg"], [41, 2, 1, "", "is_compatible"], [41, 2, 1, "", "multi_start_solve"], [41, 2, 1, "", "solve"], [41, 4, 1, "", "trials"]], "qiskit_optimization.algorithms.SolutionSample": [[42, 4, 1, "", "fval"], [42, 4, 1, "", "probability"], [42, 4, 1, "", "status"], [42, 4, 1, "", "x"]], "qiskit_optimization.algorithms.WarmStartQAOAFactory": [[43, 2, 1, "", "create_initial_state"], [43, 2, 1, "", "create_initial_variables"], [43, 2, 1, "", "create_mixer"]], "qiskit_optimization.algorithms.WarmStartQAOAOptimizer": [[44, 2, 1, "", "get_compatibility_msg"], [44, 2, 1, "", "is_compatible"], [44, 4, 1, "", "min_eigen_solver"], [44, 2, 1, "", "solve"]], "qiskit_optimization.algorithms.qrao": [[45, 3, 1, "", "EncodingCommutationVerifier"], [46, 3, 1, "", "MagicRounding"], [47, 3, 1, "", "QuantumRandomAccessEncoding"], [48, 3, 1, "", "QuantumRandomAccessOptimizationResult"], [49, 3, 1, "", "QuantumRandomAccessOptimizer"], [50, 3, 1, "", "RoundingContext"], [51, 3, 1, "", "RoundingResult"], [52, 3, 1, "", "RoundingScheme"], [53, 3, 1, "", "SemideterministicRounding"]], "qiskit_optimization.algorithms.qrao.MagicRounding": [[46, 4, 1, "", "basis_sampling"], [46, 2, 1, "", "round"], [46, 4, 1, "", "sampler"]], "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding": [[47, 4, 1, "", "compression_ratio"], [47, 2, 1, "", "encode"], [47, 2, 1, "", "freeze"], [47, 4, 1, "", "frozen"], [47, 4, 1, "", "max_vars_per_qubit"], [47, 4, 1, "", "minimum_recovery_probability"], [47, 4, 1, "", "num_qubits"], [47, 4, 1, "", "num_vars"], [47, 4, 1, "", "offset"], [47, 4, 1, "", "problem"], [47, 4, 1, "", "q2vars"], [47, 4, 1, "", "qubit_op"], [47, 2, 1, "", "state_preparation_circuit"], [47, 4, 1, "", "var2op"]], "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult": [[48, 4, 1, "", "encoding"], [48, 4, 1, "", "fval"], [48, 2, 1, "", "get_correlations"], [48, 2, 1, "", "prettyprint"], [48, 4, 1, "", "raw_results"], [48, 4, 1, "", "relaxed_fval"], [48, 4, 1, "", "relaxed_result"], [48, 4, 1, "", "rounding_result"], [48, 4, 1, "", "samples"], [48, 4, 1, "", "status"], [48, 4, 1, "", "variable_names"], [48, 4, 1, "", "variables"], [48, 4, 1, "", "variables_dict"], [48, 4, 1, "", "x"]], "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer": [[49, 2, 1, "", "get_compatibility_msg"], [49, 2, 1, "", "is_compatible"], [49, 4, 1, "", "max_vars_per_qubit"], [49, 4, 1, "", "min_eigen_solver"], [49, 2, 1, "", "process_result"], [49, 4, 1, "", "rounding_scheme"], [49, 2, 1, "", "solve"], [49, 2, 1, "", "solve_relaxed"]], "qiskit_optimization.algorithms.qrao.RoundingContext": [[50, 4, 1, "", "circuit"], [50, 4, 1, "", "encoding"], [50, 4, 1, "", "expectation_values"]], "qiskit_optimization.algorithms.qrao.RoundingResult": [[51, 4, 1, "", "bases"], [51, 4, 1, "", "basis_counts"], [51, 4, 1, "", "basis_shots"], [51, 4, 1, "", "expectation_values"], [51, 4, 1, "", "samples"]], "qiskit_optimization.algorithms.qrao.RoundingScheme": [[52, 2, 1, "", "round"]], "qiskit_optimization.algorithms.qrao.SemideterministicRounding": [[53, 2, 1, "", "round"]], "qiskit_optimization.applications": [[54, 3, 1, "", "BinPacking"], [55, 3, 1, "", "Clique"], [56, 3, 1, "", "ExactCover"], [57, 3, 1, "", "GraphOptimizationApplication"], [58, 3, 1, "", "GraphPartition"], [59, 3, 1, "", "Knapsack"], [60, 3, 1, "", "Maxcut"], [61, 3, 1, "", "NumberPartition"], [62, 3, 1, "", "OptimizationApplication"], [63, 3, 1, "", "SKModel"], [64, 3, 1, "", "SetPacking"], [65, 3, 1, "", "StableSet"], [66, 3, 1, "", "Tsp"], [67, 3, 1, "", "VehicleRouting"], [68, 3, 1, "", "VertexCover"]], "qiskit_optimization.applications.BinPacking": [[54, 2, 1, "", "get_figure"], [54, 2, 1, "", "interpret"], [54, 2, 1, "", "sample_most_likely"], [54, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.Clique": [[55, 2, 1, "", "draw"], [55, 4, 1, "", "graph"], [55, 2, 1, "", "interpret"], [55, 2, 1, "", "sample_most_likely"], [55, 4, 1, "", "size"], [55, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.ExactCover": [[56, 2, 1, "", "interpret"], [56, 2, 1, "", "sample_most_likely"], [56, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.GraphOptimizationApplication": [[57, 2, 1, "", "draw"], [57, 4, 1, "", "graph"], [57, 2, 1, "", "interpret"], [57, 2, 1, "", "sample_most_likely"], [57, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.GraphPartition": [[58, 2, 1, "", "draw"], [58, 4, 1, "", "graph"], [58, 2, 1, "", "interpret"], [58, 2, 1, "", "sample_most_likely"], [58, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.Knapsack": [[59, 2, 1, "", "interpret"], [59, 4, 1, "", "max_weight"], [59, 2, 1, "", "sample_most_likely"], [59, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.Maxcut": [[60, 2, 1, "", "draw"], [60, 2, 1, "", "get_gset_result"], [60, 4, 1, "", "graph"], [60, 2, 1, "", "interpret"], [60, 2, 1, "", "parse_gset_format"], [60, 2, 1, "", "sample_most_likely"], [60, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.NumberPartition": [[61, 2, 1, "", "interpret"], [61, 2, 1, "", "sample_most_likely"], [61, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.OptimizationApplication": [[62, 2, 1, "", "interpret"], [62, 2, 1, "", "sample_most_likely"], [62, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.SKModel": [[63, 2, 1, "", "disorder"], [63, 4, 1, "", "graph"], [63, 2, 1, "", "interpret"], [63, 4, 1, "", "num_sites"], [63, 2, 1, "", "sample_most_likely"], [63, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.SetPacking": [[64, 2, 1, "", "interpret"], [64, 2, 1, "", "sample_most_likely"], [64, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.StableSet": [[65, 2, 1, "", "draw"], [65, 4, 1, "", "graph"], [65, 2, 1, "", "interpret"], [65, 2, 1, "", "sample_most_likely"], [65, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.Tsp": [[66, 2, 1, "", "create_random_instance"], [66, 2, 1, "", "draw"], [66, 4, 1, "", "graph"], [66, 2, 1, "", "interpret"], [66, 2, 1, "", "parse_tsplib_format"], [66, 2, 1, "", "sample_most_likely"], [66, 2, 1, "", "to_quadratic_program"], [66, 2, 1, "", "tsp_value"]], "qiskit_optimization.applications.VehicleRouting": [[67, 2, 1, "", "create_random_instance"], [67, 4, 1, "", "depot"], [67, 2, 1, "", "draw"], [67, 4, 1, "", "graph"], [67, 2, 1, "", "interpret"], [67, 4, 1, "", "num_vehicles"], [67, 2, 1, "", "sample_most_likely"], [67, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.VertexCover": [[68, 2, 1, "", "draw"], [68, 4, 1, "", "graph"], [68, 2, 1, "", "interpret"], [68, 2, 1, "", "sample_most_likely"], [68, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.converters": [[69, 3, 1, "", "InequalityToEquality"], [70, 3, 1, "", "IntegerToBinary"], [71, 3, 1, "", "LinearEqualityToPenalty"], [72, 3, 1, "", "LinearInequalityToPenalty"], [73, 3, 1, "", "MaximizeToMinimize"], [74, 3, 1, "", "MinimizeToMaximize"], [75, 3, 1, "", "QuadraticProgramConverter"], [76, 3, 1, "", "QuadraticProgramToQubo"]], "qiskit_optimization.converters.InequalityToEquality": [[69, 2, 1, "", "convert"], [69, 2, 1, "", "interpret"], [69, 4, 1, "", "mode"]], "qiskit_optimization.converters.IntegerToBinary": [[70, 2, 1, "", "convert"], [70, 2, 1, "", "interpret"]], "qiskit_optimization.converters.LinearEqualityToPenalty": [[71, 2, 1, "", "convert"], [71, 2, 1, "", "interpret"], [71, 4, 1, "", "penalty"]], "qiskit_optimization.converters.LinearInequalityToPenalty": [[72, 2, 1, "", "convert"], [72, 2, 1, "", "interpret"], [72, 4, 1, "", "penalty"]], "qiskit_optimization.converters.MaximizeToMinimize": [[73, 2, 1, "", "convert"], [73, 2, 1, "", "interpret"]], "qiskit_optimization.converters.MinimizeToMaximize": [[74, 2, 1, "", "convert"], [74, 2, 1, "", "interpret"]], "qiskit_optimization.converters.QuadraticProgramConverter": [[75, 2, 1, "", "convert"], [75, 2, 1, "", "interpret"]], "qiskit_optimization.converters.QuadraticProgramToQubo": [[76, 2, 1, "", "convert"], [76, 2, 1, "", "get_compatibility_msg"], [76, 2, 1, "", "interpret"], [76, 2, 1, "", "is_compatible"], [76, 4, 1, "", "penalty"]], "qiskit_optimization.infinity": [[77, 5, 1, "", "INFINITY"]], "qiskit_optimization.problems": [[78, 3, 1, "", "Constraint"], [79, 3, 1, "", "LinearConstraint"], [80, 3, 1, "", "LinearExpression"], [81, 3, 1, "", "QuadraticConstraint"], [82, 3, 1, "", "QuadraticExpression"], [83, 3, 1, "", "QuadraticObjective"], [84, 3, 1, "", "QuadraticProgramElement"], [85, 3, 1, "", "Variable"]], "qiskit_optimization.problems.Constraint": [[78, 2, 1, "", "evaluate"], [78, 4, 1, "", "name"], [78, 4, 1, "", "quadratic_program"], [78, 4, 1, "", "rhs"], [78, 4, 1, "", "sense"]], "qiskit_optimization.problems.LinearConstraint": [[79, 2, 1, "", "evaluate"], [79, 4, 1, "", "linear"], [79, 4, 1, "", "name"], [79, 4, 1, "", "quadratic_program"], [79, 4, 1, "", "rhs"], [79, 4, 1, "", "sense"]], "qiskit_optimization.problems.LinearExpression": [[80, 4, 1, "", "bounds"], [80, 4, 1, "", "coefficients"], [80, 2, 1, "", "evaluate"], [80, 2, 1, "", "evaluate_gradient"], [80, 4, 1, "", "quadratic_program"], [80, 2, 1, "", "to_array"], [80, 2, 1, "", "to_dict"]], "qiskit_optimization.problems.QuadraticConstraint": [[81, 2, 1, "", "evaluate"], [81, 4, 1, "", "linear"], [81, 4, 1, "", "name"], [81, 4, 1, "", "quadratic"], [81, 4, 1, "", "quadratic_program"], [81, 4, 1, "", "rhs"], [81, 4, 1, "", "sense"]], "qiskit_optimization.problems.QuadraticExpression": [[82, 4, 1, "", "bounds"], [82, 4, 1, "", "coefficients"], [82, 2, 1, "", "evaluate"], [82, 2, 1, "", "evaluate_gradient"], [82, 4, 1, "", "quadratic_program"], [82, 2, 1, "", "to_array"], [82, 2, 1, "", "to_dict"]], "qiskit_optimization.problems.QuadraticObjective": [[83, 4, 1, "", "constant"], [83, 2, 1, "", "evaluate"], [83, 2, 1, "", "evaluate_gradient"], [83, 4, 1, "", "linear"], [83, 4, 1, "", "quadratic"], [83, 4, 1, "", "quadratic_program"], [83, 4, 1, "", "sense"]], "qiskit_optimization.problems.QuadraticProgramElement": [[84, 4, 1, "", "quadratic_program"]], "qiskit_optimization.problems.Variable": [[85, 2, 1, "", "as_tuple"], [85, 4, 1, "", "lowerbound"], [85, 4, 1, "", "name"], [85, 4, 1, "", "quadratic_program"], [85, 4, 1, "", "upperbound"], [85, 4, 1, "", "vartype"]], "qiskit_optimization.translators": [[86, 6, 1, "", "from_docplex_mp"], [87, 6, 1, "", "from_gurobipy"], [88, 6, 1, "", "from_ising"], [89, 6, 1, "", "to_docplex_mp"], [90, 6, 1, "", "to_gurobipy"], [91, 6, 1, "", "to_ising"]]}, "objtypes": {"0": "py:module", "1": "py:exception", "2": "py:method", "3": "py:class", "4": "py:attribute", "5": "py:data", "6": "py:function"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "exception", "Python exception"], "2": ["py", "method", "Python method"], "3": ["py", "class", "Python class"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "data", "Python data"], "6": ["py", "function", "Python function"]}, "titleterms": {"qiskit": [0, 7, 10, 11, 12, 13, 102], "optim": [0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104], "api": 0, "refer": [0, 8, 94, 95, 96, 98, 99, 101], "modul": 0, "qiskit_optim": [0, 1, 2, 3, 4, 5, 6], "submodul": [0, 1], "algorithm": [1, 2, 96], "base": [1, 3, 4], "class": [1, 3, 4, 97, 100], "result": [1, 96, 103], "quantum": [2, 8, 96, 97, 98, 99, 101, 103], "random": [2, 8, 103], "access": [2, 8, 103], "qrao": 2, "encod": [2, 8, 103], "round": [2, 8, 103], "scheme": [2, 8], "applic": [3, 97, 100], "convert": [4, 93, 94], "problem": [5, 8, 95, 97, 100, 103], "quadrat": [5, 6, 92, 93], "program": [5, 6, 92, 93], "translat": [6, 102], "explan": 7, "background": 8, "relax": [8, 101, 103], "code": 8, "A": 8, "simpl": 8, "via": 8, "qrac": 8, "1": [8, 98], "2": [8, 14, 98], "p": 8, "3": [8, 14, 96, 98], "recov": 8, "bit": 8, "hamiltonian": [8, 97, 98, 100, 103], "commut": 8, "semi": 8, "determinist": 8, "magic": 8, "state": 8, "get": 9, "start": [9, 101], "instal": 9, "option": 9, "readi": 9, "go": 9, "overview": [10, 11, 12], "next": 10, "step": [10, 98, 103], "v0": [11, 12], "5": [11, 14, 98], "migrat": [11, 12, 13], "guid": [11, 12, 13], "minimumeigenoptim": [11, 12, 32, 94], "numpyminimumeigensolv": [11, 12, 103], "qaoa": [11, 12, 101], "vqe": 11, "former": 11, "samplingvq": [11, 12, 99], "new": [11, 14], "warmstartqaoaoptim": [11, 12, 44], "groveroptim": [11, 12, 27, 95], "6": [12, 14], "releas": 14, "note": 14, "0": 14, "prelud": 14, "featur": 14, "upgrad": 14, "bug": 14, "fix": 14, "4": [14, 98], "other": 14, "deprec": 14, "qiskitoptimizationerror": 15, "quadraticprogram": [16, 92, 102], "admmoptimizationresult": 17, "admmoptim": 18, "admmparamet": 19, "admmstat": 20, "baseaggreg": 21, "cobylaoptim": 22, "cplexoptim": 23, "goemanswilliamsonoptimizationresult": 24, "goemanswilliamsonoptim": 25, "groveroptimizationresult": 26, "gurobioptim": 28, "intermediateresult": 29, "meanaggreg": 30, "minimumeigenoptimizationresult": 31, "multistartoptim": 33, "optimizationalgorithm": 34, "optimizationresult": 35, "optimizationresultstatu": 36, "recursiveminimumeigenoptimizationresult": 37, "recursiveminimumeigenoptim": [38, 94], "scipymilpoptim": 39, "slsqpoptimizationresult": 40, "slsqpoptim": 41, "solutionsampl": 42, "warmstartqaoafactori": 43, "encodingcommutationverifi": 45, "magicround": [46, 103], "quantumrandomaccessencod": 47, "quantumrandomaccessoptimizationresult": 48, "quantumrandomaccessoptim": [49, 103], "roundingcontext": 50, "roundingresult": 51, "roundingschem": 52, "semideterministicround": 53, "binpack": 54, "cliqu": 55, "exactcov": 56, "graphoptimizationappl": 57, "graphpartit": 58, "knapsack": [59, 100], "maxcut": 60, "numberpartit": 61, "optimizationappl": 62, "skmodel": 63, "setpack": 64, "stableset": 65, "tsp": 66, "vehiclerout": 67, "vertexcov": 68, "inequalitytoequ": [69, 93], "integertobinari": [70, 93], "linearequalitytopenalti": [71, 93], "linearinequalitytopenalti": 72, "maximizetominim": 73, "minimizetomaxim": 74, "quadraticprogramconvert": 75, "quadraticprogramtoqubo": 76, "infin": 77, "constraint": [78, 92, 102], "linearconstraint": 79, "linearexpress": 80, "quadraticconstraint": 81, "quadraticexpress": 82, "quadraticobject": 83, "quadraticprogramel": 84, "variabl": [85, 92], "from_docplex_mp": 86, "from_gurobipi": 87, "from_is": 88, "to_docplex_mp": 89, "to_gurobipi": 90, "to_is": 91, "introduct": [92, 94, 95, 96, 97, 98, 99, 100, 101], "load": 92, "from": [92, 98], "an": 92, "lp": 92, "file": 92, "docplex": [92, 102], "model": [92, 98, 102], "directli": 92, "construct": [92, 98], "ad": 92, "remov": 92, "linear": 92, "substitut": 92, "minimum": [94, 95, 99], "eigen": [94, 99], "qubo": [94, 95, 101], "sparsepauliop": 94, "solv": [94, 103], "analysi": [94, 101], "sampl": 94, "grover": 95, "adapt": 95, "search": 95, "find": 95, "us": [95, 98, 99, 102, 103], "check": [95, 97, 100], "correct": [95, 103], "valu": 95, "admm": 96, "initi": [96, 98], "exampl": 96, "classic": [96, 98, 102], "solut": [96, 98, 103], "paramet": 96, "call": 96, "h": 96, "solver": [96, 102], "max": 97, "cut": 97, "travel": 97, "salesman": 97, "weight": 97, "approxim": 97, "univers": 97, "comput": 97, "brute": 97, "forc": 97, "approach": 97, "map": 97, "Ising": [97, 98], "full": 97, "give": 97, "right": 97, "cost": 97, "run": 97, "vehicl": 98, "rout": 98, "The": 98, "qp": 98, "formul": 98, "ibm": 98, "ilog": 98, "cplex": 98, "ground": 98, "up": [98, 103], "improv": 99, "variat": 99, "cvar": 99, "portfolio": 99, "vertex": 100, "cover": 100, "how": [100, 103], "warm": 101, "preliminari": 101, "standard": 101, "cplexsolv": 102, "gurobisolv": 102, "between": 102, "gurobipi": 102, "indic": 102, "set": 103, "combinatori": 103, "interpret": 103, "inspect": 103, "subroutin": 103, "exact": 103, "altern": 103, "two": 103, "explicit": 103, "manual": 103, "perform": 103, "appendix": 103, "verifi": 103, "your": 103, "tutori": 104}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "nbsphinx": 4, "sphinx.ext.intersphinx": 1, "sphinx": 58}, "alltitles": {"Qiskit Optimization API Reference": [[0, "qiskit-optimization-api-reference"]], "Qiskit optimization module (qiskit_optimization)": [[0, "qiskit-optimization-module-qiskit-optimization"]], "Submodules": [[0, "submodules"], [1, "submodules"]], "Optimization algorithms (qiskit_optimization.algorithms)": [[1, "optimization-algorithms-qiskit-optimization-algorithms"]], "Base classes for algorithms and results": [[1, "base-classes-for-algorithms-and-results"]], "Algorithms and results": [[1, "algorithms-and-results"]], "Quantum Random Access Optimization (qiskit_optimization.algorithms.qrao)": [[2, "quantum-random-access-optimization-qiskit-optimization-algorithms-qrao"]], "Quantum Random Access Encoding and Optimization": [[2, "quantum-random-access-encoding-and-optimization"]], "Rounding schemes": [[2, "rounding-schemes"]], "Optimization applications (qiskit_optimization.applications)": [[3, "optimization-applications-qiskit-optimization-applications"]], "Base classes for applications": [[3, "base-classes-for-applications"]], "Applications": [[3, "applications"]], "Optimization converters (qiskit_optimization.converters)": [[4, "optimization-converters-qiskit-optimization-converters"]], "Base class for converters": [[4, "base-class-for-converters"]], "Converters": [[4, "converters"]], "Optimization problems (qiskit_optimization.problems)": [[5, "optimization-problems-qiskit-optimization-problems"]], "Quadratic program": [[5, "quadratic-program"]], "Quadratic program translators (qiskit_optimization.translators)": [[6, "quadratic-program-translators-qiskit-optimization-translators"]], "Translators": [[6, "translators"]], "Qiskit Optimization Explanations": [[7, "qiskit-optimization-explanations"]], "Explanations\u2026": [[7, "explanations"]], "Background on Quantum Random Access Optimization: Quantum relaxations, quantum random access codes, rounding schemes": [[8, "background-on-quantum-random-access-optimization-quantum-relaxations-quantum-random-access-codes-rounding-schemes"]], "Relaxations": [[8, "relaxations"]], "Quantum Relaxation": [[8, "quantum-relaxation"]], "A Simple Quantum Relaxation": [[8, "a-simple-quantum-relaxation"]], "Quantum Relaxations via Quantum Random Access Codes (QRACs)": [[8, "quantum-relaxations-via-quantum-random-access-codes-qracs"]], "(1,1,1), (2,1,p), and (3,1,p) Quantum Random Access Codes": [[8, "p-and-3-1-p-quantum-random-access-codes"]], "Recovering Encoded Bits": [[8, "recovering-encoded-bits"]], "Encoded Problem Hamiltonians": [[8, "encoded-problem-hamiltonians"]], "Commutation of Quantum Relaxation": [[8, "commutation-of-quantum-relaxation"]], "Quantum Rounding Schemes": [[8, "quantum-rounding-schemes"]], "Semi-deterministic Rounding": [[8, "semi-deterministic-rounding"]], "Magic State Rounding": [[8, "magic-state-rounding"]], "References": [[8, "references"], [94, "References"], [95, "References"], [96, "References"], [98, "References"], [99, "References"], [101, "References"]], "Getting started": [[9, "getting-started"]], "Installation": [[9, "installation"]], "Optional installs": [[9, "optional-installs"]], "Ready to get going?\u2026": [[9, "ready-to-get-going"]], "Qiskit Optimization overview": [[10, "qiskit-optimization-overview"]], "Overview": [[10, "overview"], [11, "overview"], [12, "overview"]], "Next Steps": [[10, "next-steps"]], "Qiskit Optimization v0.5 Migration Guide": [[11, "qiskit-optimization-v0-5-migration-guide"]], "MinimumEigenOptimizer": [[11, "minimumeigenoptimizer"], [12, "minimumeigenoptimizer"], [32, "minimumeigenoptimizer"]], "NumPyMinimumEigensolver": [[11, "numpyminimumeigensolver"], [12, "numpyminimumeigensolver"]], "QAOA": [[11, "qaoa"], [12, "qaoa"], [101, "QAOA"]], "VQE (former) \u2192 SamplingVQE (new)": [[11, "vqe-former-samplingvqe-new"]], "WarmStartQAOAOptimizer": [[11, "warmstartqaoaoptimizer"], [12, "warmstartqaoaoptimizer"], [44, "warmstartqaoaoptimizer"]], "GroverOptimizer": [[11, "groveroptimizer"], [12, "groveroptimizer"], [27, "groveroptimizer"]], "Qiskit Optimization v0.6 Migration Guide": [[12, "qiskit-optimization-v0-6-migration-guide"]], "SamplingVQE": [[12, "samplingvqe"]], "Qiskit Optimization Migration Guide": [[13, "qiskit-optimization-migration-guide"]], "Release Notes": [[14, "release-notes"]], "0.6.0": [[14, "release-notes-0-6-0"]], "Prelude": [[14, "prelude"], [14, "release-notes-0-5-0-prelude"]], "New Features": [[14, "new-features"], [14, "release-notes-0-5-0-new-features"], [14, "release-notes-0-4-0-new-features"], [14, "release-notes-0-3-0-new-features"], [14, "release-notes-0-2-0-new-features"]], "Upgrade Notes": [[14, "upgrade-notes"], [14, "release-notes-0-5-0-upgrade-notes"], [14, "release-notes-0-4-0-upgrade-notes"], [14, "release-notes-0-3-0-upgrade-notes"], [14, "release-notes-0-2-0-upgrade-notes"]], "Bug Fixes": [[14, "bug-fixes"], [14, "release-notes-0-5-0-bug-fixes"], [14, "release-notes-0-4-0-bug-fixes"], [14, "release-notes-0-3-0-bug-fixes"], [14, "release-notes-0-2-0-bug-fixes"]], "0.5.0": [[14, "release-notes-0-5-0"]], "0.4.0": [[14, "release-notes-0-4-0"]], "Other Notes": [[14, "other-notes"]], "0.3.0": [[14, "release-notes-0-3-0"]], "Deprecation Notes": [[14, "deprecation-notes"], [14, "release-notes-0-2-0-deprecation-notes"]], "0.2.0": [[14, "release-notes-0-2-0"]], "QiskitOptimizationError": [[15, "qiskitoptimizationerror"]], "QuadraticProgram": [[16, "quadraticprogram"]], "ADMMOptimizationResult": [[17, "admmoptimizationresult"]], "ADMMOptimizer": [[18, "admmoptimizer"]], "ADMMParameters": [[19, "admmparameters"]], "ADMMState": [[20, "admmstate"]], "BaseAggregator": [[21, "baseaggregator"]], "CobylaOptimizer": [[22, "cobylaoptimizer"]], "CplexOptimizer": [[23, "cplexoptimizer"]], "GoemansWilliamsonOptimizationResult": [[24, "goemanswilliamsonoptimizationresult"]], "GoemansWilliamsonOptimizer": [[25, "goemanswilliamsonoptimizer"]], "GroverOptimizationResult": [[26, "groveroptimizationresult"]], "GurobiOptimizer": [[28, "gurobioptimizer"]], "IntermediateResult": [[29, "intermediateresult"]], "MeanAggregator": [[30, "meanaggregator"]], "MinimumEigenOptimizationResult": [[31, "minimumeigenoptimizationresult"]], "MultiStartOptimizer": [[33, "multistartoptimizer"]], "OptimizationAlgorithm": [[34, "optimizationalgorithm"]], "OptimizationResult": [[35, "optimizationresult"]], "OptimizationResultStatus": [[36, "optimizationresultstatus"]], "RecursiveMinimumEigenOptimizationResult": [[37, "recursiveminimumeigenoptimizationresult"]], "RecursiveMinimumEigenOptimizer": [[38, "recursiveminimumeigenoptimizer"], [94, "RecursiveMinimumEigenOptimizer"]], "ScipyMilpOptimizer": [[39, "scipymilpoptimizer"]], "SlsqpOptimizationResult": [[40, "slsqpoptimizationresult"]], "SlsqpOptimizer": [[41, "slsqpoptimizer"]], "SolutionSample": [[42, "solutionsample"]], "WarmStartQAOAFactory": [[43, "warmstartqaoafactory"]], "EncodingCommutationVerifier": [[45, "encodingcommutationverifier"]], "MagicRounding": [[46, "magicrounding"]], "QuantumRandomAccessEncoding": [[47, "quantumrandomaccessencoding"]], "QuantumRandomAccessOptimizationResult": [[48, "quantumrandomaccessoptimizationresult"]], "QuantumRandomAccessOptimizer": [[49, "quantumrandomaccessoptimizer"]], "RoundingContext": [[50, "roundingcontext"]], "RoundingResult": [[51, "roundingresult"]], "RoundingScheme": [[52, "roundingscheme"]], "SemideterministicRounding": [[53, "semideterministicrounding"]], "BinPacking": [[54, "binpacking"]], "Clique": [[55, "clique"]], "ExactCover": [[56, "exactcover"]], "GraphOptimizationApplication": [[57, "graphoptimizationapplication"]], "GraphPartition": [[58, "graphpartition"]], "Knapsack": [[59, "knapsack"]], "Maxcut": [[60, "maxcut"]], "NumberPartition": [[61, "numberpartition"]], "OptimizationApplication": [[62, "optimizationapplication"]], "SKModel": [[63, "skmodel"]], "SetPacking": [[64, "setpacking"]], "StableSet": [[65, "stableset"]], "Tsp": [[66, "tsp"]], "VehicleRouting": [[67, "vehiclerouting"]], "VertexCover": [[68, "vertexcover"]], "InequalityToEquality": [[69, "inequalitytoequality"], [93, "InequalityToEquality"]], "IntegerToBinary": [[70, "integertobinary"], [93, "IntegerToBinary"]], "LinearEqualityToPenalty": [[71, "linearequalitytopenalty"], [93, "LinearEqualityToPenalty"]], "LinearInequalityToPenalty": [[72, "linearinequalitytopenalty"]], "MaximizeToMinimize": [[73, "maximizetominimize"]], "MinimizeToMaximize": [[74, "minimizetomaximize"]], "QuadraticProgramConverter": [[75, "quadraticprogramconverter"]], "QuadraticProgramToQubo": [[76, "quadraticprogramtoqubo"]], "INFINITY": [[77, "infinity"]], "Constraint": [[78, "constraint"]], "LinearConstraint": [[79, "linearconstraint"]], "LinearExpression": [[80, "linearexpression"]], "QuadraticConstraint": [[81, "quadraticconstraint"]], "QuadraticExpression": [[82, "quadraticexpression"]], "QuadraticObjective": [[83, "quadraticobjective"]], "QuadraticProgramElement": [[84, "quadraticprogramelement"]], "Variable": [[85, "variable"]], "from_docplex_mp": [[86, "from-docplex-mp"]], "from_gurobipy": [[87, "from-gurobipy"]], "from_ising": [[88, "from-ising"]], "to_docplex_mp": [[89, "to-docplex-mp"]], "to_gurobipy": [[90, "to-gurobipy"]], "to_ising": [[91, "to-ising"]], "Quadratic Programs": [[92, "Quadratic-Programs"]], "Introduction": [[92, "Introduction"], [94, "Introduction"], [95, "Introduction"], [96, "Introduction"], [97, "Introduction"], [99, "Introduction"], [100, "Introduction"], [101, "Introduction"]], "Loading a QuadraticProgram from an LP file": [[92, "Loading-a-QuadraticProgram-from-an-LP-file"]], "Loading a QuadraticProgram from a docplex model": [[92, "Loading-a-QuadraticProgram-from-a-docplex-model"]], "Directly constructing a QuadraticProgram": [[92, "Directly-constructing-a-QuadraticProgram"]], "Adding/removing linear and quadratic constraints": [[92, "Adding/removing-linear-and-quadratic-constraints"]], "Substituting Variables": [[92, "Substituting-Variables"]], "Converters for Quadratic Programs": [[93, "Converters-for-Quadratic-Programs"]], "Minimum Eigen Optimizer": [[94, "Minimum-Eigen-Optimizer"]], "Converting a QUBO to a SparsePauliOp": [[94, "Converting-a-QUBO-to-a-SparsePauliOp"]], "Solving a QUBO with the MinimumEigenOptimizer": [[94, "Solving-a-QUBO-with-the-MinimumEigenOptimizer"]], "Analysis of Samples": [[94, "Analysis-of-Samples"]], "Grover Optimizer": [[95, "Grover-Optimizer"]], "Grover Adaptive Search": [[95, "Grover-Adaptive-Search"]], "Find the Minimum of a QUBO Problem using GroverOptimizer": [[95, "Find-the-Minimum-of-a-QUBO-Problem-using-GroverOptimizer"]], "Check that GroverOptimizer finds the correct value": [[95, "Check-that-GroverOptimizer-finds-the-correct-value"]], "ADMM Optimizer": [[96, "ADMM-Optimizer"]], "Initialization": [[96, "Initialization"], [98, "Initialization"]], "Example": [[96, "Example"]], "Classical Solution": [[96, "Classical-Solution"]], "Parameters": [[96, "Parameters"]], "Calling 3-ADMM-H algorithm": [[96, "Calling-3-ADMM-H-algorithm"]], "Classical Solver Result": [[96, "Classical-Solver-Result"]], "Quantum Solution": [[96, "Quantum-Solution"]], "Quantum Solver Results": [[96, "Quantum-Solver-Results"]], "Max-Cut and Traveling Salesman Problem": [[97, "Max-Cut-and-Traveling-Salesman-Problem"]], "Weighted Max-Cut": [[97, "Weighted-Max-Cut"]], "Approximate Universal Quantum Computing for Optimization Problems": [[97, "Approximate-Universal-Quantum-Computing-for-Optimization-Problems"]], "Application classes": [[97, "Application-classes"]], "Max-Cut problem": [[97, "Max-Cut-problem"]], "Brute force approach": [[97, "Brute-force-approach"], [97, "id2"]], "Mapping to the Ising problem": [[97, "Mapping-to-the-Ising-problem"], [97, "id3"]], "Checking that the full Hamiltonian gives the right cost": [[97, "Checking-that-the-full-Hamiltonian-gives-the-right-cost"], [97, "id4"]], "Running it on quantum computer": [[97, "Running-it-on-quantum-computer"], [97, "id5"]], "Traveling Salesman Problem": [[97, "Traveling-Salesman-Problem"]], "Vehicle Routing": [[98, "Vehicle-Routing"]], "The Introduction": [[98, "The-Introduction"]], "The Model": [[98, "The-Model"]], "Classical solution": [[98, "Classical-solution"]], "Quantum solution": [[98, "Quantum-solution"]], "Construct the Ising Hamiltonian": [[98, "Construct-the-Ising-Hamiltonian"]], "From Hamiltonian to QP formulation": [[98, "From-Hamiltonian-to-QP-formulation"]], "Classical solution using IBM ILOG CPLEX": [[98, "Classical-solution-using-IBM-ILOG-CPLEX"]], "Quantum solution from the ground up": [[98, "Quantum-solution-from-the-ground-up"]], "Step 1": [[98, "Step-1"]], "Step 2": [[98, "Step-2"]], "Step 3": [[98, "Step-3"]], "Step 4": [[98, "Step-4"]], "Step 5": [[98, "Step-5"]], "Improving Variational Quantum Optimization using CVaR": [[99, "Improving-Variational-Quantum-Optimization-using-CVaR"]], "Portfolio Optimization": [[99, "Portfolio-Optimization"]], "Minimum Eigen Optimizer using SamplingVQE": [[99, "Minimum-Eigen-Optimizer-using-SamplingVQE"]], "Application Classes for Optimization Problems": [[100, "Application-Classes-for-Optimization-Problems"]], "Vertex cover problem": [[100, "Vertex-cover-problem"]], "Knapsack problem": [[100, "Knapsack-problem"]], "How to check the Hamiltonian": [[100, "How-to-check-the-Hamiltonian"]], "Warm-starting quantum optimization": [[101, "Warm-starting-quantum-optimization"]], "Preliminaries: relaxing QUBOs": [[101, "Preliminaries:-relaxing-QUBOs"]], "Standard QAOA": [[101, "Standard-QAOA"]], "Warm-start QAOA": [[101, "Warm-start-QAOA"], [101, "id2"]], "Analysis": [[101, "Analysis"]], "Using Classical Optimization Solvers and Models with Qiskit Optimization": [[102, "Using-Classical-Optimization-Solvers-and-Models-with-Qiskit-Optimization"]], "CplexSolver and GurobiSolver": [[102, "CplexSolver-and-GurobiSolver"]], "Translators between QuadraticProgram and Docplex/Gurobipy": [[102, "Translators-between-QuadraticProgram-and-Docplex/Gurobipy"]], "Indicator constraints of Docplex": [[102, "Indicator-constraints-of-Docplex"]], "Quantum Random Access Optimization": [[103, "Quantum-Random-Access-Optimization"]], "Set up a combinatorial optimization problem": [[103, "Set-up-a-combinatorial-optimization-problem"]], "Encode the problem into a quantum Hamiltonian": [[103, "Encode-the-problem-into-a-quantum-Hamiltonian"]], "Solve the problem using the QuantumRandomAccessOptimizer": [[103, "Solve-the-problem-using-the-QuantumRandomAccessOptimizer"]], "Interpret the solution": [[103, "Interpret-the-solution"]], "Inspect the results of subroutines": [[103, "Inspect-the-results-of-subroutines"]], "Exact Problem Solution with the NumpyMinimumEigensolver": [[103, "Exact-Problem-Solution-with-the-NumpyMinimumEigensolver"]], "Solve the problem using the QuantumRandomAccessOptimizer with MagicRounding": [[103, "Solve-the-problem-using-the-QuantumRandomAccessOptimizer-with-MagicRounding"]], "Alternative: Solve the Problem in Two Explicit Steps": [[103, "Alternative:-Solve-the-Problem-in-Two-Explicit-Steps"]], "Manually solve the relaxed problem.": [[103, "Manually-solve-the-relaxed-problem."]], "Manually perform rounding on the relaxed problem results": [[103, "Manually-perform-rounding-on-the-relaxed-problem-results"]], "Appendix": [[103, "Appendix"]], "How to verify correctness of your encoding": [[103, "How-to-verify-correctness-of-your-encoding"]], "Optimization Tutorials": [[104, "optimization-tutorials"]]}, "indexentries": {"module": [[0, "module-qiskit_optimization"], [1, "module-qiskit_optimization.algorithms"], [2, "module-qiskit_optimization.algorithms.qrao"], [3, "module-qiskit_optimization.applications"], [4, "module-qiskit_optimization.converters"], [5, "module-qiskit_optimization.problems"], [6, "module-qiskit_optimization.translators"]], "qiskit_optimization": [[0, "module-qiskit_optimization"]], "qiskit_optimization.algorithms": [[1, "module-qiskit_optimization.algorithms"]], "qiskit_optimization.algorithms.qrao": [[2, "module-qiskit_optimization.algorithms.qrao"]], "qiskit_optimization.applications": [[3, "module-qiskit_optimization.applications"]], "qiskit_optimization.converters": [[4, "module-qiskit_optimization.converters"]], "qiskit_optimization.problems": [[5, "module-qiskit_optimization.problems"]], "qiskit_optimization.translators": [[6, "module-qiskit_optimization.translators"]], "qiskitoptimizationerror": [[15, "qiskit_optimization.QiskitOptimizationError"]], "with_traceback() (qiskitoptimizationerror method)": [[15, "qiskit_optimization.QiskitOptimizationError.with_traceback"]], "quadraticprogram (class in qiskit_optimization)": [[16, "qiskit_optimization.QuadraticProgram"]], "binary_var() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.binary_var"]], "binary_var_dict() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.binary_var_dict"]], "binary_var_list() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.binary_var_list"]], "clear() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.clear"]], "continuous_var() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.continuous_var"]], "continuous_var_dict() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.continuous_var_dict"]], "continuous_var_list() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.continuous_var_list"]], "export_as_lp_string() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.export_as_lp_string"]], "from_ising() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.from_ising"]], "get_feasibility_info() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.get_feasibility_info"]], "get_linear_constraint() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.get_linear_constraint"]], "get_num_binary_vars() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.get_num_binary_vars"]], "get_num_continuous_vars() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.get_num_continuous_vars"]], "get_num_integer_vars() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.get_num_integer_vars"]], "get_num_linear_constraints() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.get_num_linear_constraints"]], "get_num_quadratic_constraints() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.get_num_quadratic_constraints"]], "get_num_vars() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.get_num_vars"]], "get_quadratic_constraint() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.get_quadratic_constraint"]], "get_variable() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.get_variable"]], "integer_var() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.integer_var"]], "integer_var_dict() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.integer_var_dict"]], "integer_var_list() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.integer_var_list"]], "is_feasible() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.is_feasible"]], "linear_constraint() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.linear_constraint"]], "linear_constraints (quadraticprogram attribute)": [[16, "qiskit_optimization.QuadraticProgram.linear_constraints"]], "linear_constraints_index (quadraticprogram attribute)": [[16, "qiskit_optimization.QuadraticProgram.linear_constraints_index"]], "maximize() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.maximize"]], "minimize() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.minimize"]], "name (quadraticprogram attribute)": [[16, "qiskit_optimization.QuadraticProgram.name"]], "objective (quadraticprogram attribute)": [[16, "qiskit_optimization.QuadraticProgram.objective"]], "prettyprint() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.prettyprint"]], "quadratic_constraint() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.quadratic_constraint"]], "quadratic_constraints (quadraticprogram attribute)": [[16, "qiskit_optimization.QuadraticProgram.quadratic_constraints"]], "quadratic_constraints_index (quadraticprogram attribute)": [[16, "qiskit_optimization.QuadraticProgram.quadratic_constraints_index"]], "read_from_lp_file() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.read_from_lp_file"]], "remove_linear_constraint() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.remove_linear_constraint"]], "remove_quadratic_constraint() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.remove_quadratic_constraint"]], "status (quadraticprogram attribute)": [[16, "qiskit_optimization.QuadraticProgram.status"]], "substitute_variables() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.substitute_variables"]], "to_ising() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.to_ising"]], "variables (quadraticprogram attribute)": [[16, "qiskit_optimization.QuadraticProgram.variables"]], "variables_index (quadraticprogram attribute)": [[16, "qiskit_optimization.QuadraticProgram.variables_index"]], "write_to_lp_file() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.write_to_lp_file"]], "admmoptimizationresult (class in qiskit_optimization.algorithms)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult"]], "fval (admmoptimizationresult attribute)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult.fval"]], "get_correlations() (admmoptimizationresult method)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult.get_correlations"]], "prettyprint() (admmoptimizationresult method)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult.prettyprint"]], "raw_results (admmoptimizationresult attribute)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult.raw_results"]], "samples (admmoptimizationresult attribute)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult.samples"]], "state (admmoptimizationresult attribute)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult.state"]], "status (admmoptimizationresult attribute)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult.status"]], "variable_names (admmoptimizationresult attribute)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult.variable_names"]], "variables (admmoptimizationresult attribute)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult.variables"]], "variables_dict (admmoptimizationresult attribute)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult.variables_dict"]], "x (admmoptimizationresult attribute)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult.x"]], "admmoptimizer (class in qiskit_optimization.algorithms)": [[18, "qiskit_optimization.algorithms.ADMMOptimizer"]], "get_compatibility_msg() (admmoptimizer method)": [[18, "qiskit_optimization.algorithms.ADMMOptimizer.get_compatibility_msg"]], "is_compatible() (admmoptimizer method)": [[18, "qiskit_optimization.algorithms.ADMMOptimizer.is_compatible"]], "parameters (admmoptimizer attribute)": [[18, "qiskit_optimization.algorithms.ADMMOptimizer.parameters"]], "solve() (admmoptimizer method)": [[18, "qiskit_optimization.algorithms.ADMMOptimizer.solve"]], "admmparameters (class in qiskit_optimization.algorithms)": [[19, "qiskit_optimization.algorithms.ADMMParameters"]], "admmstate (class in qiskit_optimization.algorithms)": [[20, "qiskit_optimization.algorithms.ADMMState"]], "baseaggregator (class in qiskit_optimization.algorithms)": [[21, "qiskit_optimization.algorithms.BaseAggregator"]], "aggregate() (baseaggregator method)": [[21, "qiskit_optimization.algorithms.BaseAggregator.aggregate"]], "cobylaoptimizer (class in qiskit_optimization.algorithms)": [[22, "qiskit_optimization.algorithms.CobylaOptimizer"]], "clip (cobylaoptimizer attribute)": [[22, "qiskit_optimization.algorithms.CobylaOptimizer.clip"]], "get_compatibility_msg() (cobylaoptimizer method)": [[22, "qiskit_optimization.algorithms.CobylaOptimizer.get_compatibility_msg"]], "is_compatible() (cobylaoptimizer method)": [[22, "qiskit_optimization.algorithms.CobylaOptimizer.is_compatible"]], "multi_start_solve() (cobylaoptimizer method)": [[22, "qiskit_optimization.algorithms.CobylaOptimizer.multi_start_solve"]], "solve() (cobylaoptimizer method)": [[22, "qiskit_optimization.algorithms.CobylaOptimizer.solve"]], "trials (cobylaoptimizer attribute)": [[22, "qiskit_optimization.algorithms.CobylaOptimizer.trials"]], "cplexoptimizer (class in qiskit_optimization.algorithms)": [[23, "qiskit_optimization.algorithms.CplexOptimizer"]], "cplex_parameters (cplexoptimizer attribute)": [[23, "qiskit_optimization.algorithms.CplexOptimizer.cplex_parameters"]], "disp (cplexoptimizer attribute)": [[23, "qiskit_optimization.algorithms.CplexOptimizer.disp"]], "get_compatibility_msg() (cplexoptimizer method)": [[23, "qiskit_optimization.algorithms.CplexOptimizer.get_compatibility_msg"]], "is_compatible() (cplexoptimizer method)": [[23, "qiskit_optimization.algorithms.CplexOptimizer.is_compatible"]], "is_cplex_installed() (cplexoptimizer static method)": [[23, "qiskit_optimization.algorithms.CplexOptimizer.is_cplex_installed"]], "solve() (cplexoptimizer method)": [[23, "qiskit_optimization.algorithms.CplexOptimizer.solve"]], "goemanswilliamsonoptimizationresult (class in qiskit_optimization.algorithms)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult"]], "fval (goemanswilliamsonoptimizationresult attribute)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.fval"]], "get_correlations() (goemanswilliamsonoptimizationresult method)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.get_correlations"]], "prettyprint() (goemanswilliamsonoptimizationresult method)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.prettyprint"]], "raw_results (goemanswilliamsonoptimizationresult attribute)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.raw_results"]], "samples (goemanswilliamsonoptimizationresult attribute)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.samples"]], "sdp_solution (goemanswilliamsonoptimizationresult attribute)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.sdp_solution"]], "status (goemanswilliamsonoptimizationresult attribute)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.status"]], "variable_names (goemanswilliamsonoptimizationresult attribute)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.variable_names"]], "variables (goemanswilliamsonoptimizationresult attribute)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.variables"]], "variables_dict (goemanswilliamsonoptimizationresult attribute)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.variables_dict"]], "x (goemanswilliamsonoptimizationresult attribute)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.x"]], "goemanswilliamsonoptimizer (class in qiskit_optimization.algorithms)": [[25, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizer"]], "get_compatibility_msg() (goemanswilliamsonoptimizer method)": [[25, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizer.get_compatibility_msg"]], "is_compatible() (goemanswilliamsonoptimizer method)": [[25, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizer.is_compatible"]], "max_cut_value() (goemanswilliamsonoptimizer static method)": [[25, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizer.max_cut_value"]], "solve() (goemanswilliamsonoptimizer method)": [[25, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizer.solve"]], "groveroptimizationresult (class in qiskit_optimization.algorithms)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult"]], "fval (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.fval"]], "get_correlations() (groveroptimizationresult method)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.get_correlations"]], "intermediate_fval (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.intermediate_fval"]], "n_input_qubits (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.n_input_qubits"]], "n_output_qubits (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.n_output_qubits"]], "operation_counts (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.operation_counts"]], "prettyprint() (groveroptimizationresult method)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.prettyprint"]], "raw_results (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.raw_results"]], "raw_samples (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.raw_samples"]], "samples (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.samples"]], "status (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.status"]], "threshold (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.threshold"]], "variable_names (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.variable_names"]], "variables (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.variables"]], "variables_dict (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.variables_dict"]], "x (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.x"]], "groveroptimizer (class in qiskit_optimization.algorithms)": [[27, "qiskit_optimization.algorithms.GroverOptimizer"]], "get_compatibility_msg() (groveroptimizer method)": [[27, "qiskit_optimization.algorithms.GroverOptimizer.get_compatibility_msg"]], "is_compatible() (groveroptimizer method)": [[27, "qiskit_optimization.algorithms.GroverOptimizer.is_compatible"]], "solve() (groveroptimizer method)": [[27, "qiskit_optimization.algorithms.GroverOptimizer.solve"]], "gurobioptimizer (class in qiskit_optimization.algorithms)": [[28, "qiskit_optimization.algorithms.GurobiOptimizer"]], "disp (gurobioptimizer attribute)": [[28, "qiskit_optimization.algorithms.GurobiOptimizer.disp"]], "get_compatibility_msg() (gurobioptimizer method)": [[28, "qiskit_optimization.algorithms.GurobiOptimizer.get_compatibility_msg"]], "is_compatible() (gurobioptimizer method)": [[28, "qiskit_optimization.algorithms.GurobiOptimizer.is_compatible"]], "is_gurobi_installed() (gurobioptimizer static method)": [[28, "qiskit_optimization.algorithms.GurobiOptimizer.is_gurobi_installed"]], "solve() (gurobioptimizer method)": [[28, "qiskit_optimization.algorithms.GurobiOptimizer.solve"]], "all_iterations (intermediateresult attribute)": [[29, "qiskit_optimization.algorithms.IntermediateResult.ALL_ITERATIONS"]], "intermediateresult (class in qiskit_optimization.algorithms)": [[29, "qiskit_optimization.algorithms.IntermediateResult"]], "last_iteration (intermediateresult attribute)": [[29, "qiskit_optimization.algorithms.IntermediateResult.LAST_ITERATION"]], "no_iterations (intermediateresult attribute)": [[29, "qiskit_optimization.algorithms.IntermediateResult.NO_ITERATIONS"]], "meanaggregator (class in qiskit_optimization.algorithms)": [[30, "qiskit_optimization.algorithms.MeanAggregator"]], "aggregate() (meanaggregator method)": [[30, "qiskit_optimization.algorithms.MeanAggregator.aggregate"]], "minimumeigenoptimizationresult (class in qiskit_optimization.algorithms)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult"]], "fval (minimumeigenoptimizationresult attribute)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.fval"]], "get_correlations() (minimumeigenoptimizationresult method)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.get_correlations"]], "min_eigen_solver_result (minimumeigenoptimizationresult attribute)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.min_eigen_solver_result"]], "prettyprint() (minimumeigenoptimizationresult method)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.prettyprint"]], "raw_results (minimumeigenoptimizationresult attribute)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.raw_results"]], "raw_samples (minimumeigenoptimizationresult attribute)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.raw_samples"]], "samples (minimumeigenoptimizationresult attribute)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.samples"]], "status (minimumeigenoptimizationresult attribute)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.status"]], "variable_names (minimumeigenoptimizationresult attribute)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.variable_names"]], "variables (minimumeigenoptimizationresult attribute)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.variables"]], "variables_dict (minimumeigenoptimizationresult attribute)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.variables_dict"]], "x (minimumeigenoptimizationresult attribute)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.x"]], "minimumeigenoptimizer (class in qiskit_optimization.algorithms)": [[32, "qiskit_optimization.algorithms.MinimumEigenOptimizer"]], "get_compatibility_msg() (minimumeigenoptimizer method)": [[32, "qiskit_optimization.algorithms.MinimumEigenOptimizer.get_compatibility_msg"]], "is_compatible() (minimumeigenoptimizer method)": [[32, "qiskit_optimization.algorithms.MinimumEigenOptimizer.is_compatible"]], "min_eigen_solver (minimumeigenoptimizer attribute)": [[32, "qiskit_optimization.algorithms.MinimumEigenOptimizer.min_eigen_solver"]], "solve() (minimumeigenoptimizer method)": [[32, "qiskit_optimization.algorithms.MinimumEigenOptimizer.solve"]], "multistartoptimizer (class in qiskit_optimization.algorithms)": [[33, "qiskit_optimization.algorithms.MultiStartOptimizer"]], "clip (multistartoptimizer attribute)": [[33, "qiskit_optimization.algorithms.MultiStartOptimizer.clip"]], "get_compatibility_msg() (multistartoptimizer method)": [[33, "qiskit_optimization.algorithms.MultiStartOptimizer.get_compatibility_msg"]], "is_compatible() (multistartoptimizer method)": [[33, "qiskit_optimization.algorithms.MultiStartOptimizer.is_compatible"]], "multi_start_solve() (multistartoptimizer method)": [[33, "qiskit_optimization.algorithms.MultiStartOptimizer.multi_start_solve"]], "solve() (multistartoptimizer method)": [[33, "qiskit_optimization.algorithms.MultiStartOptimizer.solve"]], "trials (multistartoptimizer attribute)": [[33, "qiskit_optimization.algorithms.MultiStartOptimizer.trials"]], "optimizationalgorithm (class in qiskit_optimization.algorithms)": [[34, "qiskit_optimization.algorithms.OptimizationAlgorithm"]], "get_compatibility_msg() (optimizationalgorithm method)": [[34, "qiskit_optimization.algorithms.OptimizationAlgorithm.get_compatibility_msg"]], "is_compatible() (optimizationalgorithm method)": [[34, "qiskit_optimization.algorithms.OptimizationAlgorithm.is_compatible"]], "solve() (optimizationalgorithm method)": [[34, "qiskit_optimization.algorithms.OptimizationAlgorithm.solve"]], "optimizationresult (class in qiskit_optimization.algorithms)": [[35, "qiskit_optimization.algorithms.OptimizationResult"]], "fval (optimizationresult attribute)": [[35, "qiskit_optimization.algorithms.OptimizationResult.fval"]], "get_correlations() (optimizationresult method)": [[35, "qiskit_optimization.algorithms.OptimizationResult.get_correlations"]], "prettyprint() (optimizationresult method)": [[35, "qiskit_optimization.algorithms.OptimizationResult.prettyprint"]], "raw_results (optimizationresult attribute)": [[35, "qiskit_optimization.algorithms.OptimizationResult.raw_results"]], "samples (optimizationresult attribute)": [[35, "qiskit_optimization.algorithms.OptimizationResult.samples"]], "status (optimizationresult attribute)": [[35, "qiskit_optimization.algorithms.OptimizationResult.status"]], "variable_names (optimizationresult attribute)": [[35, "qiskit_optimization.algorithms.OptimizationResult.variable_names"]], "variables (optimizationresult attribute)": [[35, "qiskit_optimization.algorithms.OptimizationResult.variables"]], "variables_dict (optimizationresult attribute)": [[35, "qiskit_optimization.algorithms.OptimizationResult.variables_dict"]], "x (optimizationresult attribute)": [[35, "qiskit_optimization.algorithms.OptimizationResult.x"]], "failure (optimizationresultstatus attribute)": [[36, "qiskit_optimization.algorithms.OptimizationResultStatus.FAILURE"]], "infeasible (optimizationresultstatus attribute)": [[36, "qiskit_optimization.algorithms.OptimizationResultStatus.INFEASIBLE"]], "optimizationresultstatus (class in qiskit_optimization.algorithms)": [[36, "qiskit_optimization.algorithms.OptimizationResultStatus"]], "success (optimizationresultstatus attribute)": [[36, "qiskit_optimization.algorithms.OptimizationResultStatus.SUCCESS"]], "recursiveminimumeigenoptimizationresult (class in qiskit_optimization.algorithms)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult"]], "fval (recursiveminimumeigenoptimizationresult attribute)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.fval"]], "get_correlations() (recursiveminimumeigenoptimizationresult method)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.get_correlations"]], "history (recursiveminimumeigenoptimizationresult attribute)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.history"]], "prettyprint() (recursiveminimumeigenoptimizationresult method)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.prettyprint"]], "raw_results (recursiveminimumeigenoptimizationresult attribute)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.raw_results"]], "replacements (recursiveminimumeigenoptimizationresult attribute)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.replacements"]], "samples (recursiveminimumeigenoptimizationresult attribute)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.samples"]], "status (recursiveminimumeigenoptimizationresult attribute)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.status"]], "variable_names (recursiveminimumeigenoptimizationresult attribute)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.variable_names"]], "variables (recursiveminimumeigenoptimizationresult attribute)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.variables"]], "variables_dict (recursiveminimumeigenoptimizationresult attribute)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.variables_dict"]], "x (recursiveminimumeigenoptimizationresult attribute)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.x"]], "recursiveminimumeigenoptimizer (class in qiskit_optimization.algorithms)": [[38, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizer"]], "get_compatibility_msg() (recursiveminimumeigenoptimizer method)": [[38, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizer.get_compatibility_msg"]], "is_compatible() (recursiveminimumeigenoptimizer method)": [[38, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizer.is_compatible"]], "solve() (recursiveminimumeigenoptimizer method)": [[38, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizer.solve"]], "scipymilpoptimizer (class in qiskit_optimization.algorithms)": [[39, "qiskit_optimization.algorithms.ScipyMilpOptimizer"]], "disp (scipymilpoptimizer attribute)": [[39, "qiskit_optimization.algorithms.ScipyMilpOptimizer.disp"]], "get_compatibility_msg() (scipymilpoptimizer method)": [[39, "qiskit_optimization.algorithms.ScipyMilpOptimizer.get_compatibility_msg"]], "is_compatible() (scipymilpoptimizer method)": [[39, "qiskit_optimization.algorithms.ScipyMilpOptimizer.is_compatible"]], "solve() (scipymilpoptimizer method)": [[39, "qiskit_optimization.algorithms.ScipyMilpOptimizer.solve"]], "slsqpoptimizationresult (class in qiskit_optimization.algorithms)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult"]], "fval (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.fval"]], "fx (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.fx"]], "get_correlations() (slsqpoptimizationresult method)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.get_correlations"]], "imode (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.imode"]], "its (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.its"]], "prettyprint() (slsqpoptimizationresult method)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.prettyprint"]], "raw_results (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.raw_results"]], "samples (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.samples"]], "smode (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.smode"]], "status (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.status"]], "variable_names (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.variable_names"]], "variables (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.variables"]], "variables_dict (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.variables_dict"]], "x (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.x"]], "slsqpoptimizer (class in qiskit_optimization.algorithms)": [[41, "qiskit_optimization.algorithms.SlsqpOptimizer"]], "clip (slsqpoptimizer attribute)": [[41, "qiskit_optimization.algorithms.SlsqpOptimizer.clip"]], "get_compatibility_msg() (slsqpoptimizer method)": [[41, "qiskit_optimization.algorithms.SlsqpOptimizer.get_compatibility_msg"]], "is_compatible() (slsqpoptimizer method)": [[41, "qiskit_optimization.algorithms.SlsqpOptimizer.is_compatible"]], "multi_start_solve() (slsqpoptimizer method)": [[41, "qiskit_optimization.algorithms.SlsqpOptimizer.multi_start_solve"]], "solve() (slsqpoptimizer method)": [[41, "qiskit_optimization.algorithms.SlsqpOptimizer.solve"]], "trials (slsqpoptimizer attribute)": [[41, "qiskit_optimization.algorithms.SlsqpOptimizer.trials"]], "solutionsample (class in qiskit_optimization.algorithms)": [[42, "qiskit_optimization.algorithms.SolutionSample"]], "fval (solutionsample attribute)": [[42, "qiskit_optimization.algorithms.SolutionSample.fval"]], "probability (solutionsample attribute)": [[42, "qiskit_optimization.algorithms.SolutionSample.probability"]], "status (solutionsample attribute)": [[42, "qiskit_optimization.algorithms.SolutionSample.status"]], "x (solutionsample attribute)": [[42, "qiskit_optimization.algorithms.SolutionSample.x"]], "warmstartqaoafactory (class in qiskit_optimization.algorithms)": [[43, "qiskit_optimization.algorithms.WarmStartQAOAFactory"]], "create_initial_state() (warmstartqaoafactory method)": [[43, "qiskit_optimization.algorithms.WarmStartQAOAFactory.create_initial_state"]], "create_initial_variables() (warmstartqaoafactory method)": [[43, "qiskit_optimization.algorithms.WarmStartQAOAFactory.create_initial_variables"]], "create_mixer() (warmstartqaoafactory method)": [[43, "qiskit_optimization.algorithms.WarmStartQAOAFactory.create_mixer"]], "warmstartqaoaoptimizer (class in qiskit_optimization.algorithms)": [[44, "qiskit_optimization.algorithms.WarmStartQAOAOptimizer"]], "get_compatibility_msg() (warmstartqaoaoptimizer method)": [[44, "qiskit_optimization.algorithms.WarmStartQAOAOptimizer.get_compatibility_msg"]], "is_compatible() (warmstartqaoaoptimizer method)": [[44, "qiskit_optimization.algorithms.WarmStartQAOAOptimizer.is_compatible"]], "min_eigen_solver (warmstartqaoaoptimizer attribute)": [[44, "qiskit_optimization.algorithms.WarmStartQAOAOptimizer.min_eigen_solver"]], "solve() (warmstartqaoaoptimizer method)": [[44, "qiskit_optimization.algorithms.WarmStartQAOAOptimizer.solve"]], "encodingcommutationverifier (class in qiskit_optimization.algorithms.qrao)": [[45, "qiskit_optimization.algorithms.qrao.EncodingCommutationVerifier"]], "magicrounding (class in qiskit_optimization.algorithms.qrao)": [[46, "qiskit_optimization.algorithms.qrao.MagicRounding"]], "basis_sampling (magicrounding attribute)": [[46, "qiskit_optimization.algorithms.qrao.MagicRounding.basis_sampling"]], "round() (magicrounding method)": [[46, "qiskit_optimization.algorithms.qrao.MagicRounding.round"]], "sampler (magicrounding attribute)": [[46, "qiskit_optimization.algorithms.qrao.MagicRounding.sampler"]], "quantumrandomaccessencoding (class in qiskit_optimization.algorithms.qrao)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding"]], "compression_ratio (quantumrandomaccessencoding attribute)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.compression_ratio"]], "encode() (quantumrandomaccessencoding method)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.encode"]], "freeze() (quantumrandomaccessencoding method)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.freeze"]], "frozen (quantumrandomaccessencoding attribute)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.frozen"]], "max_vars_per_qubit (quantumrandomaccessencoding attribute)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.max_vars_per_qubit"]], "minimum_recovery_probability (quantumrandomaccessencoding attribute)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.minimum_recovery_probability"]], "num_qubits (quantumrandomaccessencoding attribute)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.num_qubits"]], "num_vars (quantumrandomaccessencoding attribute)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.num_vars"]], "offset (quantumrandomaccessencoding attribute)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.offset"]], "problem (quantumrandomaccessencoding attribute)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.problem"]], "q2vars (quantumrandomaccessencoding attribute)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.q2vars"]], "qubit_op (quantumrandomaccessencoding attribute)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.qubit_op"]], "state_preparation_circuit() (quantumrandomaccessencoding method)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.state_preparation_circuit"]], "var2op (quantumrandomaccessencoding attribute)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.var2op"]], "quantumrandomaccessoptimizationresult (class in qiskit_optimization.algorithms.qrao)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult"]], "encoding (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.encoding"]], "fval (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.fval"]], "get_correlations() (quantumrandomaccessoptimizationresult method)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.get_correlations"]], "prettyprint() (quantumrandomaccessoptimizationresult method)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.prettyprint"]], "raw_results (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.raw_results"]], "relaxed_fval (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.relaxed_fval"]], "relaxed_result (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.relaxed_result"]], "rounding_result (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.rounding_result"]], "samples (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.samples"]], "status (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.status"]], "variable_names (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.variable_names"]], "variables (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.variables"]], "variables_dict (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.variables_dict"]], "x (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.x"]], "quantumrandomaccessoptimizer (class in qiskit_optimization.algorithms.qrao)": [[49, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer"]], "get_compatibility_msg() (quantumrandomaccessoptimizer method)": [[49, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer.get_compatibility_msg"]], "is_compatible() (quantumrandomaccessoptimizer method)": [[49, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer.is_compatible"]], "max_vars_per_qubit (quantumrandomaccessoptimizer attribute)": [[49, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer.max_vars_per_qubit"]], "min_eigen_solver (quantumrandomaccessoptimizer attribute)": [[49, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer.min_eigen_solver"]], "process_result() (quantumrandomaccessoptimizer method)": [[49, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer.process_result"]], "rounding_scheme (quantumrandomaccessoptimizer attribute)": [[49, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer.rounding_scheme"]], "solve() (quantumrandomaccessoptimizer method)": [[49, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer.solve"]], "solve_relaxed() (quantumrandomaccessoptimizer method)": [[49, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer.solve_relaxed"]], "roundingcontext (class in qiskit_optimization.algorithms.qrao)": [[50, "qiskit_optimization.algorithms.qrao.RoundingContext"]], "circuit (roundingcontext attribute)": [[50, "qiskit_optimization.algorithms.qrao.RoundingContext.circuit"]], "encoding (roundingcontext attribute)": [[50, "qiskit_optimization.algorithms.qrao.RoundingContext.encoding"]], "expectation_values (roundingcontext attribute)": [[50, "qiskit_optimization.algorithms.qrao.RoundingContext.expectation_values"]], "roundingresult (class in qiskit_optimization.algorithms.qrao)": [[51, "qiskit_optimization.algorithms.qrao.RoundingResult"]], "bases (roundingresult attribute)": [[51, "qiskit_optimization.algorithms.qrao.RoundingResult.bases"]], "basis_counts (roundingresult attribute)": [[51, "qiskit_optimization.algorithms.qrao.RoundingResult.basis_counts"]], "basis_shots (roundingresult attribute)": [[51, "qiskit_optimization.algorithms.qrao.RoundingResult.basis_shots"]], "expectation_values (roundingresult attribute)": [[51, "qiskit_optimization.algorithms.qrao.RoundingResult.expectation_values"]], "samples (roundingresult attribute)": [[51, "qiskit_optimization.algorithms.qrao.RoundingResult.samples"]], "roundingscheme (class in qiskit_optimization.algorithms.qrao)": [[52, "qiskit_optimization.algorithms.qrao.RoundingScheme"]], "round() (roundingscheme method)": [[52, "qiskit_optimization.algorithms.qrao.RoundingScheme.round"]], "semideterministicrounding (class in qiskit_optimization.algorithms.qrao)": [[53, "qiskit_optimization.algorithms.qrao.SemideterministicRounding"]], "round() (semideterministicrounding method)": [[53, "qiskit_optimization.algorithms.qrao.SemideterministicRounding.round"]], "binpacking (class in qiskit_optimization.applications)": [[54, "qiskit_optimization.applications.BinPacking"]], "get_figure() (binpacking method)": [[54, "qiskit_optimization.applications.BinPacking.get_figure"]], "interpret() (binpacking method)": [[54, "qiskit_optimization.applications.BinPacking.interpret"]], "sample_most_likely() (binpacking static method)": [[54, "qiskit_optimization.applications.BinPacking.sample_most_likely"]], "to_quadratic_program() (binpacking method)": [[54, "qiskit_optimization.applications.BinPacking.to_quadratic_program"]], "clique (class in qiskit_optimization.applications)": [[55, "qiskit_optimization.applications.Clique"]], "draw() (clique method)": [[55, "qiskit_optimization.applications.Clique.draw"]], "graph (clique attribute)": [[55, "qiskit_optimization.applications.Clique.graph"]], "interpret() (clique method)": [[55, "qiskit_optimization.applications.Clique.interpret"]], "sample_most_likely() (clique static method)": [[55, "qiskit_optimization.applications.Clique.sample_most_likely"]], "size (clique attribute)": [[55, "qiskit_optimization.applications.Clique.size"]], "to_quadratic_program() (clique method)": [[55, "qiskit_optimization.applications.Clique.to_quadratic_program"]], "exactcover (class in qiskit_optimization.applications)": [[56, "qiskit_optimization.applications.ExactCover"]], "interpret() (exactcover method)": [[56, "qiskit_optimization.applications.ExactCover.interpret"]], "sample_most_likely() (exactcover static method)": [[56, "qiskit_optimization.applications.ExactCover.sample_most_likely"]], "to_quadratic_program() (exactcover method)": [[56, "qiskit_optimization.applications.ExactCover.to_quadratic_program"]], "graphoptimizationapplication (class in qiskit_optimization.applications)": [[57, "qiskit_optimization.applications.GraphOptimizationApplication"]], "draw() (graphoptimizationapplication method)": [[57, "qiskit_optimization.applications.GraphOptimizationApplication.draw"]], "graph (graphoptimizationapplication attribute)": [[57, "qiskit_optimization.applications.GraphOptimizationApplication.graph"]], "interpret() (graphoptimizationapplication method)": [[57, "qiskit_optimization.applications.GraphOptimizationApplication.interpret"]], "sample_most_likely() (graphoptimizationapplication static method)": [[57, "qiskit_optimization.applications.GraphOptimizationApplication.sample_most_likely"]], "to_quadratic_program() (graphoptimizationapplication method)": [[57, "qiskit_optimization.applications.GraphOptimizationApplication.to_quadratic_program"]], "graphpartition (class in qiskit_optimization.applications)": [[58, "qiskit_optimization.applications.GraphPartition"]], "draw() (graphpartition method)": [[58, "qiskit_optimization.applications.GraphPartition.draw"]], "graph (graphpartition attribute)": [[58, "qiskit_optimization.applications.GraphPartition.graph"]], "interpret() (graphpartition method)": [[58, "qiskit_optimization.applications.GraphPartition.interpret"]], "sample_most_likely() (graphpartition static method)": [[58, "qiskit_optimization.applications.GraphPartition.sample_most_likely"]], "to_quadratic_program() (graphpartition method)": [[58, "qiskit_optimization.applications.GraphPartition.to_quadratic_program"]], "knapsack (class in qiskit_optimization.applications)": [[59, "qiskit_optimization.applications.Knapsack"]], "interpret() (knapsack method)": [[59, "qiskit_optimization.applications.Knapsack.interpret"]], "max_weight (knapsack attribute)": [[59, "qiskit_optimization.applications.Knapsack.max_weight"]], "sample_most_likely() (knapsack static method)": [[59, "qiskit_optimization.applications.Knapsack.sample_most_likely"]], "to_quadratic_program() (knapsack method)": [[59, "qiskit_optimization.applications.Knapsack.to_quadratic_program"]], "maxcut (class in qiskit_optimization.applications)": [[60, "qiskit_optimization.applications.Maxcut"]], "draw() (maxcut method)": [[60, "qiskit_optimization.applications.Maxcut.draw"]], "get_gset_result() (maxcut static method)": [[60, "qiskit_optimization.applications.Maxcut.get_gset_result"]], "graph (maxcut attribute)": [[60, "qiskit_optimization.applications.Maxcut.graph"]], "interpret() (maxcut method)": [[60, "qiskit_optimization.applications.Maxcut.interpret"]], "parse_gset_format() (maxcut static method)": [[60, "qiskit_optimization.applications.Maxcut.parse_gset_format"]], "sample_most_likely() (maxcut static method)": [[60, "qiskit_optimization.applications.Maxcut.sample_most_likely"]], "to_quadratic_program() (maxcut method)": [[60, "qiskit_optimization.applications.Maxcut.to_quadratic_program"]], "numberpartition (class in qiskit_optimization.applications)": [[61, "qiskit_optimization.applications.NumberPartition"]], "interpret() (numberpartition method)": [[61, "qiskit_optimization.applications.NumberPartition.interpret"]], "sample_most_likely() (numberpartition static method)": [[61, "qiskit_optimization.applications.NumberPartition.sample_most_likely"]], "to_quadratic_program() (numberpartition method)": [[61, "qiskit_optimization.applications.NumberPartition.to_quadratic_program"]], "optimizationapplication (class in qiskit_optimization.applications)": [[62, "qiskit_optimization.applications.OptimizationApplication"]], "interpret() (optimizationapplication method)": [[62, "qiskit_optimization.applications.OptimizationApplication.interpret"]], "sample_most_likely() (optimizationapplication static method)": [[62, "qiskit_optimization.applications.OptimizationApplication.sample_most_likely"]], "to_quadratic_program() (optimizationapplication method)": [[62, "qiskit_optimization.applications.OptimizationApplication.to_quadratic_program"]], "skmodel (class in qiskit_optimization.applications)": [[63, "qiskit_optimization.applications.SKModel"]], "disorder() (skmodel method)": [[63, "qiskit_optimization.applications.SKModel.disorder"]], "graph (skmodel attribute)": [[63, "qiskit_optimization.applications.SKModel.graph"]], "interpret() (skmodel method)": [[63, "qiskit_optimization.applications.SKModel.interpret"]], "num_sites (skmodel attribute)": [[63, "qiskit_optimization.applications.SKModel.num_sites"]], "sample_most_likely() (skmodel static method)": [[63, "qiskit_optimization.applications.SKModel.sample_most_likely"]], "to_quadratic_program() (skmodel method)": [[63, "qiskit_optimization.applications.SKModel.to_quadratic_program"]], "setpacking (class in qiskit_optimization.applications)": [[64, "qiskit_optimization.applications.SetPacking"]], "interpret() (setpacking method)": [[64, "qiskit_optimization.applications.SetPacking.interpret"]], "sample_most_likely() (setpacking static method)": [[64, "qiskit_optimization.applications.SetPacking.sample_most_likely"]], "to_quadratic_program() (setpacking method)": [[64, "qiskit_optimization.applications.SetPacking.to_quadratic_program"]], "stableset (class in qiskit_optimization.applications)": [[65, "qiskit_optimization.applications.StableSet"]], "draw() (stableset method)": [[65, "qiskit_optimization.applications.StableSet.draw"]], "graph (stableset attribute)": [[65, "qiskit_optimization.applications.StableSet.graph"]], "interpret() (stableset method)": [[65, "qiskit_optimization.applications.StableSet.interpret"]], "sample_most_likely() (stableset static method)": [[65, "qiskit_optimization.applications.StableSet.sample_most_likely"]], "to_quadratic_program() (stableset method)": [[65, "qiskit_optimization.applications.StableSet.to_quadratic_program"]], "tsp (class in qiskit_optimization.applications)": [[66, "qiskit_optimization.applications.Tsp"]], "create_random_instance() (tsp static method)": [[66, "qiskit_optimization.applications.Tsp.create_random_instance"]], "draw() (tsp method)": [[66, "qiskit_optimization.applications.Tsp.draw"]], "graph (tsp attribute)": [[66, "qiskit_optimization.applications.Tsp.graph"]], "interpret() (tsp method)": [[66, "qiskit_optimization.applications.Tsp.interpret"]], "parse_tsplib_format() (tsp static method)": [[66, "qiskit_optimization.applications.Tsp.parse_tsplib_format"]], "sample_most_likely() (tsp static method)": [[66, "qiskit_optimization.applications.Tsp.sample_most_likely"]], "to_quadratic_program() (tsp method)": [[66, "qiskit_optimization.applications.Tsp.to_quadratic_program"]], "tsp_value() (tsp static method)": [[66, "qiskit_optimization.applications.Tsp.tsp_value"]], "vehiclerouting (class in qiskit_optimization.applications)": [[67, "qiskit_optimization.applications.VehicleRouting"]], "create_random_instance() (vehiclerouting static method)": [[67, "qiskit_optimization.applications.VehicleRouting.create_random_instance"]], "depot (vehiclerouting attribute)": [[67, "qiskit_optimization.applications.VehicleRouting.depot"]], "draw() (vehiclerouting method)": [[67, "qiskit_optimization.applications.VehicleRouting.draw"]], "graph (vehiclerouting attribute)": [[67, "qiskit_optimization.applications.VehicleRouting.graph"]], "interpret() (vehiclerouting method)": [[67, "qiskit_optimization.applications.VehicleRouting.interpret"]], "num_vehicles (vehiclerouting attribute)": [[67, "qiskit_optimization.applications.VehicleRouting.num_vehicles"]], "sample_most_likely() (vehiclerouting static method)": [[67, "qiskit_optimization.applications.VehicleRouting.sample_most_likely"]], "to_quadratic_program() (vehiclerouting method)": [[67, "qiskit_optimization.applications.VehicleRouting.to_quadratic_program"]], "vertexcover (class in qiskit_optimization.applications)": [[68, "qiskit_optimization.applications.VertexCover"]], "draw() (vertexcover method)": [[68, "qiskit_optimization.applications.VertexCover.draw"]], "graph (vertexcover attribute)": [[68, "qiskit_optimization.applications.VertexCover.graph"]], "interpret() (vertexcover method)": [[68, "qiskit_optimization.applications.VertexCover.interpret"]], "sample_most_likely() (vertexcover static method)": [[68, "qiskit_optimization.applications.VertexCover.sample_most_likely"]], "to_quadratic_program() (vertexcover method)": [[68, "qiskit_optimization.applications.VertexCover.to_quadratic_program"]], "inequalitytoequality (class in qiskit_optimization.converters)": [[69, "qiskit_optimization.converters.InequalityToEquality"]], "convert() (inequalitytoequality method)": [[69, "qiskit_optimization.converters.InequalityToEquality.convert"]], "interpret() (inequalitytoequality method)": [[69, "qiskit_optimization.converters.InequalityToEquality.interpret"]], "mode (inequalitytoequality attribute)": [[69, "qiskit_optimization.converters.InequalityToEquality.mode"]], "integertobinary (class in qiskit_optimization.converters)": [[70, "qiskit_optimization.converters.IntegerToBinary"]], "convert() (integertobinary method)": [[70, "qiskit_optimization.converters.IntegerToBinary.convert"]], "interpret() (integertobinary method)": [[70, "qiskit_optimization.converters.IntegerToBinary.interpret"]], "linearequalitytopenalty (class in qiskit_optimization.converters)": [[71, "qiskit_optimization.converters.LinearEqualityToPenalty"]], "convert() (linearequalitytopenalty method)": [[71, "qiskit_optimization.converters.LinearEqualityToPenalty.convert"]], "interpret() (linearequalitytopenalty method)": [[71, "qiskit_optimization.converters.LinearEqualityToPenalty.interpret"]], "penalty (linearequalitytopenalty attribute)": [[71, "qiskit_optimization.converters.LinearEqualityToPenalty.penalty"]], "linearinequalitytopenalty (class in qiskit_optimization.converters)": [[72, "qiskit_optimization.converters.LinearInequalityToPenalty"]], "convert() (linearinequalitytopenalty method)": [[72, "qiskit_optimization.converters.LinearInequalityToPenalty.convert"]], "interpret() (linearinequalitytopenalty method)": [[72, "qiskit_optimization.converters.LinearInequalityToPenalty.interpret"]], "penalty (linearinequalitytopenalty attribute)": [[72, "qiskit_optimization.converters.LinearInequalityToPenalty.penalty"]], "maximizetominimize (class in qiskit_optimization.converters)": [[73, "qiskit_optimization.converters.MaximizeToMinimize"]], "convert() (maximizetominimize method)": [[73, "qiskit_optimization.converters.MaximizeToMinimize.convert"]], "interpret() (maximizetominimize method)": [[73, "qiskit_optimization.converters.MaximizeToMinimize.interpret"]], "minimizetomaximize (class in qiskit_optimization.converters)": [[74, "qiskit_optimization.converters.MinimizeToMaximize"]], "convert() (minimizetomaximize method)": [[74, "qiskit_optimization.converters.MinimizeToMaximize.convert"]], "interpret() (minimizetomaximize method)": [[74, "qiskit_optimization.converters.MinimizeToMaximize.interpret"]], "quadraticprogramconverter (class in qiskit_optimization.converters)": [[75, "qiskit_optimization.converters.QuadraticProgramConverter"]], "convert() (quadraticprogramconverter method)": [[75, "qiskit_optimization.converters.QuadraticProgramConverter.convert"]], "interpret() (quadraticprogramconverter method)": [[75, "qiskit_optimization.converters.QuadraticProgramConverter.interpret"]], "quadraticprogramtoqubo (class in qiskit_optimization.converters)": [[76, "qiskit_optimization.converters.QuadraticProgramToQubo"]], "convert() (quadraticprogramtoqubo method)": [[76, "qiskit_optimization.converters.QuadraticProgramToQubo.convert"]], "get_compatibility_msg() (quadraticprogramtoqubo static method)": [[76, "qiskit_optimization.converters.QuadraticProgramToQubo.get_compatibility_msg"]], "interpret() (quadraticprogramtoqubo method)": [[76, "qiskit_optimization.converters.QuadraticProgramToQubo.interpret"]], "is_compatible() (quadraticprogramtoqubo method)": [[76, "qiskit_optimization.converters.QuadraticProgramToQubo.is_compatible"]], "penalty (quadraticprogramtoqubo attribute)": [[76, "qiskit_optimization.converters.QuadraticProgramToQubo.penalty"]], "infinity (in module qiskit_optimization.infinity)": [[77, "qiskit_optimization.infinity.INFINITY"]], "constraint (class in qiskit_optimization.problems)": [[78, "qiskit_optimization.problems.Constraint"]], "evaluate() (constraint method)": [[78, "qiskit_optimization.problems.Constraint.evaluate"]], "name (constraint attribute)": [[78, "qiskit_optimization.problems.Constraint.name"]], "quadratic_program (constraint attribute)": [[78, "qiskit_optimization.problems.Constraint.quadratic_program"]], "rhs (constraint attribute)": [[78, "qiskit_optimization.problems.Constraint.rhs"]], "sense (constraint attribute)": [[78, "qiskit_optimization.problems.Constraint.sense"]], "linearconstraint (class in qiskit_optimization.problems)": [[79, "qiskit_optimization.problems.LinearConstraint"]], "evaluate() (linearconstraint method)": [[79, "qiskit_optimization.problems.LinearConstraint.evaluate"]], "linear (linearconstraint attribute)": [[79, "qiskit_optimization.problems.LinearConstraint.linear"]], "name (linearconstraint attribute)": [[79, "qiskit_optimization.problems.LinearConstraint.name"]], "quadratic_program (linearconstraint attribute)": [[79, "qiskit_optimization.problems.LinearConstraint.quadratic_program"]], "rhs (linearconstraint attribute)": [[79, "qiskit_optimization.problems.LinearConstraint.rhs"]], "sense (linearconstraint attribute)": [[79, "qiskit_optimization.problems.LinearConstraint.sense"]], "linearexpression (class in qiskit_optimization.problems)": [[80, "qiskit_optimization.problems.LinearExpression"]], "bounds (linearexpression attribute)": [[80, "qiskit_optimization.problems.LinearExpression.bounds"]], "coefficients (linearexpression attribute)": [[80, "qiskit_optimization.problems.LinearExpression.coefficients"]], "evaluate() (linearexpression method)": [[80, "qiskit_optimization.problems.LinearExpression.evaluate"]], "evaluate_gradient() (linearexpression method)": [[80, "qiskit_optimization.problems.LinearExpression.evaluate_gradient"]], "quadratic_program (linearexpression attribute)": [[80, "qiskit_optimization.problems.LinearExpression.quadratic_program"]], "to_array() (linearexpression method)": [[80, "qiskit_optimization.problems.LinearExpression.to_array"]], "to_dict() (linearexpression method)": [[80, "qiskit_optimization.problems.LinearExpression.to_dict"]], "quadraticconstraint (class in qiskit_optimization.problems)": [[81, "qiskit_optimization.problems.QuadraticConstraint"]], "evaluate() (quadraticconstraint method)": [[81, "qiskit_optimization.problems.QuadraticConstraint.evaluate"]], "linear (quadraticconstraint attribute)": [[81, "qiskit_optimization.problems.QuadraticConstraint.linear"]], "name (quadraticconstraint attribute)": [[81, "qiskit_optimization.problems.QuadraticConstraint.name"]], "quadratic (quadraticconstraint attribute)": [[81, "qiskit_optimization.problems.QuadraticConstraint.quadratic"]], "quadratic_program (quadraticconstraint attribute)": [[81, "qiskit_optimization.problems.QuadraticConstraint.quadratic_program"]], "rhs (quadraticconstraint attribute)": [[81, "qiskit_optimization.problems.QuadraticConstraint.rhs"]], "sense (quadraticconstraint attribute)": [[81, "qiskit_optimization.problems.QuadraticConstraint.sense"]], "quadraticexpression (class in qiskit_optimization.problems)": [[82, "qiskit_optimization.problems.QuadraticExpression"]], "bounds (quadraticexpression attribute)": [[82, "qiskit_optimization.problems.QuadraticExpression.bounds"]], "coefficients (quadraticexpression attribute)": [[82, "qiskit_optimization.problems.QuadraticExpression.coefficients"]], "evaluate() (quadraticexpression method)": [[82, "qiskit_optimization.problems.QuadraticExpression.evaluate"]], "evaluate_gradient() (quadraticexpression method)": [[82, "qiskit_optimization.problems.QuadraticExpression.evaluate_gradient"]], "quadratic_program (quadraticexpression attribute)": [[82, "qiskit_optimization.problems.QuadraticExpression.quadratic_program"]], "to_array() (quadraticexpression method)": [[82, "qiskit_optimization.problems.QuadraticExpression.to_array"]], "to_dict() (quadraticexpression method)": [[82, "qiskit_optimization.problems.QuadraticExpression.to_dict"]], "quadraticobjective (class in qiskit_optimization.problems)": [[83, "qiskit_optimization.problems.QuadraticObjective"]], "constant (quadraticobjective attribute)": [[83, "qiskit_optimization.problems.QuadraticObjective.constant"]], "evaluate() (quadraticobjective method)": [[83, "qiskit_optimization.problems.QuadraticObjective.evaluate"]], "evaluate_gradient() (quadraticobjective method)": [[83, "qiskit_optimization.problems.QuadraticObjective.evaluate_gradient"]], "linear (quadraticobjective attribute)": [[83, "qiskit_optimization.problems.QuadraticObjective.linear"]], "quadratic (quadraticobjective attribute)": [[83, "qiskit_optimization.problems.QuadraticObjective.quadratic"]], "quadratic_program (quadraticobjective attribute)": [[83, "qiskit_optimization.problems.QuadraticObjective.quadratic_program"]], "sense (quadraticobjective attribute)": [[83, "qiskit_optimization.problems.QuadraticObjective.sense"]], "quadraticprogramelement (class in qiskit_optimization.problems)": [[84, "qiskit_optimization.problems.QuadraticProgramElement"]], "quadratic_program (quadraticprogramelement attribute)": [[84, "qiskit_optimization.problems.QuadraticProgramElement.quadratic_program"]], "variable (class in qiskit_optimization.problems)": [[85, "qiskit_optimization.problems.Variable"]], "as_tuple() (variable method)": [[85, "qiskit_optimization.problems.Variable.as_tuple"]], "lowerbound (variable attribute)": [[85, "qiskit_optimization.problems.Variable.lowerbound"]], "name (variable attribute)": [[85, "qiskit_optimization.problems.Variable.name"]], "quadratic_program (variable attribute)": [[85, "qiskit_optimization.problems.Variable.quadratic_program"]], "upperbound (variable attribute)": [[85, "qiskit_optimization.problems.Variable.upperbound"]], "vartype (variable attribute)": [[85, "qiskit_optimization.problems.Variable.vartype"]], "from_docplex_mp() (in module qiskit_optimization.translators)": [[86, "qiskit_optimization.translators.from_docplex_mp"]], "from_gurobipy() (in module qiskit_optimization.translators)": [[87, "qiskit_optimization.translators.from_gurobipy"]], "from_ising() (in module qiskit_optimization.translators)": [[88, "qiskit_optimization.translators.from_ising"]], "to_docplex_mp() (in module qiskit_optimization.translators)": [[89, "qiskit_optimization.translators.to_docplex_mp"]], "to_gurobipy() (in module qiskit_optimization.translators)": [[90, "qiskit_optimization.translators.to_gurobipy"]], "to_ising() (in module qiskit_optimization.translators)": [[91, "qiskit_optimization.translators.to_ising"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["apidocs/qiskit_optimization", "apidocs/qiskit_optimization.algorithms", "apidocs/qiskit_optimization.algorithms.qrao", "apidocs/qiskit_optimization.applications", "apidocs/qiskit_optimization.converters", "apidocs/qiskit_optimization.problems", "apidocs/qiskit_optimization.translators", "explanations/index", "explanations/qrao", "getting_started", "index", "migration/01_migration_guide_to_v0.5", "migration/02_migration_guide_to_v0.6", "migration/index", "release_notes", "stubs/qiskit_optimization.QiskitOptimizationError", "stubs/qiskit_optimization.QuadraticProgram", "stubs/qiskit_optimization.algorithms.ADMMOptimizationResult", "stubs/qiskit_optimization.algorithms.ADMMOptimizer", "stubs/qiskit_optimization.algorithms.ADMMParameters", "stubs/qiskit_optimization.algorithms.ADMMState", "stubs/qiskit_optimization.algorithms.BaseAggregator", "stubs/qiskit_optimization.algorithms.CobylaOptimizer", "stubs/qiskit_optimization.algorithms.CplexOptimizer", "stubs/qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult", "stubs/qiskit_optimization.algorithms.GoemansWilliamsonOptimizer", "stubs/qiskit_optimization.algorithms.GroverOptimizationResult", "stubs/qiskit_optimization.algorithms.GroverOptimizer", "stubs/qiskit_optimization.algorithms.GurobiOptimizer", "stubs/qiskit_optimization.algorithms.IntermediateResult", "stubs/qiskit_optimization.algorithms.MeanAggregator", "stubs/qiskit_optimization.algorithms.MinimumEigenOptimizationResult", "stubs/qiskit_optimization.algorithms.MinimumEigenOptimizer", "stubs/qiskit_optimization.algorithms.MultiStartOptimizer", "stubs/qiskit_optimization.algorithms.OptimizationAlgorithm", "stubs/qiskit_optimization.algorithms.OptimizationResult", "stubs/qiskit_optimization.algorithms.OptimizationResultStatus", "stubs/qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult", "stubs/qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizer", "stubs/qiskit_optimization.algorithms.ScipyMilpOptimizer", "stubs/qiskit_optimization.algorithms.SlsqpOptimizationResult", "stubs/qiskit_optimization.algorithms.SlsqpOptimizer", "stubs/qiskit_optimization.algorithms.SolutionSample", "stubs/qiskit_optimization.algorithms.WarmStartQAOAFactory", "stubs/qiskit_optimization.algorithms.WarmStartQAOAOptimizer", "stubs/qiskit_optimization.algorithms.qrao.EncodingCommutationVerifier", "stubs/qiskit_optimization.algorithms.qrao.MagicRounding", "stubs/qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding", "stubs/qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult", "stubs/qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer", "stubs/qiskit_optimization.algorithms.qrao.RoundingContext", "stubs/qiskit_optimization.algorithms.qrao.RoundingResult", "stubs/qiskit_optimization.algorithms.qrao.RoundingScheme", "stubs/qiskit_optimization.algorithms.qrao.SemideterministicRounding", "stubs/qiskit_optimization.applications.BinPacking", "stubs/qiskit_optimization.applications.Clique", "stubs/qiskit_optimization.applications.ExactCover", "stubs/qiskit_optimization.applications.GraphOptimizationApplication", "stubs/qiskit_optimization.applications.GraphPartition", "stubs/qiskit_optimization.applications.Knapsack", "stubs/qiskit_optimization.applications.Maxcut", "stubs/qiskit_optimization.applications.NumberPartition", "stubs/qiskit_optimization.applications.OptimizationApplication", "stubs/qiskit_optimization.applications.SKModel", "stubs/qiskit_optimization.applications.SetPacking", "stubs/qiskit_optimization.applications.StableSet", "stubs/qiskit_optimization.applications.Tsp", "stubs/qiskit_optimization.applications.VehicleRouting", "stubs/qiskit_optimization.applications.VertexCover", "stubs/qiskit_optimization.converters.InequalityToEquality", "stubs/qiskit_optimization.converters.IntegerToBinary", "stubs/qiskit_optimization.converters.LinearEqualityToPenalty", "stubs/qiskit_optimization.converters.LinearInequalityToPenalty", "stubs/qiskit_optimization.converters.MaximizeToMinimize", "stubs/qiskit_optimization.converters.MinimizeToMaximize", "stubs/qiskit_optimization.converters.QuadraticProgramConverter", "stubs/qiskit_optimization.converters.QuadraticProgramToQubo", "stubs/qiskit_optimization.infinity.INFINITY", "stubs/qiskit_optimization.problems.Constraint", "stubs/qiskit_optimization.problems.LinearConstraint", "stubs/qiskit_optimization.problems.LinearExpression", "stubs/qiskit_optimization.problems.QuadraticConstraint", "stubs/qiskit_optimization.problems.QuadraticExpression", "stubs/qiskit_optimization.problems.QuadraticObjective", "stubs/qiskit_optimization.problems.QuadraticProgramElement", "stubs/qiskit_optimization.problems.Variable", "stubs/qiskit_optimization.translators.from_docplex_mp", "stubs/qiskit_optimization.translators.from_gurobipy", "stubs/qiskit_optimization.translators.from_ising", "stubs/qiskit_optimization.translators.to_docplex_mp", "stubs/qiskit_optimization.translators.to_gurobipy", "stubs/qiskit_optimization.translators.to_ising", "tutorials/01_quadratic_program", "tutorials/02_converters_for_quadratic_programs", "tutorials/03_minimum_eigen_optimizer", "tutorials/04_grover_optimizer", "tutorials/05_admm_optimizer", "tutorials/06_examples_max_cut_and_tsp", "tutorials/07_examples_vehicle_routing", "tutorials/08_cvar_optimization", "tutorials/09_application_classes", "tutorials/10_warm_start_qaoa", "tutorials/11_using_classical_optimization_solvers_and_models", "tutorials/12_quantum_random_access_optimizer", "tutorials/index"], "filenames": ["apidocs/qiskit_optimization.rst", "apidocs/qiskit_optimization.algorithms.rst", "apidocs/qiskit_optimization.algorithms.qrao.rst", "apidocs/qiskit_optimization.applications.rst", "apidocs/qiskit_optimization.converters.rst", "apidocs/qiskit_optimization.problems.rst", "apidocs/qiskit_optimization.translators.rst", "explanations/index.rst", "explanations/qrao.rst", "getting_started.rst", "index.rst", "migration/01_migration_guide_to_v0.5.rst", "migration/02_migration_guide_to_v0.6.rst", "migration/index.rst", "release_notes.rst", "stubs/qiskit_optimization.QiskitOptimizationError.rst", "stubs/qiskit_optimization.QuadraticProgram.rst", "stubs/qiskit_optimization.algorithms.ADMMOptimizationResult.rst", "stubs/qiskit_optimization.algorithms.ADMMOptimizer.rst", "stubs/qiskit_optimization.algorithms.ADMMParameters.rst", "stubs/qiskit_optimization.algorithms.ADMMState.rst", "stubs/qiskit_optimization.algorithms.BaseAggregator.rst", "stubs/qiskit_optimization.algorithms.CobylaOptimizer.rst", "stubs/qiskit_optimization.algorithms.CplexOptimizer.rst", "stubs/qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.rst", "stubs/qiskit_optimization.algorithms.GoemansWilliamsonOptimizer.rst", "stubs/qiskit_optimization.algorithms.GroverOptimizationResult.rst", "stubs/qiskit_optimization.algorithms.GroverOptimizer.rst", "stubs/qiskit_optimization.algorithms.GurobiOptimizer.rst", "stubs/qiskit_optimization.algorithms.IntermediateResult.rst", "stubs/qiskit_optimization.algorithms.MeanAggregator.rst", "stubs/qiskit_optimization.algorithms.MinimumEigenOptimizationResult.rst", "stubs/qiskit_optimization.algorithms.MinimumEigenOptimizer.rst", "stubs/qiskit_optimization.algorithms.MultiStartOptimizer.rst", "stubs/qiskit_optimization.algorithms.OptimizationAlgorithm.rst", "stubs/qiskit_optimization.algorithms.OptimizationResult.rst", "stubs/qiskit_optimization.algorithms.OptimizationResultStatus.rst", "stubs/qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.rst", "stubs/qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizer.rst", "stubs/qiskit_optimization.algorithms.ScipyMilpOptimizer.rst", "stubs/qiskit_optimization.algorithms.SlsqpOptimizationResult.rst", "stubs/qiskit_optimization.algorithms.SlsqpOptimizer.rst", "stubs/qiskit_optimization.algorithms.SolutionSample.rst", "stubs/qiskit_optimization.algorithms.WarmStartQAOAFactory.rst", "stubs/qiskit_optimization.algorithms.WarmStartQAOAOptimizer.rst", "stubs/qiskit_optimization.algorithms.qrao.EncodingCommutationVerifier.rst", "stubs/qiskit_optimization.algorithms.qrao.MagicRounding.rst", "stubs/qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.rst", "stubs/qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.rst", "stubs/qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer.rst", "stubs/qiskit_optimization.algorithms.qrao.RoundingContext.rst", "stubs/qiskit_optimization.algorithms.qrao.RoundingResult.rst", "stubs/qiskit_optimization.algorithms.qrao.RoundingScheme.rst", "stubs/qiskit_optimization.algorithms.qrao.SemideterministicRounding.rst", "stubs/qiskit_optimization.applications.BinPacking.rst", "stubs/qiskit_optimization.applications.Clique.rst", "stubs/qiskit_optimization.applications.ExactCover.rst", "stubs/qiskit_optimization.applications.GraphOptimizationApplication.rst", "stubs/qiskit_optimization.applications.GraphPartition.rst", "stubs/qiskit_optimization.applications.Knapsack.rst", "stubs/qiskit_optimization.applications.Maxcut.rst", "stubs/qiskit_optimization.applications.NumberPartition.rst", "stubs/qiskit_optimization.applications.OptimizationApplication.rst", "stubs/qiskit_optimization.applications.SKModel.rst", "stubs/qiskit_optimization.applications.SetPacking.rst", "stubs/qiskit_optimization.applications.StableSet.rst", "stubs/qiskit_optimization.applications.Tsp.rst", "stubs/qiskit_optimization.applications.VehicleRouting.rst", "stubs/qiskit_optimization.applications.VertexCover.rst", "stubs/qiskit_optimization.converters.InequalityToEquality.rst", "stubs/qiskit_optimization.converters.IntegerToBinary.rst", "stubs/qiskit_optimization.converters.LinearEqualityToPenalty.rst", "stubs/qiskit_optimization.converters.LinearInequalityToPenalty.rst", "stubs/qiskit_optimization.converters.MaximizeToMinimize.rst", "stubs/qiskit_optimization.converters.MinimizeToMaximize.rst", "stubs/qiskit_optimization.converters.QuadraticProgramConverter.rst", "stubs/qiskit_optimization.converters.QuadraticProgramToQubo.rst", "stubs/qiskit_optimization.infinity.INFINITY.rst", "stubs/qiskit_optimization.problems.Constraint.rst", "stubs/qiskit_optimization.problems.LinearConstraint.rst", "stubs/qiskit_optimization.problems.LinearExpression.rst", "stubs/qiskit_optimization.problems.QuadraticConstraint.rst", "stubs/qiskit_optimization.problems.QuadraticExpression.rst", "stubs/qiskit_optimization.problems.QuadraticObjective.rst", "stubs/qiskit_optimization.problems.QuadraticProgramElement.rst", "stubs/qiskit_optimization.problems.Variable.rst", "stubs/qiskit_optimization.translators.from_docplex_mp.rst", "stubs/qiskit_optimization.translators.from_gurobipy.rst", "stubs/qiskit_optimization.translators.from_ising.rst", "stubs/qiskit_optimization.translators.to_docplex_mp.rst", "stubs/qiskit_optimization.translators.to_gurobipy.rst", "stubs/qiskit_optimization.translators.to_ising.rst", "tutorials/01_quadratic_program.ipynb", "tutorials/02_converters_for_quadratic_programs.ipynb", "tutorials/03_minimum_eigen_optimizer.ipynb", "tutorials/04_grover_optimizer.ipynb", "tutorials/05_admm_optimizer.ipynb", "tutorials/06_examples_max_cut_and_tsp.ipynb", "tutorials/07_examples_vehicle_routing.ipynb", "tutorials/08_cvar_optimization.ipynb", "tutorials/09_application_classes.ipynb", "tutorials/10_warm_start_qaoa.ipynb", "tutorials/11_using_classical_optimization_solvers_and_models.ipynb", "tutorials/12_quantum_random_access_optimizer.ipynb", "tutorials/index.rst"], "titles": ["Qiskit Optimization API Reference", "Optimization algorithms (qiskit_optimization.algorithms)", "Quantum Random Access Optimization (qiskit_optimization.algorithms.qrao)", "Optimization applications (qiskit_optimization.applications)", "Optimization converters (qiskit_optimization.converters)", "Optimization problems (qiskit_optimization.problems)", "Quadratic program translators (qiskit_optimization.translators)", "Qiskit Optimization Explanations", "Background on Quantum Random Access Optimization: Quantum relaxations, quantum random access codes, rounding schemes", "Getting started", "Qiskit Optimization overview", "Qiskit Optimization v0.5 Migration Guide", "Qiskit Optimization v0.6 Migration Guide", "Qiskit Optimization Migration Guide", "Release Notes", "QiskitOptimizationError", "QuadraticProgram", "ADMMOptimizationResult", "ADMMOptimizer", "ADMMParameters", "ADMMState", "BaseAggregator", "CobylaOptimizer", "CplexOptimizer", "GoemansWilliamsonOptimizationResult", "GoemansWilliamsonOptimizer", "GroverOptimizationResult", "GroverOptimizer", "GurobiOptimizer", "IntermediateResult", "MeanAggregator", "MinimumEigenOptimizationResult", "MinimumEigenOptimizer", "MultiStartOptimizer", "OptimizationAlgorithm", "OptimizationResult", "OptimizationResultStatus", "RecursiveMinimumEigenOptimizationResult", "RecursiveMinimumEigenOptimizer", "ScipyMilpOptimizer", "SlsqpOptimizationResult", "SlsqpOptimizer", "SolutionSample", "WarmStartQAOAFactory", "WarmStartQAOAOptimizer", "EncodingCommutationVerifier", "MagicRounding", "QuantumRandomAccessEncoding", "QuantumRandomAccessOptimizationResult", "QuantumRandomAccessOptimizer", "RoundingContext", "RoundingResult", "RoundingScheme", "SemideterministicRounding", "BinPacking", "Clique", "ExactCover", "GraphOptimizationApplication", "GraphPartition", "Knapsack", "Maxcut", "NumberPartition", "OptimizationApplication", "SKModel", "SetPacking", "StableSet", "Tsp", "VehicleRouting", "VertexCover", "InequalityToEquality", "IntegerToBinary", "LinearEqualityToPenalty", "LinearInequalityToPenalty", "MaximizeToMinimize", "MinimizeToMaximize", "QuadraticProgramConverter", "QuadraticProgramToQubo", "INFINITY", "Constraint", "LinearConstraint", "LinearExpression", "QuadraticConstraint", "QuadraticExpression", "QuadraticObjective", "QuadraticProgramElement", "Variable", "from_docplex_mp", "from_gurobipy", "from_ising", "to_docplex_mp", "to_gurobipy", "to_ising", "Quadratic Programs", "Converters for Quadratic Programs", "Minimum Eigen Optimizer", "Grover Optimizer", "ADMM Optimizer", "Max-Cut and Traveling Salesman Problem", "Vehicle Routing", "Improving Variational Quantum Optimization using CVaR", "Application Classes for Optimization Problems", "Warm-starting quantum optimization", "Using Classical Optimization Solvers and Models with Qiskit Optimization", "Quantum Random Access Optimization", "Optimization Tutorials"], "terms": {"0": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104], "6": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104], "cover": [0, 10, 14, 56, 68], "whole": [0, 10], "rang": [0, 10, 14, 16, 43, 44, 92, 97, 98, 99, 101], "from": [0, 2, 8, 9, 10, 11, 12, 14, 16, 17, 22, 23, 24, 25, 26, 28, 29, 31, 32, 33, 35, 37, 38, 39, 40, 41, 43, 44, 46, 48, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 86, 88, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103], "high": [0, 2, 10, 66, 67, 103], "level": [0, 2, 10, 85, 98, 99, 103], "model": [0, 6, 10, 14, 16, 23, 28, 55, 63, 72, 86, 87, 89, 90, 93, 95, 96, 97, 99, 101], "problem": [0, 1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 47, 48, 49, 50, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 84, 88, 91, 92, 93, 94, 96, 98, 99, 101, 102], "automat": [0, 2, 9, 10, 14, 71, 72, 76, 86, 94, 99, 102, 103], "convers": [0, 4, 8, 10, 71, 72, 75, 76, 92, 93, 94], "differ": [0, 2, 4, 8, 10, 11, 14, 27, 32, 38, 40, 44, 71, 72, 73, 74, 93, 94, 96, 97, 98, 99, 101, 103], "requir": [0, 2, 9, 10, 16, 46, 72, 75, 93, 95, 97, 98, 103], "represent": [0, 4, 10, 16, 63, 79, 80, 81, 82, 83, 85, 92, 93, 94, 97, 98, 99, 103], "suit": [0, 10], "easi": [0, 10, 57, 62, 97, 101], "us": [0, 2, 7, 8, 9, 10, 11, 12, 14, 16, 18, 19, 22, 23, 26, 27, 28, 32, 33, 34, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49, 51, 53, 57, 62, 69, 70, 71, 72, 75, 76, 78, 80, 82, 85, 86, 92, 93, 94, 96, 97, 101], "quantum": [0, 7, 10, 14, 18, 27, 43, 44, 46, 47, 48, 49, 70, 93, 94, 95, 100], "algorithm": [0, 8, 9, 10, 11, 12, 14, 17, 18, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 44, 48, 93, 94, 95, 97, 98, 99, 100, 101, 102, 103], "ar": [0, 5, 8, 9, 10, 11, 13, 14, 16, 19, 20, 22, 27, 29, 33, 38, 41, 46, 47, 49, 53, 63, 69, 71, 72, 76, 82, 88, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103], "readi": [0, 10, 98, 103], "run": [0, 9, 10, 14, 19, 22, 23, 27, 28, 32, 33, 34, 38, 39, 41, 44, 95, 96, 98, 99, 103], "classic": [0, 2, 8, 10, 14, 18, 94, 97, 99, 103], "simul": [0, 10, 46, 96, 98, 103], "well": [0, 10, 14, 16, 32, 92, 97, 103], "real": [0, 10, 97, 102], "devic": [0, 10, 94, 96, 97, 103], "via": [0, 2, 10, 16, 19, 22, 37, 41, 80, 82, 96, 98, 102, 103], "thi": [0, 2, 4, 7, 8, 9, 11, 12, 14, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 53, 55, 70, 72, 76, 85, 86, 87, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "enabl": [0, 2, 9, 10, 14, 97, 103], "effici": [0, 9, 10, 14, 96, 97], "docplex": [0, 10, 14, 86, 89, 93, 95, 96, 99, 101], "A": [0, 10, 16, 17, 18, 21, 22, 24, 25, 26, 27, 31, 32, 33, 35, 37, 38, 40, 41, 42, 43, 44, 47, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 72, 73, 74, 76, 77, 85, 91, 92, 94, 95, 96, 97, 98, 103], "uniform": [0, 10, 46], "interfac": [0, 10, 11, 12, 14, 84], "between": [0, 4, 6, 8, 10, 14, 43, 44, 93, 96, 97, 98, 99, 100, 103], "allow": [0, 2, 8, 9, 10, 11, 12, 14, 35, 94, 97, 98, 103], "user": [0, 2, 8, 10, 11, 12, 14, 29, 35, 44, 72, 100, 103], "solv": [0, 2, 8, 10, 11, 12, 14, 18, 19, 20, 22, 23, 25, 27, 28, 32, 33, 34, 35, 38, 39, 41, 44, 49, 69, 70, 71, 72, 76, 93, 95, 96, 97, 98, 99, 100, 101, 102], "larg": [0, 10, 14, 93, 97], "set": [0, 4, 8, 10, 11, 14, 15, 16, 19, 23, 27, 28, 39, 47, 60, 64, 65, 92, 96, 97, 98, 99, 100, 101, 102], "variat": [0, 10, 38, 94, 95, 96, 98, 103], "approxim": [0, 2, 8, 10, 14, 25, 32, 46, 93, 95, 98, 101, 103], "qaoa": [0, 8, 10, 14, 32, 38, 43, 44, 93, 94, 95, 96, 97, 100, 102], "grover": [0, 10, 26, 27], "adapt": [0, 10, 27, 97, 98], "search": [0, 10, 27, 97, 103], "groveroptim": [0, 10, 14, 26, 93, 94, 96], "leverag": [0, 2, 10, 11, 14, 94, 96, 101, 103], "fundament": [0, 10], "minimum": [0, 14, 27, 31, 32, 38, 44, 46, 47, 48, 49, 66, 67, 93, 96, 97, 98, 100, 103], "eigensolv": [0, 32, 44, 46, 48, 49, 95, 96, 97, 98, 99, 100, 103], "provid": [0, 2, 7, 8, 10, 11, 12, 13, 14, 16, 22, 23, 27, 28, 32, 39, 41, 49, 50, 93, 94, 96, 97, 98, 99, 100, 102, 103], "furthermor": [0, 10, 97], "modular": [0, 10], "design": [0, 2, 10, 47, 96, 98, 103], "easili": [0, 10, 92, 100], "extend": [0, 8, 9, 10, 98], "facilit": [0, 10], "rapid": [0, 10], "develop": [0, 9, 10, 14], "test": [0, 9, 10, 96, 99], "new": [0, 2, 8, 9, 10, 12, 35, 63, 70, 76, 80, 82, 85, 96, 97, 98, 103], "compat": [0, 9, 10, 18, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 44, 49, 76, 93, 98, 103], "also": [0, 8, 9, 10, 11, 14, 28, 92, 93, 94, 95, 96, 97, 98, 100, 103], "valid": [0, 8, 10, 16, 96], "benchmark": [0, 10, 94, 96], "support": [0, 9, 11, 12, 14, 16, 39, 47, 49, 69, 70, 72, 86, 87, 89, 90, 92, 94, 96, 97, 102], "quadrat": [0, 8, 14, 16, 25, 32, 41, 47, 75, 79, 81, 82, 83, 86, 87, 88, 89, 90, 94, 95, 96, 97, 98, 101, 102, 103], "constrain": [0, 8, 16, 92, 95, 96], "program": [0, 9, 14, 16, 25, 75, 79, 81, 83, 86, 87, 88, 89, 90, 94, 96, 97, 98, 101], "simplic": 0, "we": [0, 2, 8, 11, 12, 14, 82, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "them": [0, 8, 11, 12, 22, 30, 41, 93, 98, 101, 103], "just": [0, 24, 93], "binari": [0, 2, 8, 11, 14, 16, 18, 19, 25, 32, 47, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 72, 86, 87, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103], "integ": [0, 14, 16, 32, 47, 49, 61, 69, 70, 86, 87, 91, 92, 93, 94, 95, 98, 100, 101, 102], "continu": [0, 8, 14, 16, 18, 19, 22, 41, 44, 69, 85, 86, 87, 91, 92, 96, 97, 98, 101], "variabl": [0, 2, 8, 11, 14, 16, 17, 19, 20, 22, 24, 26, 31, 32, 33, 35, 37, 38, 40, 41, 42, 43, 44, 47, 48, 49, 55, 56, 59, 64, 65, 68, 69, 70, 71, 72, 73, 74, 78, 79, 80, 81, 82, 83, 86, 87, 88, 91, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "equal": [0, 8, 14, 16, 19, 32, 35, 38, 54, 69, 71, 72, 76, 93, 94, 95, 96, 98, 100, 103], "inequ": [0, 14, 16, 69, 71, 72, 93, 96], "constraint": [0, 8, 11, 14, 16, 19, 22, 32, 38, 39, 47, 69, 70, 71, 72, 76, 79, 81, 86, 87, 91, 93, 94, 95, 96, 97, 98, 100, 101, 103], "class": [0, 2, 5, 9, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 92, 93, 94, 96, 98, 101, 103], "ha": [0, 2, 8, 9, 11, 12, 13, 14, 16, 27, 32, 33, 39, 46, 47, 49, 73, 74, 88, 92, 93, 94, 95, 97, 98, 100, 101, 102, 103], "vast": 0, "amount": [0, 95, 97], "relev": [0, 20, 97, 103], "applic": [0, 9, 14, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 103], "while": [0, 14, 93, 95, 98, 99, 101, 103], "still": [0, 14, 16, 95, 97, 99, 101], "being": [0, 9, 20, 37, 40, 92, 94, 95, 97, 98], "matric": [0, 8, 92, 94], "vector": [0, 32, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 92, 96, 98, 100, 101], "some": [0, 8, 9, 14, 16, 72, 92, 97, 98, 99, 102, 103], "veri": [0, 94], "interest": [0, 8, 94, 95, 97], "sub": [0, 33, 92, 98], "convex": [0, 23, 28, 39, 96, 101], "which": [0, 8, 9, 11, 13, 14, 16, 46, 49, 53, 72, 92, 93, 94, 95, 96, 97, 98, 101, 103], "can": [0, 2, 8, 9, 11, 12, 14, 16, 18, 19, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 43, 44, 46, 47, 49, 55, 57, 58, 60, 65, 66, 67, 68, 76, 80, 82, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103], "unconstrain": [0, 8, 32, 47, 71, 93, 94, 95, 99, 101, 103], "qubo": [0, 8, 14, 18, 19, 26, 27, 31, 32, 38, 44, 47, 49, 72, 76, 93, 96, 97, 98, 100, 103], "mani": [0, 8, 93, 94, 97, 98, 101, 103], "np": [0, 35, 48, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 94, 97, 98, 99, 101, 103], "complet": [0, 41, 97, 98, 100], "i": [0, 2, 4, 8, 9, 10, 11, 12, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 32, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 49, 50, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 82, 85, 86, 88, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "e": [0, 8, 9, 14, 16, 19, 22, 27, 32, 38, 41, 44, 49, 63, 76, 82, 88, 91, 92, 93, 94, 95, 96, 97, 98, 101, 102], "intract": 0, "In": [0, 8, 9, 38, 76, 92, 93, 94, 95, 96, 97, 98, 99, 103], "addit": [0, 8, 9, 14, 17, 24, 26, 31, 35, 37, 40, 48, 69, 92, 93, 97, 98, 103], "standard": [0, 2, 14, 43, 44, 94, 99, 103], "python": [0, 9, 11, 14, 102], "error": [0, 11, 14, 15, 92, 98], "rais": [0, 11, 14, 16, 18, 22, 23, 27, 28, 32, 33, 34, 35, 38, 39, 41, 43, 44, 46, 47, 49, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92], "circumst": 0, "cannot": [0, 9, 11, 12, 14, 16, 27, 92], "proce": [0, 98, 103], "The": [2, 5, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103], "modul": [2, 10, 12, 15, 22, 23, 28, 32, 34, 39, 41, 75, 92, 93, 97, 101, 103], "method": [2, 7, 9, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 92, 93, 94, 96, 97, 98, 103], "combinatori": [2, 8, 95, 97, 98], "1": [2, 11, 14, 16, 18, 19, 22, 23, 25, 29, 33, 35, 36, 37, 38, 41, 43, 44, 47, 49, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 70, 72, 82, 88, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103], "approach": [2, 8, 14, 93, 94, 98, 103], "incorpor": [2, 14, 103], "code": [2, 7, 9, 11, 12, 13, 14, 47, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "qrac": [2, 14, 47, 103], "tool": [2, 8, 11, 14, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "multipl": [2, 8, 14, 16, 92, 94, 103], "singl": [2, 8, 14, 94, 95, 97, 98, 101, 102, 103], "qubit": [2, 8, 14, 16, 26, 27, 47, 49, 88, 91, 95, 97, 98, 100, 101, 103], "therebi": [2, 14, 103], "save": [2, 14, 102, 103], "resourc": [2, 11, 12, 14, 103], "explor": [2, 14, 24, 95, 103], "larger": [2, 14, 103], "instanc": [2, 14, 16, 18, 27, 31, 32, 33, 37, 38, 44, 47, 49, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 84, 93, 94, 96, 97, 98, 99, 100, 101, 103], "comput": [2, 8, 14, 17, 18, 19, 20, 25, 32, 44, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 94, 96, 98, 100, 101, 103], "produc": [2, 14, 43, 101, 103], "local": [2, 9, 14, 22, 33, 41, 98, 103], "hamiltonian": [2, 14, 16, 32, 47, 49, 50, 63, 88, 91, 93, 94, 101], "whose": [2, 14, 32, 55, 56, 59, 61, 64, 65, 66, 68, 92, 97, 100, 103], "ground": [2, 14, 32, 93, 94, 101, 103], "state": [2, 11, 12, 14, 17, 20, 32, 38, 43, 44, 47, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 93, 94, 95, 96, 97, 98, 101, 103], "vqe": [2, 8, 14, 93, 94, 95, 96, 97, 98, 99, 103], "yield": [2, 8, 14, 97, 98, 103], "solut": [2, 8, 14, 16, 17, 19, 24, 26, 31, 32, 35, 36, 37, 40, 42, 43, 44, 46, 48, 49, 53, 54, 60, 66, 93, 94, 95, 97, 100, 101, 102], "origin": [2, 4, 8, 11, 14, 17, 24, 26, 31, 32, 35, 37, 40, 47, 48, 55, 57, 58, 60, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "through": [2, 11, 12, 97, 103], "seri": [2, 103], "3": [2, 11, 12, 19, 22, 27, 35, 47, 49, 69, 82, 92, 93, 94, 95, 97, 99, 100, 101, 102, 103], "quantumrandomaccessencod": [2, 14, 45, 48, 49, 50, 103], "relax": [2, 7, 19, 43, 44, 45, 47, 48, 49, 50], "fewer": [2, 95, 103], "semideterministicround": [2, 14, 49, 103], "magicround": 2, "obtain": [2, 8, 14, 31, 35, 36, 37, 43, 48, 51, 94, 96, 97, 98, 101, 102, 103], "back": [2, 8, 70, 71, 72, 73, 74, 93, 94, 98, 103], "quantumrandomaccessoptim": [2, 14], "perform": [2, 8, 14, 26, 46, 52, 53], "util": [2, 11, 14, 94, 95, 97, 98, 99, 100, 101, 103], "capabl": [2, 103], "two": [2, 8, 14, 58, 60, 92, 93, 94, 97, 98, 100, 102], "solve_relax": [2, 14, 49, 103], "seamless": [2, 14], "workflow": [2, 14, 98, 103], "manag": [2, 14], "procedur": [2, 8, 14, 48, 96], "demonstr": [2, 14, 96, 97, 98, 103], "exampl": [2, 8, 11, 14, 16, 22, 23, 28, 32, 35, 38, 41, 69, 70, 76, 82, 93, 94, 95, 97, 98, 100, 101, 103], "below": [2, 13, 14, 92, 94, 95, 98, 101, 103], "simplifi": [2, 14, 103], "streamlin": [2, 14, 103], "experi": [2, 14], "On": [2, 11, 12, 14], "other": [2, 6, 8, 11, 12, 16, 19, 33, 63, 92, 93, 94, 96, 97, 103], "hand": [2, 11, 12, 14, 16, 78, 79, 81, 92], "offer": [2, 8, 14, 93, 97], "flexibl": [2, 14, 103], "break": [2, 8, 14, 103], "process": [2, 8, 11, 12, 14, 19, 46, 49, 97, 102, 103], "distinct": [2, 8, 14, 98, 103], "step": [2, 14, 37, 95, 97, 101], "featur": [2, 9, 86, 101], "advantag": [2, 14, 97], "when": [2, 8, 14, 19, 22, 27, 32, 35, 38, 41, 43, 44, 55, 57, 58, 60, 65, 66, 67, 68, 92, 95, 101, 102, 103], "need": [2, 8, 11, 14, 16, 21, 30, 46, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "compar": [2, 14, 97, 101, 102, 103], "appli": [2, 8, 9, 14, 18, 22, 23, 27, 28, 32, 33, 34, 38, 39, 41, 44, 46, 93, 94, 95, 99, 100, 101, 102, 103], "potenti": [2, 8, 14, 22, 33, 41, 94, 97, 103], "For": [2, 8, 14, 44, 82, 92, 93, 94, 95, 96, 97, 98, 99, 101, 103], "qiskit_algorithm": [2, 12, 14, 32, 38, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "import": [2, 8, 11, 12, 14, 22, 23, 28, 32, 35, 38, 41, 69, 70, 76, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "cobyla": [2, 11, 12, 14, 22, 94, 96, 99, 100, 101, 102, 103], "qiskit": [2, 9, 14, 15, 16, 22, 23, 28, 32, 34, 39, 41, 75, 88, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103], "circuit": [2, 11, 12, 14, 27, 43, 44, 46, 47, 50, 94, 97, 98, 99, 101, 103], "librari": [2, 11, 12, 14, 97, 98, 99, 103], "realamplitud": [2, 11, 12, 14, 98, 99, 103], "primit": [2, 11, 12, 14, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "estim": [2, 8, 11, 14, 45, 97, 98, 103], "quadraticprogram": [2, 4, 5, 6, 11, 14, 18, 20, 22, 23, 25, 27, 28, 32, 33, 34, 35, 38, 39, 41, 44, 47, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 103], "binary_var": [2, 11, 14, 16, 35, 92, 93, 94, 95, 96, 98, 101, 102], "x": [2, 8, 11, 14, 16, 17, 24, 25, 26, 31, 35, 37, 40, 41, 42, 47, 48, 54, 60, 63, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 88, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103], "y": [2, 8, 11, 14, 16, 19, 41, 54, 72, 88, 92, 93, 94, 95, 97, 98, 102], "z": [2, 8, 14, 16, 66, 72, 88, 92, 93, 94, 97, 98, 102], "minim": [2, 14, 16, 22, 26, 32, 33, 35, 41, 73, 74, 76, 83, 92, 93, 94, 95, 96, 97, 98, 100, 101], "linear": [2, 11, 14, 16, 32, 35, 38, 39, 41, 72, 76, 79, 80, 81, 83, 86, 87, 88, 93, 94, 96, 97, 98, 100, 101, 102], "2": [2, 11, 16, 19, 22, 29, 35, 36, 41, 47, 49, 67, 72, 82, 88, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103], "ansatz": [2, 11, 12, 14, 97, 98, 99, 103], "min_eigen_solv": [2, 11, 12, 14, 32, 44, 49, 98, 100, 103], "result": [2, 4, 8, 11, 12, 14, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 44, 46, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102], "onli": [2, 8, 11, 12, 14, 22, 25, 29, 32, 39, 41, 44, 46, 69, 71, 73, 74, 87, 93, 94, 95, 97, 98, 102], "must": [2, 8, 11, 14, 44, 46, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "done": [2, 14, 97], "manual": [2, 14, 97], "max_vars_per_qubit": [2, 14, 47, 49, 103], "relaxed_result": [2, 14, 48, 49, 103], "rounding_context": [2, 14, 46, 52, 53, 103], "bryce": [2, 8, 103], "fuller": [2, 8, 103], "et": [2, 8, 38, 44, 72, 98, 99, 103], "al": [2, 8, 38, 44, 72, 98, 99, 103], "arxiv": [2, 8, 14, 18, 38, 44, 46, 53, 63, 70, 72, 93, 94, 95, 96, 97, 98, 101, 103], "2111": [2, 8, 46, 53, 103], "03167": [2, 8, 46, 53, 103], "common": [3, 93], "have": [4, 8, 9, 11, 14, 84, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "function": [4, 8, 9, 14, 16, 17, 22, 24, 26, 27, 31, 32, 35, 37, 39, 40, 41, 42, 45, 47, 48, 72, 83, 86, 87, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "go": 4, "given": [4, 8, 14, 16, 18, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 44, 46, 47, 49, 63, 69, 70, 71, 72, 73, 74, 76, 78, 79, 80, 81, 82, 83, 92, 93, 94, 96, 97, 98, 99, 100, 101, 103], "interpret": [4, 14, 16, 26, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 93, 97, 100], "befor": [4, 8, 14, 26, 44, 93, 94, 98, 102, 103], "return": [4, 8, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103], "an": [4, 5, 8, 9, 10, 11, 12, 14, 16, 17, 18, 22, 23, 24, 25, 27, 28, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 52, 53, 55, 56, 57, 58, 60, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 75, 76, 80, 82, 88, 91, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "appropri": [4, 8, 14, 97, 103], "optimizationresult": [4, 14, 17, 22, 23, 24, 26, 27, 28, 31, 33, 34, 37, 38, 39, 40, 41, 48, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 94, 96], "structur": 5, "defin": [5, 8, 14, 19, 26, 29, 40, 69, 76, 80, 82, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103], "follow": [5, 8, 9, 11, 12, 13, 14, 16, 35, 47, 72, 86, 87, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "intend": [5, 8], "instanti": [5, 16, 98], "directli": [5, 8, 14, 55, 57, 58, 60, 65, 66, 67, 68, 94, 97, 102, 103], "object": [5, 6, 8, 14, 16, 17, 19, 20, 21, 22, 24, 26, 30, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 45, 47, 48, 50, 51, 71, 72, 76, 83, 84, 86, 87, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "type": [5, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 98, 103], "avail": [5, 9, 53, 96, 97, 98, 100, 101, 103], "within": [5, 8, 22, 23, 28, 32, 39, 41, 98, 99, 100, 103], "optim": [6, 9, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 47, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 75, 76, 83, 92, 93, 98], "section": [7, 8, 13, 92, 95, 100, 102, 103], "document": [7, 8, 11, 12, 14, 40, 92, 103], "background": 7, "around": [7, 14, 95, 97, 98], "techniqu": [7, 95, 103], "etc": 7, "both": [7, 8, 11, 14, 27, 93, 94, 96, 97, 101, 102, 103], "random": [7, 14, 25, 46, 47, 48, 49, 53, 63, 66, 67, 95, 97, 98, 99, 100], "access": [7, 9, 11, 12, 14, 47, 48, 49, 92, 96], "round": [7, 14, 46, 48, 49, 50, 51, 52, 53], "scheme": [7, 14, 38, 46, 49, 52, 53, 94, 103], "materi": [8, 97], "deeper": 8, "look": [8, 92, 93, 101], "concept": [8, 94], "behind": 8, "consid": [8, 19, 94, 97, 98, 99, 103], "m_i": 8, "choic": [8, 97, 98], "pm": [8, 14, 63, 97], "instead": [8, 9, 11, 12, 14, 55, 94, 96, 103], "conveni": [8, 93, 97, 102, 103], "term": [8, 14, 16, 25, 32, 38, 71, 72, 81, 88, 92, 93, 94, 96, 97, 98, 99, 101], "notat": [8, 98], "begin": [8, 14, 72, 92, 95, 101, 103], "re": [8, 93, 94, 101], "cast": [8, 97], "observ": [8, 101, 103], "primarili": 8, "although": [8, 103], "idea": 8, "readili": 8, "more": [8, 9, 14, 16, 22, 33, 41, 47, 88, 92, 93, 94, 97, 98, 103], "than": [8, 16, 22, 25, 33, 41, 47, 85, 88, 94, 97, 98, 103], "non": [8, 14, 16, 23, 28, 47, 89, 90, 102], "often": [8, 96, 101, 103], "recast": 8, "though": [8, 9, 11, 94, 98], "incur": 8, "overhead": 8, "mathemat": [8, 92, 97, 98], "strategi": [8, 14, 97, 103], "take": [8, 14, 22, 32, 38, 41, 93, 94, 95, 96, 97, 98, 100, 103], "hard": [8, 97, 98, 101], "map": [8, 16, 19, 47, 70, 88, 91, 93, 94, 98, 103], "onto": 8, "similar": [8, 98], "version": [8, 9, 11, 13, 14, 44, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "usual": [8, 94], "easier": [8, 101], "core": [8, 95, 97], "here": [8, 9, 14, 22, 23, 28, 32, 38, 41, 94, 96, 97, 98, 101, 103], "give": [8, 9, 93, 101], "inform": [8, 9, 14, 17, 23, 24, 26, 28, 31, 35, 37, 39, 40, 41, 46, 48, 50, 53, 66, 67, 75, 94, 95, 97, 103], "about": [8, 9, 35, 53, 93, 94, 95, 97, 103], "one": [8, 9, 11, 14, 16, 22, 24, 27, 32, 33, 38, 41, 44, 47, 69, 70, 76, 94, 95, 96, 97, 98, 100, 103], "heurist": [8, 18, 96, 97, 98, 103], "find": [8, 9, 14, 22, 27, 32, 36, 41, 92, 94, 97, 98, 100, 103], "better": [8, 94, 99], "could": [8, 14, 97, 98, 101, 103], "someth": 8, "discret": 8, "solver": [8, 14, 32, 38, 44, 94, 98, 101], "onc": [8, 38, 47, 94, 97, 100, 101, 103], "extract": 8, "valu": [8, 14, 16, 17, 19, 20, 22, 24, 25, 26, 27, 29, 31, 33, 35, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 53, 59, 66, 67, 72, 78, 79, 80, 81, 82, 83, 86, 88, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "": [8, 9, 14, 16, 19, 47, 55, 73, 74, 92, 94, 95, 96, 97, 98, 101, 102, 103], "admiss": 8, "concret": [8, 95], "see": [8, 9, 11, 14, 16, 23, 40, 88, 91, 93, 95, 97, 98, 102], "goeman": [8, 9, 24, 25], "williamson": [8, 9, 24, 25], "maxcut": [8, 97, 103], "without": [8, 14, 55, 57, 58, 60, 65, 66, 67, 68, 95, 102, 103], "loss": 8, "gener": [8, 14, 22, 25, 35, 39, 41, 43, 46, 47, 53, 63, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "rest": 8, "graph": [8, 9, 25, 55, 57, 58, 60, 63, 65, 66, 67, 68, 95, 97, 98, 100, 103], "g": [8, 14, 16, 32, 38, 63, 92, 93, 94, 95, 96, 97, 98, 102], "v": [8, 14, 94, 96, 97, 98], "our": [8, 93, 95, 97, 98, 101, 103], "goal": 8, "partit": [8, 58, 61, 97, 100, 103], "vertic": [8, 97, 103], "maxim": [8, 11, 14, 16, 41, 55, 59, 73, 74, 92, 93, 97, 99, 100, 101, 102, 103], "number": [8, 14, 16, 19, 22, 25, 26, 27, 33, 38, 40, 41, 44, 46, 47, 49, 51, 53, 54, 61, 63, 66, 67, 71, 72, 73, 74, 83, 93, 94, 97, 98, 99, 100, 102, 103], "edg": [8, 66, 97, 98, 100, 103], "connect": [8, 97, 98, 100], "each": [8, 19, 20, 26, 29, 30, 38, 41, 47, 51, 54, 67, 93, 94, 95, 96, 97, 98, 99, 100, 103], "v_i": 8, "assign": [8, 97, 103], "cut": [8, 25, 60, 93, 98, 100, 102, 103], "text": [8, 14, 16, 72, 92, 93], "m": [8, 14, 86, 92, 93, 95, 97, 98, 99, 101, 102], "sum_": [8, 14, 25, 63, 72, 97, 98], "ij": [8, 97, 98], "e_": 8, "frac": [8, 97], "m_j": 8, "do": [8, 9, 14, 35, 72, 93, 97, 98, 99, 101], "space": [8, 95, 97], "pauli": [8, 14, 16, 46, 53, 88, 94, 97, 103], "embed": 8, "feasibl": [8, 14, 16, 19, 22, 36, 96, 97, 98], "input": [8, 14, 16, 26, 47, 66, 67, 93, 94, 95, 103], "product": [8, 97, 102], "let": [8, 14, 92, 93, 98, 102, 103], "u": [8, 14, 93, 96, 97, 98, 100, 102, 103], "denot": [8, 16, 92, 94, 98], "f": [8, 92, 94, 98, 100, 101, 102, 103], "mapsto": 8, "mathcal": [8, 96], "d": [8, 95, 97, 98, 100, 101, 103], "mathbb": [8, 96, 98], "c": [8, 18, 92, 95, 96, 97, 98, 101, 102], "n": [8, 14, 19, 47, 63, 66, 67, 72, 92, 95, 96, 97, 98, 99, 100, 101, 103], "tr": 8, "big": [8, 14, 86, 98, 102], "h": [8, 14, 63, 97, 98], "cdot": 8, "where": [8, 9, 14, 19, 54, 63, 67, 72, 92, 93, 95, 97, 98, 103], "case": [8, 14, 17, 23, 24, 26, 31, 35, 37, 38, 40, 44, 48, 69, 70, 71, 72, 73, 74, 76, 92, 93, 94, 95, 96, 97, 98, 99, 103], "geq": [8, 14, 72, 92, 93], "qquad": 8, "foral": [8, 96, 97, 98], "order": [8, 14, 16, 35, 66, 88, 91, 92, 94, 96, 97, 103], "guarante": [8, 14, 19, 22, 96, 97, 98], "true": [8, 11, 12, 16, 18, 19, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 44, 49, 76, 88, 92, 94, 96, 97, 98, 101, 102, 103], "enforc": [8, 96, 98], "stronger": [8, 98], "condit": [8, 96, 97, 99], "word": [8, 103], "all": [8, 13, 14, 16, 19, 23, 24, 28, 29, 46, 67, 69, 84, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103], "rather": 8, "simpli": [8, 9, 13, 97], "upper": [8, 14, 16, 22, 33, 41, 80, 82, 92, 93], "bound": [8, 14, 16, 22, 33, 41, 46, 70, 80, 82, 85, 92, 93, 98, 101, 102, 103], "detail": [8, 9, 11, 12, 14, 16, 23, 46, 88, 91, 93, 94, 97, 102, 103], "becom": [8, 97, 101], "crucial": [8, 103], "further": [8, 14, 47, 99, 102], "down": [8, 95, 97, 103], "explicitli": [8, 103], "explic": 8, "full": [8, 96, 102], "base": [8, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 94, 96, 97, 98, 99, 103], "mai": [8, 9, 14, 23, 25, 28, 39, 40, 69, 70, 94, 98, 103], "help": [8, 19, 94], "first": [8, 9, 19, 22, 33, 37, 41, 92, 93, 94, 96, 97, 98, 100, 101, 102], "discuss": [8, 95, 96, 98], "familiar": 8, "languag": [8, 103], "rangl": [8, 95, 97, 98, 101], "otim": [8, 98], "quad": [8, 92, 96, 98], "z_i": [8, 97, 98], "z_j": [8, 97], "indic": [8, 14, 16, 47, 54, 55, 58, 59, 60, 65, 66, 68, 80, 82, 86, 92, 95, 97], "th": [8, 16, 88, 91], "ident": [8, 102], "It": [8, 11, 12, 14, 16, 32, 47, 55, 57, 58, 60, 65, 66, 67, 68, 94, 97, 101, 102, 103], "worth": [8, 97, 98, 103], "convinc": 8, "yourself": 8, "transform": [8, 98], "particular": [8, 14, 96, 98, 103], "sort": [8, 14, 25, 99, 101], "current": [8, 17, 18, 24, 26, 31, 35, 37, 40, 48, 93, 95], "includ": [8, 14, 92, 93, 97, 103], "how": [8, 14, 32, 38, 92, 93, 94, 97, 98, 99, 101], "exactli": [8, 93, 98, 100], "reproduc": 8, "form": [8, 16, 27, 32, 38, 44, 75, 76, 82, 83, 93, 94, 97, 98, 100, 103], "free": [8, 97, 102], "evalu": [8, 14, 22, 78, 79, 80, 81, 82, 83, 97, 98, 99, 103], "superposit": [8, 95], "stand": [8, 96], "analogi": 8, "might": [8, 16, 94, 103], "thei": [8, 11, 14, 72, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "practic": [8, 70, 96, 97, 103], "wai": [8, 9, 82, 92, 93, 97, 98, 101], "measur": [8, 46, 51, 95, 103], "basi": [8, 46, 51, 97, 98, 103], "project": [8, 9, 14, 23, 102], "ani": [8, 11, 14, 16, 17, 22, 23, 24, 26, 31, 33, 35, 37, 40, 41, 48, 72, 78, 79, 80, 81, 82, 83, 85, 88, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "consequ": [8, 103], "imag": 8, "were": [8, 14, 18, 25, 33, 34, 92, 93], "outlin": [8, 32, 38], "1983": 8, "stephen": 8, "wiesner": 8, "context": [8, 14, 46, 49, 53, 95, 97, 103], "commun": [8, 9, 14], "complex": [8, 50, 51, 97], "theori": [8, 55, 65], "conceiv": 8, "co": 8, "opt": 8, "reason": [8, 22], "introduct": 8, "rac": 8, "encourag": [8, 103], "reader": 8, "seek": 8, "out": [8, 9, 14, 16, 55, 57, 58, 60, 65, 66, 67, 68, 92], "k": [8, 96, 98, 103], "copi": [8, 11, 16, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "you": [8, 9, 11, 12, 13, 14, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "probabl": [8, 14, 26, 30, 31, 42, 47, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 94, 95, 97, 99, 101, 102, 103], "previou": [8, 11, 14, 95, 98, 100, 103], "trivial": [8, 14], "write": [8, 16, 28, 98, 102], "854": 8, "789": 8, "respect": [8, 14, 54, 92, 93, 94, 95, 96, 97, 102, 103], "note": [8, 11, 12, 16, 72, 86, 87, 92, 93, 94, 95, 97, 98, 100, 101, 102, 103], "4": [8, 11, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103], "been": [8, 9, 11, 12, 14, 27, 47, 49, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "proven": 8, "imposs": 8, "As": [8, 9, 92, 93, 95, 96, 103], "abov": [8, 9, 93, 95, 96, 98, 101, 103], "decompos": 8, "hermitian": 8, "rho": [8, 14, 19, 20, 96], "left": [8, 16, 78, 79, 81, 93, 97], "ax": [8, 97], "bY": 8, "cz": [8, 97], "right": [8, 16, 78, 79, 81, 92, 93, 99], "b": [8, 19, 92, 93, 96, 97, 98, 102], "associ": [8, 14, 93, 98, 103], "now": [8, 14, 93, 96, 101], "written": [8, 16, 93, 98], "arrai": [8, 14, 25, 55, 57, 58, 60, 62, 65, 66, 67, 68, 72, 80, 82, 92, 93, 94, 98, 99, 101, 102, 103], "l": [8, 16, 96, 98], "ll": [8, 103], "vert": 8, "psi": [8, 97, 98], "langl": [8, 97, 98], "hline": 8, "_m": 8, "m_0": 8, "sqrt": [8, 14, 63, 101], "m_1": 8, "m_2": 8, "end": [8, 14, 16, 29, 36, 72, 92, 94, 95, 101, 102], "tabl": [8, 11, 12], "string": [8, 14, 16, 17, 22, 23, 24, 26, 28, 31, 35, 37, 39, 40, 41, 47, 48, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 92], "scale": [8, 32, 38, 71, 72, 76, 92, 98, 99], "natur": [8, 97, 98, 103], "composit": 8, "tensor": 8, "m_3": 8, "m_4": 8, "m_5": 8, "similarli": [8, 98], "nmid": 8, "pad": 8, "bitstr": [8, 14], "expect": [8, 14, 26, 46, 50, 51, 53, 84, 93, 97, 98, 99, 103], "correspond": [8, 11, 12, 16, 17, 24, 26, 31, 32, 35, 37, 38, 40, 43, 44, 47, 48, 50, 51, 55, 56, 59, 60, 64, 65, 66, 68, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 99, 100, 103], "factor": [8, 14, 19, 27, 32, 38, 44, 49, 71, 72, 76, 92, 93, 99, 103], "depend": [8, 9, 23, 28, 39, 93, 97, 98, 101, 102, 103], "densiti": 8, "recoveri": [8, 47, 103], "substitut": [8, 16, 37, 38], "decis": [8, 19, 47, 49, 96, 97, 98, 103], "uniqu": [8, 25], "under": [8, 9, 11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "p_": 8, "j": [8, 14, 19, 25, 44, 63, 72, 94, 96, 97, 98, 99, 100, 101, 103], "after": [8, 38, 47, 51, 93, 94, 95, 97, 102], "bracket": 8, "index": [8, 9, 16, 35, 67, 80, 82, 92, 98], "make": [8, 16, 47, 55, 92, 97, 98, 103], "clear": [8, 16, 103], "necessarili": 8, "act": 8, "becaus": [8, 11, 12, 14, 93, 96, 103], "longer": [8, 14, 47, 101], "relationship": 8, "mean": [8, 9, 14, 16, 63, 93, 94, 95, 97, 103], "subset": [8, 56, 61, 64, 93, 97, 100, 103], "same": [8, 9, 14, 16, 47, 88, 91, 92, 93, 94, 96, 98, 100, 101, 102], "pose": 8, "try": [8, 11, 22, 23, 27, 28, 32, 33, 34, 38, 39, 41, 44, 92, 94, 97, 98, 100, 103], "ensur": [8, 14, 47, 93, 97, 101], "earlier": [8, 94, 95, 103], "x_i": [8, 14, 63, 72, 92, 93, 97, 101], "x_j": [8, 14, 72, 97], "If": [8, 9, 13, 14, 16, 18, 19, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 44, 46, 47, 49, 53, 66, 69, 71, 72, 76, 86, 88, 91, 92, 94, 96, 98, 100, 102, 103], "behav": [8, 14], "howev": [8, 46, 93, 97, 101, 103], "compos": 8, "recal": 8, "group": [8, 14, 58], "self": [8, 15, 98], "invers": 8, "thu": [8, 25, 92, 93, 94, 99], "deduc": 8, "anoth": [8, 75, 92, 94], "element": [8, 16, 37, 47, 86, 87, 89, 90, 95], "restor": 8, "introduc": [8, 11, 14, 18, 38, 69, 92, 93, 94, 96, 99, 100], "specif": [8, 9, 26, 40, 92, 95, 96, 97, 98], "share": [8, 103], "dot": [8, 92, 98], "accomplish": [8, 47], "color": [8, 55, 57, 58, 60, 65, 66, 67, 68, 95, 97, 98], "final": [8, 22, 40, 41, 93, 94, 96, 97, 98, 99, 103], "rho_": 8, "unlik": [8, 103], "so": [8, 14, 49, 92, 93, 97, 98, 100, 103], "propos": [8, 70, 93, 96, 97], "describ": [8, 22, 27, 32, 38, 39, 40, 41, 44, 46, 49, 76, 95, 97], "wa": [8, 14, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "arbitrari": 8, "close": [8, 28, 97, 98, 103], "would": [8, 93, 97, 98, 99, 103], "handl": [8, 11, 12, 14, 93, 96], "sign": [8, 93], "lead": 8, "rl": 8, "sim": [8, 98], "either": [8, 37, 44, 46, 53, 80, 82, 92, 103], "notic": [8, 11, 63, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "faithfulli": 8, "failur": [8, 17, 24, 26, 31, 35, 36, 37, 40, 48, 69, 70, 71, 72, 73, 74, 94], "decreas": [8, 95], "exponenti": [8, 97, 101], "shot": [8, 11, 12, 46, 51, 99, 103], "three": [8, 92, 93, 95], "One": [8, 97, 103], "per": [8, 26, 47, 49, 103], "taken": [8, 16, 93, 94, 97], "independ": [8, 9, 14, 63, 65, 95], "distinguish": 8, "randomli": [8, 98], "select": [8, 19, 69, 96, 98, 100, 103], "perfectli": 8, "pair": [8, 92, 98], "orthogon": 8, "bar": 8, "everi": [8, 38, 71, 72, 76, 95, 97, 98, 103], "flip": [8, 73, 74], "sampl": [8, 11, 14, 17, 21, 24, 26, 27, 30, 31, 35, 37, 40, 42, 46, 48, 51, 97, 98, 101, 102, 103], "rightarrow": [8, 14, 72, 95, 97], "choos": [8, 46, 69, 96, 97, 98, 103], "essenti": [8, 93, 103], "equival": [8, 93, 94, 95, 97], "pick": 8, "correct": [8, 44, 93, 98], "put": [8, 95, 97, 98], "unknown": [8, 97], "far": 8, "like": [8, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 93], "low": [8, 66, 67], "odd": 8, "fortun": 8, "doe": [8, 11, 14, 16, 19, 32, 49, 71, 83, 94, 95, 97, 103], "lower": [8, 14, 16, 22, 33, 41, 80, 82, 85, 92, 93, 99], "ratio": [8, 47, 103], "certain": [8, 93, 95, 96], "highest": [8, 95, 103], "energi": [8, 14, 97], "eigenst": [8, 32, 97, 99], "t": [8, 9, 14, 16, 44, 92, 96, 97, 98, 99, 101], "leq": [8, 14, 72, 92, 93, 96, 98], "fval": [8, 11, 14, 17, 24, 26, 31, 35, 37, 40, 42, 48, 93, 94, 96, 99, 101, 102, 103], "5": [8, 12, 43, 44, 70, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103], "9": [8, 11, 14, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "2021": 8, "conjug": 8, "sigact": 8, "vol": 8, "15": [8, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "issu": [8, 14, 16, 18, 25, 33, 34, 88, 91, 103], "pp": 8, "78": [8, 93, 100], "88": 8, "link": [8, 98, 102], "masahito": 8, "hayashi": 8, "exist": [8, 11, 12, 14, 16, 71, 72, 91, 93, 97, 101], "enough": [8, 97, 98, 101], "four": 8, "journal": 8, "physic": [8, 94, 97], "8": [8, 14, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "129": 8, "2006": [8, 98], "its": [9, 14, 16, 19, 40, 66, 80, 82, 94, 97, 98], "own": [9, 44, 103], "instruct": [9, 13], "environ": 9, "platform": 9, "should": [9, 14, 19, 29, 33, 35, 43, 44, 89, 90, 94, 95, 97, 103], "refer": [9, 16, 18, 22, 38, 39, 41, 44, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 70, 72, 80, 82, 93, 97, 103], "Then": [9, 94, 95, 96], "focus": [9, 99], "made": [9, 97, 98], "default": [9, 14, 16, 19, 27, 32, 38, 41, 44, 46, 47, 49, 54, 55, 88, 92, 93, 97, 98, 103], "those": [9, 93], "ibm": [9, 11, 14, 23, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103], "cplex": [9, 14, 16, 23, 92, 94, 96, 102], "cvxpy": 9, "matplotlib": [9, 96, 97, 98, 99, 100], "simplest": [9, 98], "your": [9, 11, 12, 14, 92, 100], "virtual": 9, "pip": [9, 14, 98, 102], "alreadi": [9, 14, 16, 43, 49, 103], "sourc": [9, 10, 11, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "most": [9, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 95, 98], "recent": [9, 97], "updat": [9, 14, 16, 19, 20, 95, 96, 102], "packag": [9, 96, 97, 98, 100], "pypi": [9, 23, 102], "repositori": 9, "abil": 9, "inspect": 9, "latest": 9, "sinc": [9, 16, 23, 28, 46, 88, 93, 95, 97, 103], "chang": [9, 14, 22, 43, 44, 95, 101], "clone": 9, "git": 9, "http": [9, 11, 14, 16, 22, 23, 39, 41, 46, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 88, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "github": [9, 14, 16, 88, 91, 92, 103], "com": [9, 14, 16, 23, 88, 91], "creat": [9, 16, 27, 32, 38, 43, 44, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 80, 82, 85, 88, 94, 95, 96, 97, 99, 101, 103], "folder": 9, "call": [9, 14, 38, 47, 49, 92, 93, 94, 97, 103], "cd": 9, "want": [9, 14, 94, 100, 102, 103], "lint": 9, "check": [9, 14, 18, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 44, 49, 76, 98, 103], "r": [9, 94, 95, 96, 97, 98, 99, 102], "dev": 9, "txt": [9, 11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "edit": 9, "mode": [9, 40, 69], "don": 9, "reinstal": 9, "read": [9, 11, 12, 14, 60, 66, 102], "lp": [9, 16, 102], "file": [9, 11, 14, 16, 60, 66, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "usag": [9, 63], "cplexoptim": [9, 14, 35, 93, 96, 101, 102], "wrapper": [9, 22, 23, 28, 32, 39, 41, 93], "separ": [9, 96], "command": 9, "effect": [9, 18], "yet": [9, 47], "cvx": 9, "goemanswilliamsonoptim": [9, 14], "draw": [9, 55, 57, 58, 60, 65, 66, 67, 68, 100, 101, 103], "gurobipi": [9, 14, 28, 87, 90], "gurobi": [9, 14, 28, 102], "gurobioptim": [9, 14, 102], "dive": 9, "tutori": [9, 10, 11, 12, 14, 72, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "open": [10, 14, 16, 102], "framework": [10, 95], "get": [10, 14, 16, 17, 24, 26, 31, 35, 37, 40, 48, 54, 60, 92, 94, 97, 98, 102], "start": [10, 19, 22, 33, 41, 43, 44, 92, 93, 94, 97, 103], "migrat": [10, 14], "guid": [10, 14], "terra": [11, 12, 14, 16, 88, 91, 94], "22": [11, 14, 92, 93, 94, 97, 101, 102], "implement": [11, 18, 19, 20, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 43, 44, 49, 76, 94, 95, 96, 97], "sampler": [11, 12, 14, 27, 46, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "opflow": [11, 14], "deprec": [11, 12, 13, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "futur": [11, 14, 97], "releas": [11, 94], "until": [11, 38, 95, 96, 97, 98, 103], "intent": [11, 12], "explan": [11, 12, 103], "suggest": [11, 12, 97], "basesampl": [11, 14, 27, 46], "backendsampl": 11, "aersampl": 11, "aer": [11, 103], "runtim": [11, 14, 103], "minimum_eigen_solv": 11, "minimum_eigensolv": [11, 12, 14, 103], "minimumeigensolv": [11, 12, 14, 48, 49, 94, 96, 99], "samplingminimumeigensolv": [11, 12, 14, 31, 32, 94], "basic": [11, 12, 87, 93, 94, 98], "But": [11, 12, 94], "except": [11, 12, 15, 23, 27, 28, 39, 92, 93, 94, 98, 100], "inherit": [11, 44, 94], "extens": [11, 12, 97], "eigen": [11, 12, 31, 32, 37, 38, 93, 96, 97, 100, 103], "setup": [11, 92, 99], "qiskit_optim": [11, 12, 14, 22, 23, 28, 32, 35, 38, 41, 69, 70, 76, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "print": [11, 12, 14, 16, 17, 23, 24, 26, 28, 31, 35, 37, 39, 40, 41, 48, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "prettyprint": [11, 14, 16, 17, 24, 26, 31, 35, 37, 40, 48, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103], "name": [11, 14, 16, 17, 24, 26, 31, 35, 37, 40, 41, 48, 60, 66, 70, 78, 79, 80, 81, 82, 85, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103], "subject": [11, 14, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103], "No": [11, 29, 92, 93, 94, 95, 97, 100, 101, 103], "previous": [11, 12, 13, 14, 103], "me": [11, 12], "meo": [11, 12, 100, 102], "statu": [11, 14, 16, 17, 24, 26, 31, 35, 36, 37, 40, 41, 42, 48, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103], "success": [11, 14, 36, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103], "basica": 11, "quantuminst": [11, 14], "backend": [11, 14, 46, 96, 103], "get_backend": [11, 14], "qasm_simul": [11, 14], "1000": [11, 12, 19, 22, 96, 97, 103], "qin": 11, "quantum_inst": [11, 14], "occur": [11, 97], "due": [11, 16, 23, 27, 28, 38, 39, 92, 93, 97, 98], "cell": [11, 92, 98], "typeerror": [11, 27, 32, 38, 49, 84], "ex": 11, "slsqpoptim": [11, 12, 18], "pre_solv": [11, 12, 44, 101], "relax_for_pre_solv": [11, 12, 44, 101], "epsilon": [11, 12, 43, 44, 101], "25": [11, 12, 44, 94, 98, 99, 102], "specifi": [11, 16, 18, 22, 23, 27, 28, 32, 33, 35, 38, 41, 44, 47, 51, 55, 57, 58, 60, 65, 66, 67, 68, 69, 79, 81, 92, 97, 100, 103], "num_value_qubit": [11, 12, 27], "num_iter": [11, 12, 27, 95], "valueerror": [11, 27, 33, 46, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68], "pass": [11, 14, 22, 28, 41, 44, 71, 72, 76, 93, 101, 103], "jupyt": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "qiskit_version_t": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "qiskit_copyright": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "informationqiskit": 11, "softwareversionqiskit": 11, "terra0": 11, "23": [11, 101], "0qiskit": 11, "aer0": 11, "11": [11, 14, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "1qiskit": 11, "optimization0": 11, "machin": [11, 19, 96], "learning0": 11, "0system": [11, 92, 93, 94, 98, 102], "informationpython": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "version3": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "15python": 11, "compilerclang": 11, "14": [11, 22, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "clang": 11, "1400": 11, "29": 11, "102": 11, "buildmain": 11, "oct": 11, "2022": [11, 102], "27": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "25osdarwincpus4memori": 11, "gb": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "16": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "0tue": 11, "dec": 11, "06": [11, 41, 92, 93, 94, 95], "08": [11, 53, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "13": [11, 41, 92, 93, 94, 96, 97, 98, 100, 101, 103], "jst": 11, "part": [11, 14, 16, 81, 83, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "copyright": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "2017": [11, 70, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "licens": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "apach": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "mayobtain": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "root": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "directori": [11, 16, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "tree": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "www": [11, 23, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "org": [11, 14, 22, 23, 39, 41, 46, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 70, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "modif": [11, 47, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "deriv": [11, 86, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "work": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "retain": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "thiscopyright": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "modifi": [11, 19, 43, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "carri": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "indicatingthat": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "alter": [11, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "supersed": [12, 14], "standalon": 12, "replac": [12, 16, 22, 33, 37, 41, 92, 93, 94], "former": [12, 14], "switch": [13, 14], "over": [13, 63, 97, 99, 103], "remov": [13, 14, 16, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "organ": 14, "emphas": 14, "driven": 14, "To": [14, 69, 92, 93, 96, 97, 101, 102, 103], "reflect": 14, "board": 14, "owner": 14, "maintain": [14, 35], "decid": 14, "regardless": 14, "time": [14, 16, 19, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103], "member": 14, "team": 14, "bulk": 14, "legaci": 14, "thing": 14, "noth": 14, "reli": [14, 103], "otherwis": [14, 16, 18, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 44, 49, 69, 72, 73, 74, 76, 88, 99], "immedi": 14, "pin": 14, "sure": [14, 16, 47, 98, 103], "blog": 14, "post": 14, "drop": 14, "add": [14, 16, 92, 93, 94, 98], "scipymilpoptim": 14, "scipi": [14, 22, 39, 40, 41], "milp": [14, 39, 98], "mix": [14, 18, 96, 98], "ad": [14, 16, 32, 71, 72, 76, 93, 97, 98, 101], "encod": [14, 25, 45, 47, 48, 49, 50, 70, 92, 93, 95, 98, 102], "qrao": [14, 103], "7": [14, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "repres": [14, 16, 17, 24, 26, 31, 32, 35, 37, 40, 43, 48, 51, 54, 55, 57, 58, 60, 65, 66, 67, 68, 93, 94, 95, 97, 101, 103], "Ising": [14, 16, 32, 88, 91, 93, 94, 99, 103], "quantum_info": [14, 93], "sparsepauliop": [14, 91, 93, 97, 100, 103], "vqeclient": 14, "qaoaclient": 14, "vqeruntimeresult": 14, "session": 14, "to_is": [14, 16, 94, 97, 99, 100], "oper": [14, 16, 26, 41, 47, 49, 88, 91, 94, 95, 96, 97, 98, 101, 103], "from_is": [14, 16, 94], "accept": [14, 23, 28, 93], "minimumeigenoptim": [14, 18, 37, 38, 44, 95, 96, 97, 98, 99, 100, 101, 102, 103], "numpyminimumeigensolv": [14, 18, 31, 32, 38, 94, 95, 96, 97, 99, 100, 101], "argument": [14, 22, 41, 94, 96, 103], "warmstartqaoaoptim": [14, 101], "incorrect": 14, "vary_rho": [14, 19], "update_rho_by_residu": [14, 19], "admmoptim": [14, 17, 96], "popul": [14, 96], "y_save": 14, "admmstat": [14, 17], "inequalitytoequ": 14, "convert": [14, 16, 27, 32, 35, 38, 44, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 86, 95, 97, 99, 100, 101, 102, 103], "slack": [14, 69, 72, 93], "caus": [14, 103], "turn": [14, 98], "along": [14, 16], "pend": 14, "subsequ": 14, "samplingvq": [14, 94, 96, 97, 98], "keyword": 14, "calcul": [14, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 76, 93, 103], "accordingli": [14, 16, 99], "vqeprogram": 14, "qaoaprogram": 14, "parse_tsplib_format": [14, 66], "did": [14, 46, 93], "pars": 14, "tsplib": [14, 66], "correctli": [14, 16, 93, 95], "extra": 14, "whitespac": 14, "eof": 14, "present": [14, 16, 96, 98], "pretti": [14, 16, 17, 24, 26, 31, 35, 37, 40, 48, 102], "qp": [14, 93, 94, 95, 96, 97, 99, 100, 101, 102], "integer_var": [14, 16, 70, 92, 93, 102], "continuous_var": [14, 16, 41, 92, 96], "binary_var_list": [14, 16, 99], "10": [14, 19, 70, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "integer_var_list": [14, 16], "continuous_var_list": [14, 16], "constant": [14, 16, 47, 77, 83, 88, 91, 92, 94, 98], "linear_constraint": [14, 16, 92, 93, 98, 102], "lin_g": 14, "lin_eq": [14, 92], "quadratic_constraint": [14, 16, 92], "quad_l": 14, "output": [14, 16, 22, 23, 26, 28, 39, 41, 82, 93, 97, 101, 103], "x5": [14, 101], "x6": 14, "q1": 14, "x15": 14, "x16": 14, "x17": 14, "x18": 14, "x19": 14, "x20": 14, "12": [14, 92, 93, 94, 96, 97, 98, 99, 100, 101, 103], "x7": 14, "x8": 14, "x9": 14, "x10": 14, "x11": 14, "x12": 14, "x13": 14, "x14": 14, "format": [14, 16, 55, 57, 58, 60, 62, 65, 66, 67, 68, 76, 92, 93, 94, 99, 102], "str": [14, 16, 17, 18, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 44, 46, 48, 49, 51, 60, 66, 69, 76, 78, 79, 80, 81, 82, 83, 85, 97, 98, 101], "repr": 14, "id": 14, "friendli": 14, "line": [14, 96], "linearconstraint": [14, 16], "linearexpress": 14, "quadraticconstraint": [14, 16], "quadraticexpress": 14, "quadraticobject": 14, "displai": [14, 23, 28, 39, 92, 95, 96, 102], "multi": [14, 18, 22, 33, 41, 96], "empti": [14, 16, 18, 23, 25, 28, 33, 34, 39, 92], "x0": [14, 16, 94, 95, 101], "x1": [14, 35, 94, 95, 101], "x2": [14, 35, 94, 95, 101], "At": [14, 95, 98], "didn": 14, "fail": 14, "insid": [14, 98], "mp": [14, 86, 89, 92, 93, 95, 96, 99, 101, 102], "pleas": [14, 93, 98], "optimizationresultstatu": [14, 17, 24, 26, 31, 35, 37, 40, 42, 48, 94, 102, 103], "q0": [14, 16, 92], "basebackend": 14, "18": [14, 93, 94, 97, 101, 103], "instal": [14, 16, 23, 28, 96, 98, 100, 102], "wrong": 14, "show": [14, 92, 93, 94, 95, 96, 97, 98, 99, 101], "warn": [14, 98], "messag": [14, 15, 18, 22, 25, 27, 32, 33, 34, 38, 40, 41, 44, 49, 76, 102], "printabl": [14, 16], "alwai": [14, 96, 100, 103], "reword": 14, "bin": [14, 54, 97], "pack": [14, 54, 64, 98, 100], "binpack": 14, "en": [14, 23, 54, 55, 56, 58, 59, 60, 61, 64, 65, 66, 67, 68], "wikipedia": [14, 54, 55, 56, 58, 59, 60, 61, 64, 65, 66, 67, 68], "wiki": [14, 54, 55, 56, 58, 59, 60, 61, 64, 65, 66, 67, 68], "bin_packing_problem": [14, 54], "client": [14, 98], "execut": 14, "dedic": 14, "transpil": 14, "swap": 14, "puls": 14, "cross": [14, 97], "reson": 14, "hardwar": [14, 46, 97, 103], "significantli": [14, 103], "reduc": [14, 94], "depth": [14, 94, 97, 98], "improv": [14, 27], "cvar": 14, "ibmq": 14, "load_account": 14, "get_provid": 14, "hub": 14, "q": [14, 82, 92, 95, 96, 98, 99], "main": 14, "ibmq_qasm_simul": 14, "diagon": [14, 101, 103], "eigenvalu": [14, 97, 103], "op": [14, 20, 94, 100], "up": [14, 82, 95, 97], "rep": [14, 97, 99, 100], "p": [14, 47, 72, 96, 97, 99, 103], "repetit": 14, "alpha": [14, 97, 99], "75": [14, 94, 97], "best": [14, 94, 95, 97, 98, 99, 102, 103], "readout": 14, "compute_minimum_eigenvalu": [14, 97], "doc": [14, 22, 23, 39, 41, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "12_qaoa_runtim": 14, "ipynb": [14, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "translat": [14, 32, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 99, 101], "from_docplex_mp": [14, 92, 95, 96, 99, 101, 102], "logic": [14, 32, 44, 86, 103], "express": [14, 79, 80, 81, 82, 86, 92], "logical_and": [14, 86], "logical_or": [14, 86], "logical_not": [14, 86], "mod": [14, 92], "add_constraint": [14, 92, 96, 99, 101, 102], "sherrington": [14, 63], "kirkpatrick": [14, 63], "sk": [14, 63], "skmodel": 14, "ferromagnet": 14, "antiferromagnet": 14, "interact": [14, 97, 98], "disord": [14, 63], "field": [14, 96, 97], "spin": [14, 63, 94], "glass": 14, "configur": [14, 46, 63, 103], "site": [14, 63], "w_": [14, 63, 97, 98], "x_ix_j": [14, 63], "chosen": [14, 63, 97, 98], "uniformli": [14, 22, 33, 41, 46, 63], "dmitri": [14, 63], "panchenko": [14, 63], "overview": [14, 63, 93], "ab": [14, 46, 53, 63, 98], "1211": [14, 63], "1094": [14, 63], "from_docplex": 14, "to_docplex": 14, "These": [14, 93, 98, 103], "to_docplex_mp": [14, 93, 102], "renam": 14, "avoid": 14, "confus": 14, "fact": 14, "cloud": 14, "vqeprogramresult": 14, "integertobinari": 14, "zero": [14, 16, 22, 33, 41, 53, 97, 98, 99], "ind": [14, 99], "sens": [14, 16, 69, 73, 74, 78, 79, 81, 83, 92, 93, 98], "_le": 14, "_ge": 14, "linear_ct": 14, "coeffici": [14, 16, 70, 79, 80, 81, 82, 83, 88, 92, 93, 97], "properli": [14, 96], "userwarn": 14, "dictionari": [14, 16, 17, 24, 26, 31, 35, 37, 40, 48, 80, 82, 92, 94, 99], "formul": [14, 72, 86, 92, 93, 94, 97, 102], "from_gurobipi": [14, 102], "to_gurobipi": [14, 102], "minimizetomaxim": [14, 93], "linearinequalitytopenalti": [14, 93], "penalti": [14, 27, 32, 38, 44, 49, 71, 72, 76, 93, 94, 97, 98, 99, 101], "maximizetominim": [14, 93], "quadraticprogramtoqubo": [14, 27, 32, 38, 44, 49, 93, 97, 100, 101], "intern": [14, 17, 20, 27, 32, 38, 44, 80, 82, 99, 101, 103], "fallback": 14, "found": [14, 17, 18, 19, 24, 25, 26, 31, 33, 34, 35, 37, 40, 48, 95, 96, 97, 98, 102, 103], "cplex_paramet": [14, 23, 102], "paramet": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 97, 98, 101, 102, 103], "limit": [14, 97, 98, 102], "thread": [14, 102], "pprint_as_str": 14, "aqua": 14, "octob": 14, "2020": [14, 18, 96, 99], "minimumeigenoptimizationresult": [14, 21, 30, 32, 37, 44], "raw_sampl": [14, 26, 31], "bit": [14, 103], "pull": 14, "97": 14, "evaluate_gradi": [14, 80, 82, 83], "qiskitoptimizationerror": [14, 16, 18, 22, 23, 27, 28, 32, 33, 34, 35, 38, 39, 41, 43, 44, 46, 47, 53, 66, 69, 70, 71, 72, 73, 74, 76, 80, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 94], "rotation_count": 14, "algorithm_glob": [14, 94, 97, 98, 99, 100, 101], "get_count": 14, "qc": 14, "determinist": [14, 53, 103], "count": [14, 16, 26, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 98, 103], "probabilist": 14, "with_traceback": 15, "tb": 15, "__traceback__": 15, "attribut": [16, 17, 18, 22, 23, 24, 26, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 55, 57, 58, 59, 60, 63, 65, 66, 67, 68, 69, 71, 72, 76, 78, 79, 80, 81, 82, 83, 84, 85, 94, 96, 103], "list": [16, 17, 21, 24, 25, 26, 27, 30, 31, 32, 35, 37, 38, 40, 43, 44, 47, 48, 50, 51, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78, 79, 80, 81, 82, 83, 92, 93, 94, 97, 98], "linear_constraints_index": 16, "quadratic_constraints_index": 16, "infeas": [16, 36, 38, 92, 94], "variables_index": 16, "none": [16, 17, 18, 22, 23, 24, 26, 27, 28, 31, 32, 35, 37, 38, 40, 44, 46, 48, 49, 50, 51, 53, 54, 55, 57, 58, 60, 63, 65, 66, 67, 68, 71, 72, 76, 83, 86, 98, 103], "occupi": 16, "binary_var_dict": 16, "kei": [16, 37, 80, 82, 92, 98, 101], "key_format": 16, "var_dict": 16, "construct": [16, 26, 33, 37, 40, 43, 47, 72, 81, 83, 94, 95, 96, 97, 103], "int": [16, 19, 22, 25, 26, 27, 33, 37, 38, 40, 41, 44, 46, 47, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 78, 79, 80, 81, 82, 83, 85, 93, 94, 97, 98, 101, 102], "sequenc": 16, "less": [16, 25], "attempt": [16, 46, 94], "nest": 16, "dict": [16, 23, 26, 37, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 78, 79, 80, 81, 82, 83, 92], "var_list": 16, "delet": 16, "lowerbound": [16, 22, 33, 41, 70, 85, 92, 93, 102], "upperbound": [16, 22, 33, 41, 70, 85, 92, 93, 102], "1e": [16, 41, 53, 77, 85], "20": [16, 23, 77, 85, 93, 94, 96, 97, 98, 101, 103], "float": [16, 17, 19, 20, 22, 24, 25, 26, 27, 31, 32, 33, 35, 37, 38, 40, 41, 42, 43, 44, 48, 49, 53, 66, 69, 70, 71, 72, 73, 74, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 91, 94, 99], "continuous_var_dict": 16, "export_as_lp_str": [16, 92, 102], "qubit_op": [16, 47, 88, 91, 103], "offset": [16, 47, 83, 88, 91, 92, 94, 95, 97, 98, 99, 100, 103], "fals": [16, 18, 19, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 44, 49, 76, 80, 82, 88, 96], "shift": [16, 88, 94, 95], "1148": [16, 88, 91], "baseoper": [16, 88], "bool": [16, 18, 19, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 44, 49, 76, 80, 82, 88, 102], "treat": [16, 88], "els": [16, 23, 28, 97, 98, 99], "notimplementederror": 16, "listop": 16, "get_feasibility_info": 16, "whether": [16, 18, 22, 23, 25, 27, 28, 29, 32, 33, 34, 38, 39, 41, 44, 47, 49, 53, 76, 80, 82, 92, 93], "violat": [16, 22, 103], "param": [16, 18, 66, 96, 99], "len": [16, 97, 98, 101, 103], "total": [16, 61, 66, 97, 100, 101, 102, 103], "var": [16, 35, 70, 94, 102], "get_linear_constraint": [16, 92], "indexerror": 16, "size": [16, 22, 35, 55, 94, 95, 98, 100], "keyerror": 16, "get_num_binary_var": 16, "get_num_continuous_var": 16, "get_num_integer_var": 16, "get_num_linear_constraint": 16, "get_num_quadratic_constraint": 16, "get_num_var": 16, "vartyp": [16, 85, 101], "filter": [16, 94], "get_quadratic_constraint": [16, 92], "get_vari": 16, "integer_var_dict": 16, "is_feas": [16, 97], "ndarrai": [16, 17, 22, 24, 25, 26, 31, 33, 35, 37, 40, 41, 42, 43, 48, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83], "rh": [16, 78, 79, 81, 92, 93, 98], "spmatrix": [16, 79, 80, 81, 82, 83], "side": [16, 78, 79, 81, 92, 93], "constraintsens": [16, 78, 79, 81, 92], "eq": [16, 70, 92, 93], "ge": [16, 92, 93], "greater": [16, 85, 97, 103], "le": [16, 92, 93], "c0": [16, 92, 97, 100, 101, 102], "tupl": [16, 22, 33, 37, 41, 49, 81, 82, 83, 85, 91, 94, 97], "wrap": [16, 22, 23, 28, 39, 41, 94, 96], "80": 16, "width": 16, "disabl": 16, "exce": 16, "long": [16, 96], "won": 16, "read_from_lp_fil": 16, "filenam": [16, 60, 66], "load": [16, 86, 87, 96, 98, 102], "filenotfounderror": 16, "pythonpath": 16, "remove_linear_constraint": [16, 92], "remove_quadratic_constraint": [16, 92], "substitute_vari": [16, 92], "weight": [16, 32, 37, 46, 54, 59, 66, 98, 100, 103], "everyth": 16, "match": [16, 35, 72, 83, 103], "invalid": [16, 27, 32, 38], "write_to_lp_fil": 16, "my_problem": 16, "append": [16, 94, 98, 99, 101], "suffix": [16, 102], "oserror": 16, "docplexexcept": 16, "admm": [17, 18, 19, 20], "termin": [17, 24, 26, 31, 35, 36, 37, 40, 48, 95, 96], "raw_result": [17, 24, 26, 31, 35, 37, 40, 48], "dump": [17, 24, 26, 31, 35, 37, 40, 48], "leftov": [17, 24, 26, 31, 35, 37, 40, 48], "variable_nam": [17, 24, 26, 31, 35, 37, 40, 48], "variables_dict": [17, 24, 26, 31, 35, 37, 40, 48], "get_correl": [17, 24, 26, 31, 35, 37, 40, 48], "zi": [17, 24, 26, 31, 35, 37, 40, 48], "zj": [17, 24, 26, 31, 35, 37, 40, 48], "correl": [17, 24, 26, 31, 35, 37, 40, 48], "matrix": [17, 24, 25, 26, 31, 35, 37, 40, 48, 60, 66, 80, 82, 92, 96, 97, 99, 101], "qubo_optim": [18, 96], "continuous_optim": [18, 96], "optimizationalgorithm": [18, 22, 23, 25, 27, 28, 32, 33, 38, 39, 41, 44, 49], "gambella": [18, 96], "simonetto": [18, 96], "block": [18, 19, 96], "preprint": [18, 94, 95, 96], "2001": [18, 96], "02069": [18, 96], "initi": [18, 19, 20, 22, 23, 28, 32, 33, 38, 39, 41, 43, 44, 78, 84, 94, 95, 97, 99, 101], "admmparamet": [18, 96], "get_compatibility_msg": [18, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 44, 49, 76], "incompat": [18, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 44, 49, 76], "is_compat": [18, 22, 23, 25, 27, 28, 32, 33, 34, 38, 39, 41, 44, 49, 76], "tri": [18, 22, 23, 27, 28, 32, 33, 34, 38, 39, 41, 44, 97], "admmoptimizationresult": 18, "rho_initi": [19, 20, 96], "10000": [19, 103], "factor_c": [19, 96], "100000": 19, "beta": [19, 96, 101], "maxit": [19, 96, 97, 99, 102], "tol": [19, 96], "0001": [19, 22], "max_tim": 19, "inf": 19, "three_block": [19, 96], "tau_incr": 19, "tau_decr": 19, "mu_r": 19, "mu_merit": 19, "warm_start": 19, "penal": [19, 96], "maximum": [19, 22, 41, 47, 49, 54, 59, 60, 66, 67, 95, 100, 103], "iter": [19, 26, 27, 29, 37, 38, 40, 41, 95, 96, 99, 103], "toler": [19, 22, 53, 96], "residu": [19, 96], "converg": [19, 96, 97, 103], "second": [19, 37, 93, 98], "boolean": 19, "flag": [19, 95], "rule": 19, "increas": [19, 94, 103], "accord": [19, 25, 43, 44, 94], "primal": [19, 96], "dual": [19, 96], "boyd": [19, 96], "parikh": [19, 96], "chu": [19, 96], "peleato": [19, 96], "eckstein": [19, 96], "2011": [19, 96], "distribut": [19, 63, 94, 95, 96, 97, 98, 101, 103], "statist": [19, 94, 96, 97], "learn": [19, 96], "altern": [19, 96, 98], "direct": [19, 96], "multipli": [19, 92, 95, 96, 101], "foundat": [19, 96], "trend": [19, 96], "122": [19, 96], "merit": 19, "pre": [19, 44, 98], "option": [19, 32, 44, 69, 103], "even": [19, 93, 96, 97, 98], "tune": 19, "hint": 19, "keep": [20, 75, 98], "track": 20, "variou": [20, 100], "store": [20, 22, 29, 38, 41, 80, 82, 92, 99], "dure": [20, 32, 98], "recreat": 20, "third": [20, 98], "abc": [21, 33, 34, 52, 62, 75], "abstract": [21, 33, 34, 52, 57, 62, 75, 78, 97], "aggreg": [21, 30, 44, 93, 94, 99], "combin": [21, 30, 97, 98, 100, 103], "solutionsampl": [21, 24, 26, 30, 31, 35, 48, 51, 94, 102, 103], "rhobeg": 22, "rhoend": 22, "maxfun": 22, "disp": [22, 23, 28, 39, 102], "catol": 22, "0002": 22, "trial": [22, 33, 41, 97, 98], "clip": [22, 33, 41], "100": [22, 33, 41, 66, 67, 96, 98, 99, 102], "multistartoptim": [22, 41], "fmin_cobyla": 22, "html": [22, 39, 41, 92], "constructor": [22, 41, 85, 96], "later": [22, 41, 96], "invok": [22, 37, 41, 92, 96, 103], "optimum": [22, 41, 95, 97, 99], "consist": [22, 26, 32, 41, 81, 85, 101], "accuraci": [22, 41], "precis": [22, 92], "trust": 22, "region": 22, "control": [22, 97, 98, 101, 103], "frequenc": 22, "impli": [22, 93], "absolut": [22, 53], "guess": [22, 33, 41], "drawn": [22, 33, 41, 97], "unbound": [22, 33, 41, 80, 82], "correspondingli": [22, 33, 41], "contain": [22, 24, 37, 41, 46, 47, 50, 53, 69, 70, 71, 80, 82, 86, 87, 89, 93, 94, 95, 96, 98, 103], "explain": [22, 27, 32, 38, 41, 44, 49, 76, 92, 93, 98, 103], "multi_start_solv": [22, 33, 41], "callabl": [22, 33, 41], "is_cplex_instal": 23, "ico": 23, "topic": 23, "throw": 23, "determin": [23, 53, 72, 80, 82, 98, 103], "static": [23, 25, 28, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 76], "sdp_solut": 24, "properti": [24, 26, 40, 96], "possibl": [24, 69, 94, 95, 97, 98, 103], "sdp": 24, "num_cut": 25, "sort_cut": 25, "unique_cut": 25, "seed": [25, 46, 53, 63, 66, 67, 97, 98, 99, 100, 103], "max": [25, 60, 95, 98, 100, 103], "w": [25, 92, 96, 97, 98, 99, 101], "therefor": [25, 101], "neg": [25, 95, 97], "adjac": [25, 60, 66], "max_cut_valu": 25, "adj_matrix": [25, 66, 97], "numpi": [25, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 94, 97, 98, 99, 100, 101, 103], "operation_count": 26, "n_input_qubit": 26, "n_output_qubit": 26, "intermediate_fv": 26, "threshold": [26, 38, 94, 95], "intermedi": [26, 29, 37, 38, 94, 99, 100], "getter": [26, 55, 57, 58, 59, 60, 63, 65, 66, 67, 68], "raw": [26, 31], "ga": [27, 95], "quadraticprogramconvert": [27, 32, 38, 44, 69, 70, 71, 72, 76], "By": [27, 32, 38, 44, 93, 97, 103], "attributeerror": 27, "is_gurobi_instal": 28, "suppress": 28, "info": 28, "stdout": 28, "sy": 28, "devnul": 28, "def": [28, 94, 97, 98, 99, 101, 102], "noop": 28, "arg": 28, "kwarg": 28, "flush": 28, "writelin": 28, "enum": [29, 36], "recursiveminimumeigenoptim": 29, "no_iter": 29, "last_iter": [29, 38], "last": [29, 37, 94, 97, 98], "all_iter": 29, "baseaggreg": [30, 44], "averag": [30, 99], "min_eigen_solver_result": [31, 99, 100], "samplingminimumeigensolverresult": 31, "numpyminimumeigensolverresult": 31, "underli": [31, 48, 93, 101], "assum": [32, 97, 103], "thereof": 32, "expand": 32, "good": [32, 97], "todo": 32, "smaller": 33, "_": [35, 98, 99, 101, 103], "x3": [35, 101], "union": 35, "possibli": 35, "succeed": 36, "histori": [37, 38, 96, 99], "recurs": [37, 38, 94], "minimumeigenoptimizerresult": 37, "min_num_vars_optim": [37, 38, 94], "min_num_var": [38, 94], "intermediateresult": 38, "meta": [38, 44], "top": [38, 85, 92, 103], "internal_optim": 38, "bravyi": [38, 94], "2019": [38, 72, 94, 95], "obstacl": [38, 94], "prepar": [38, 47, 94, 95, 98, 99, 103], "symmetri": [38, 94], "protect": [38, 94], "1910": [38, 94], "08980": [38, 94], "reach": [38, 97, 98], "remain": [38, 95, 101], "num_min_var": 38, "fx": 40, "imod": 40, "smode": 40, "slsqp": [40, 41], "exit": 40, "fmin_slsqp": [40, 41], "actual": [40, 95, 98, 100], "acc": 41, "iprint": 41, "full_output": 41, "request": 41, "verbos": 41, "silent": 41, "summari": 41, "upon": 41, "func": 41, "factori": [43, 44, 98], "overridden": 43, "behavior": [43, 101, 103], "mixer": [43, 44, 101], "warm": [43, 44], "regular": [43, 44], "xi": [43, 44], "create_initial_st": 43, "initial_vari": 43, "quantumcircuit": [43, 47, 50, 101], "create_initial_vari": 43, "create_mix": 43, "evolv": 43, "ry": [43, 97, 101], "theta": [43, 97, 98, 101], "rz": [43, 101], "2beta": 43, "num_initial_solut": 44, "warm_start_factori": 44, "daniel": 44, "egger": [44, 101], "2009": [44, 101], "10095": [44, 101], "circuit_factori": 44, "explicit": 44, "warmstartqaoacircuitfactori": 44, "ignor": [44, 49], "warmstartqaoafactori": 44, "sever": [44, 93], "next": [44, 94, 95, 101, 103], "presolv": 44, "verifi": [45, 95, 98], "commut": [45, 47, 103], "baseestim": 45, "verif": 45, "basis_sampl": 46, "roundingschem": [46, 49, 53], "magic": [46, 51, 103], "strateg": 46, "roundingcontext": [46, 49, 53, 103], "roundingresult": [46, 48, 49, 52, 53], "compression_ratio": [47, 103], "compress": [47, 82, 92, 103], "divid": [47, 58, 92, 103], "frozen": 47, "minimum_recovery_prob": 47, "num_qubit": [47, 97, 100, 103], "num_var": [47, 103], "runtimeerror": 47, "q2var": [47, 103], "var2op": 47, "qubit_index": 47, "freez": 47, "prevent": 47, "state_preparation_circuit": 47, "relaxed_fv": [48, 103], "rounding_result": [48, 49, 103], "minimumeigensolverresult": [48, 49, 103], "rounding_schem": [49, 103], "auxiliari": 49, "process_result": [49, 103], "quantumrandomaccessoptimizationresult": [49, 103], "expectation_valu": [50, 51], "basis_shot": 51, "basis_count": 51, "atol": 53, "semi": [53, 101, 103], "resolv": 53, "max_weight": [54, 59, 100], "max_number_of_bin": 54, "optimizationappl": [54, 56, 57, 59, 61, 63, 64], "item": [54, 59, 100], "capac": [54, 59, 97, 100], "get_figur": 54, "plot": [54, 96, 97, 98, 99], "sum": [54, 61, 82, 93, 97, 98, 99, 100, 101, 103], "fig": 54, "items_in_bin": 54, "sample_most_lik": [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 97], "state_vector": [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68], "quasidistribut": [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 94], "statevector": [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68], "quasi": [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68], "to_quadratic_program": [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 97, 100, 103], "graphoptimizationappl": [55, 58, 60, 65, 66, 67, 68, 100], "networkx": [55, 57, 58, 60, 65, 66, 67, 68, 97, 100, 103], "clique_": 55, "graph_theori": [55, 65], "suitabl": [55, 57, 58, 60, 65, 66, 67, 68, 94, 96, 98, 103], "build": [55, 57, 58, 60, 65, 66, 67, 68, 92, 101], "po": [55, 57, 58, 60, 65, 66, 67, 68, 97, 100, 103], "posit": [55, 57, 58, 60, 65, 66, 67, 68, 82, 93, 98, 100, 101], "node": [55, 57, 58, 60, 65, 66, 67, 68, 97, 98, 100, 102, 103], "exact": [56, 94, 96, 97, 98, 100], "exact_cov": 56, "answer": [57, 62, 97, 98], "understand": [57, 62, 94, 103], "graph_partit": 58, "knapsack_problem": 59, "maximum_cut": 60, "get_gset_result": 60, "gset": 60, "parse_gset_format": 60, "2d": 60, "number_set": 61, "partition_problem": 61, "half": 61, "num_sit": 63, "rng_or_se": 63, "variant": [63, 96], "normal": [63, 98], "varianc": [63, 103], "pseudo": 63, "default_rng": 63, "set_pack": 64, "stabl": [65, 100], "independent_set_": 65, "travel": [66, 98, 100], "salesman": [66, 98, 100], "travelling_salesman_problem": 66, "create_random_inst": [66, 67, 97], "coordin": [66, 67], "prospect": [66, 97], "cycl": [66, 97], "euc_2d": 66, "data": [66, 94, 98], "tsp_valu": [66, 97], "citi": [66, 97, 100], "length": [66, 97], "num_vehicl": 67, "depot": [67, 98, 100], "vehicl": [67, 100], "rout": [67, 100], "vehicle_routing_problem": 67, "depart": 67, "vertex": [68, 97], "vertex_cov": [68, 100], "auto": 69, "conv": [69, 70, 76, 93, 100], "problem2": [69, 70, 76], "There": [69, 72, 97, 98], "unsupport": [69, 72, 86, 87], "sahar": 70, "karimi": 70, "pooya": 70, "ronagh": 70, "anneal": [70, 97], "1706": [70, 93], "01945": [70, 93], "suppli": 72, "pattern": 72, "kept": 72, "fred": 72, "glover": 72, "1811": 72, "11538": 72, "_flipproblemsens": [73, 74], "unchang": [73, 74], "quadratic_program": [78, 79, 80, 81, 82, 83, 84, 85, 89, 90, 92], "quadraticprogramel": [78, 80, 82, 83, 85], "parent": [78, 79, 80, 81, 82, 83, 84, 85], "spars": [80, 82, 92], "dok_matrix": [80, 82], "gradient": [80, 82, 83], "to_arrai": [80, 82, 92], "to_dict": [80, 82, 92], "use_nam": [80, 82, 92], "symmetr": [82, 92, 96], "triangl": 82, "objsens": 83, "shape": 83, "expos": 85, "meant": 85, "extern": 85, "as_tupl": 85, "indicator_big_m": 86, "imaginari": 88, "never": [89, 90], "happen": [89, 90, 98], "quad_prog": 91, "compris": [91, 98], "page": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "01_quadratic_program": 92, "briefli": 92, "deal": [92, 97, 101], "align": [92, 97, 101], "q_0": [92, 103], "q_i": [92, 98], "a_i": [92, 93, 95], "r_i": 92, "l_i": 92, "u_i": [92, 98], "dimension": 92, "ibmdecisionoptim": 92, "io": [92, 102], "mdl": [92, 96, 99, 101, 102], "lb": [92, 98, 102], "ub": [92, 98, 102], "iso": [92, 102], "8859": [92, 102], "obj": [92, 98, 99, 102], "c1": [92, 97, 100], "qc1": 92, "lt": [92, 93, 94, 96, 100, 101, 102, 103], "comprehens": [92, 96, 103], "39": [92, 93, 94, 95, 96, 97, 100, 101, 102, 103], "gt": [92, 93, 94, 96, 100, 102, 103], "my": 92, "again": [92, 93, 97, 98], "piec": 92, "qx": 92, "declar": 92, "dens": 92, "lin_leq": 92, "lin_geq": 92, "quad_eq": 92, "quad_leq": 92, "quad_geq": 92, "leftarrow": 92, "quadraticprogramstatu": 92, "itself": [92, 103], "ones": [92, 98], "infin": 92, "charact": 92, "_e": 92, "17": [92, 93, 94, 97, 101, 103], "tmp": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "ipykernel_2289": 92, "1492642725": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "py": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "deprecationwarn": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "informationsoftwareversionqiskit0": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "46": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "0qiskit_optimization0": [92, 95, 96, 97, 99, 100, 101, 103], "18python": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "compilergcc": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "0python": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "builddefault": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "aug": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "28": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "2023": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "22oslinuxcpus2memori": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "60690689086914wed": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "feb": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "2024": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "utc": [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "02_converters_for_quadratic_program": 93, "power": [93, 97], "commonli": 93, "known": [93, 95, 96, 98, 103], "routin": [93, 97], "varieti": 93, "inequalitytoequalityconvert": 93, "symbol": 93, "With": [93, 97], "docplex_mp": 93, "xyz_leq": 93, "xyz_geq": 93, "ineq2eq": 93, "qp_eq": 93, "int_slack": [93, 100], "xyz": 93, "_leg": 93, "_slack": 93, "_geq": 93, "abl": [93, 98, 103], "satisfi": 93, "off": 93, "decim": 93, "point": [93, 97, 98], "minu": 93, "purpos": [93, 103], "cplex_optim": 93, "result_orig": 93, "result_eq": 93, "paper": 93, "_leq": 93, "int2bin": 93, "qp_eq_bin": 93, "ldot": [93, 96, 98], "result_eq_bin": 93, "sum_i": [93, 97], "1e5": 93, "lineq2penalti": 93, "26": [93, 100], "52": [93, 100], "104": [93, 100], "208": [93, 100], "156": [93, 100], "117": [93, 100], "416": [93, 100], "312": [93, 100], "211": 93, "234": [93, 100, 101], "130": [93, 100], "260": [93, 100, 101], "210": 93, "209": 93, "418": [93, 101], "836": 93, "442": 93, "19": [93, 94, 97, 101, 103], "result_qubo": 93, "anymor": 93, "21": [93, 94, 97, 98, 101, 103], "ipykernel_2573": 93, "0qiskit_algorithms0": [93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], "2qiskit_optimization0": [93, 94, 98, 102], "03_minimum_eigen_optim": 94, "address": 94, "chemistri": 94, "illustr": [94, 101], "mention": [94, 103], "thrown": 94, "prohibit": 94, "workaround": 94, "luca": [94, 97], "front": 94, "phy": [94, 97], "2014": [94, 97, 98], "kliesch": 94, "koenig": 94, "tang": 94, "visual": [94, 95, 96, 97, 98], "plot_histogram": [94, 97], "account": [94, 103], "iiz": 94, "izi": 94, "zii": 94, "izz": 94, "ziz": 94, "zzi": 94, "coeff": [94, 97, 100, 103], "sometim": 94, "random_se": [94, 97, 98, 99, 100, 101], "10598": [94, 97, 98], "qaoa_m": [94, 101], "initial_point": [94, 101], "exact_m": [94, 101, 103], "small": [94, 98, 101], "exact_result": [94, 95, 103], "qaoa_result": [94, 101], "fraction": 94, "consolid": [94, 103], "441060556229305": 94, "2276358338592764": 94, "1413286540160573": 94, "125721012041142": 94, "0205135502889646": 94, "0304358403671234": 94, "012388100140798": 94, "0009164530573331": 94, "get_filtered_sampl": 94, "allowed_statu": 94, "filtered_sampl": 94, "005": 94, "perspect": 94, "deviat": 94, "std": 94, "9364916731037085": 94, "despit": 94, "crunch": 94, "earli": [94, 97], "samples_for_plot": 94, "join": [94, 98, 101], "enumer": [94, 101], "ipykernel_2824": 94, "365850440": 94, "probdistribut": 94, "month": 94, "date": 94, "plot_distribut": 94, "rqaoa": 94, "rqaoa_result": 94, "32": 94, "04_grover_optim": 95, "alongsid": 95, "oracl": 95, "recogn": 95, "min": 95, "notebook": [95, 98, 99, 103], "compon": [95, 97, 98, 100, 103], "gilliam": 95, "woerner": [95, 101], "gonciulea": 95, "polynomi": [95, 97, 98], "1912": 95, "04088": 95, "ingredi": 95, "o": [95, 102], "amplitud": 95, "diffus": 95, "rangle_n": [95, 101], "vari": 95, "loos": 95, "quadraticprogramtonegativevalueoracl": 95, "regist": 95, "rangle_m": 95, "o_i": 95, "clariti": 95, "formal": [95, 97, 98], "toi": 95, "eqnarrai": 95, "min_": [95, 96, 98, 101], "2x_0x_2": 95, "x_1x_2": 95, "1x_0": 95, "2x_1": 95, "3x_2": 95, "docplex_model1": [95, 101], "progress": [95, 99], "grover_optim": 95, "x_0": [95, 97, 99, 100, 103], "x_1": [95, 97, 99, 100, 103], "x_2": [95, 97, 99, 100, 103], "custom": [95, 96], "counter": 95, "shown": [95, 99, 101], "titl": [95, 98], "axi": [95, 98], "101": 95, "intens": 95, "bright": 95, "phase": [95, 96, 97, 98], "wheel": 95, "exact_solv": 95, "ipykernel_3399": 95, "2system": [95, 96, 97, 99, 100, 101, 103], "05_admm_optim": 96, "hereaft": 96, "mbco": 96, "appear": [96, 97, 101], "logist": [96, 98], "financ": [96, 97], "research": 96, "tackl": 96, "subseteq": 96, "varphi": 96, "mathrm": [96, 97, 98], "ell": 96, "assumpt": 96, "interc": 96, "squar": 96, "x_": [96, 97, 98, 99], "jointli": 96, "mbo": 96, "split": 96, "hold": [96, 103], "devis": 96, "decomposit": 96, "subproblem": 96, "cost": [96, 98, 101], "pyplot": [96, 97, 98, 99], "plt": [96, 97, 98, 99], "cobylaoptim": 96, "admm_optim": 96, "uncom": 96, "plan": 96, "simpl": [96, 97], "report": 96, "ex6": 96, "cons1": 96, "cons2": 96, "cons3": 96, "1001": 96, "gx": 96, "900": 96, "theorem": 96, "activ": [96, 98], "admm_param": 96, "0e": 96, "convex_optim": 96, "xlabel": [96, 99], "ylabel": [96, 99], "admm_q": 96, "result_q": 96, "clf": 96, "ipykernel_3514": 96, "07": [96, 101], "34": [96, 100], "06_examples_max_cut_and_tsp": 97, "quantit": 97, "engin": 97, "lie": 97, "definit": [97, 101], "finit": 97, "countabl": 97, "infinit": 97, "criterion": 97, "typic": [97, 98, 103], "distanc": [97, 98, 100], "travers": 97, "consumpt": [97, 103], "profit": 97, "cluster": 97, "network": 97, "scienc": 97, "grasp": 97, "system": 97, "peopl": 97, "influenc": 97, "individu": [97, 98], "seen": 97, "pairwis": [97, 100], "mind": [97, 98], "market": 97, "suppos": 97, "bui": 97, "knowledg": 97, "strong": 97, "predict": 97, "outcom": [97, 98, 103], "ask": [97, 100], "revenu": 97, "undirect": [97, 100], "ji": [97, 98], "global": [97, 98], "summat": 97, "tild": 97, "textbf": 97, "person": 97, "principl": 97, "themselv": 97, "regard": 97, "likelihood": 97, "grant": 97, "w_i": 97, "const": 97, "z_iz_j": 97, "extent": 97, "consider": 97, "sai": 97, "speedup": 97, "target": [97, 98], "investig": [97, 98, 103], "inde": 97, "speed": [97, 98], "farhi": [97, 98], "goldston": [97, 98], "gutmann": [97, 98], "frame": 97, "higher": [97, 101, 103], "boldsymbol": [97, 98], "built": [97, 98, 101], "gate": [97, 98], "rotat": [97, 98, 101], "parameter": [97, 98], "togeth": [97, 98], "belief": 97, "difficulti": 97, "come": [97, 102], "wavefunct": [97, 98], "entangl": [97, 98], "u_": [97, 98], "collect": [97, 98, 100, 103], "fulli": [97, 98], "prod_": [97, 98], "theta_": [97, 98], "motiv": 97, "exploit": 97, "faster": 97, "adiabat": 97, "z_iz_jz_k": 97, "wherea": 97, "impract": 97, "frontier": 97, "1411": [97, 98], "4028": [97, 98], "wecker": 97, "hast": 97, "troyer": 97, "rev": 97, "94": 97, "022309": 97, "2016": 97, "neven": 97, "1703": 97, "06199": 97, "nx": [97, 100, 103], "twoloc": 97, "tsp": 97, "spsa": [97, 98], "add_nodes_from": 97, "arang": 97, "elist": 97, "add_weighted_edges_from": 97, "spring_layout": [97, 100, 103], "draw_graph": 97, "default_ax": 97, "frameon": 97, "draw_networkx": 97, "node_color": 97, "node_s": 97, "600": 97, "edge_label": 97, "get_edge_attribut": 97, "draw_networkx_edge_label": 97, "temp": 97, "get_edge_data": 97, "071509e": 97, "30": 97, "best_cost_brut": 97, "revers": [97, 99], "zfill": 97, "xbest_brut": 97, "nbest": 97, "max_cut": 97, "x_3": [97, 99, 100, 103], "qubitop": 97, "iizz": 97, "iziz": 97, "izzi": 97, "ziiz": 97, "zzii": 97, "lowest": 97, "eigenvector": 97, "ee": 97, "feedback": 97, "loop": [97, 99], "123": [97, 99, 100], "300": 97, "optimizer_tim": [97, 100, 103], "4996861455587294": 97, "004215717315674": 97, "999686145558729": 97, "vqe_optim": 97, "notori": 97, "attent": 97, "scientist": 97, "mathematician": 97, "centuri": 97, "bear": 97, "colloqui": 97, "speak": [97, 98], "goe": 97, "sell": 97, "merchandis": 97, "shortest": 97, "path": [97, 98], "visit": [97, 98, 100], "hometown": 97, "he": 97, "sale": 97, "least": [97, 100], "ubiquit": 97, "aris": [97, 103], "analysi": [97, 99], "hamilton": 97, "19th": 97, "whenev": 97, "summand": 97, "notin": 97, "boundari": 97, "equiv": 97, "sum_p": 97, "to_numpy_arrai": 97, "48": 97, "91": 97, "63": 97, "itertool": 97, "permut": 97, "brute_force_tsp": 97, "last_best_dist": 97, "1e10": 97, "pre_j": 97, "best_ord": 97, "best_dist": 97, "draw_tsp_solut": 97, "g2": 97, "digraph": 97, "add_edg": 97, "edge_color": 97, "font_color": 97, "202": 97, "x_0_0": 97, "x_1_1": 97, "x_1_2": 97, "x_2_1": 97, "x_2_2": 97, "x_0_1": 97, "x_1_0": 97, "x_2_0": 97, "x_0_2": 97, "c2": [97, 100], "c3": [97, 100], "c4": [97, 100], "c5": [97, 100], "qp2qubo": 97, "7581": 97, "iiiiiiiiz": [97, 100], "iiiiiiizi": [97, 100], "iiiiiizii": [97, 100], "iiiiiziii": [97, 100], "iiiiziiii": [97, 100], "iiiziiiii": [97, 100], "iiziiiiii": [97, 100], "iziiiiiii": [97, 100], "ziiiiiiii": [97, 100], "iiiiiiizz": [97, 100], "iiiiiiziz": [97, 100], "iiiiiizzi": [97, 100], "iiiiiziiz": [97, 100], "iiiiizizi": [97, 100], "iiiiizzii": [97, 100], "iiiiziiiz": [97, 100], "iiiiziizi": [97, 100], "iiiizizii": [97, 100], "iiiizziii": [97, 100], "iiiziiiiz": [97, 100], "iiiziiizi": [97, 100], "iiiziizii": [97, 100], "iiiziziii": [97, 100], "iiizziiii": [97, 100], "iiziiiiiz": [97, 100], "iiziiiizi": [97, 100], "iiziiizii": [97, 100], "iiziiziii": [97, 100], "iiziziiii": [97, 100], "iizziiiii": [97, 100], "iziiiiiiz": [97, 100], "iziiiiizi": [97, 100], "iziiiizii": [97, 100], "iziiiziii": [97, 100], "iziiziiii": [97, 100], "iziziiiii": [97, 100], "izziiiiii": [97, 100], "ziiiiiiiz": [97, 100], "ziiiiiizi": [97, 100], "ziiiiizii": [97, 100], "ziiiiziii": [97, 100], "ziiiziiii": [97, 100], "ziiziiiii": [97, 100], "ziziiiiii": [97, 100], "zziiiiiii": [97, 100], "1282": 97, "1268": 97, "1290": 97, "606": 97, "7379": 97, "7326": 97, "02469952184": 97, "182559490203857": 97, "ipykernel_10107": 97, "07_examples_vehicle_rout": 98, "major": 98, "industri": 98, "usd": 98, "8183": 98, "billion": 98, "2015": 98, "servic": 98, "truck": 98, "ship": 98, "overnight": 98, "serv": 98, "locat": 98, "dai": 98, "computation": 98, "challeng": 98, "mile": 98, "spent": 98, "ideal": 98, "showcas": 98, "overal": 98, "establish": 98, "ahead": 98, "deliveri": 98, "databas": 98, "wise": 98, "euclidean": 98, "crow": 98, "fli": 98, "perhap": 98, "twice": 98, "hybrid": 98, "partli": 98, "simplist": 98, "requisit": 98, "vrp": 98, "wherein": 98, "sought": 98, "appleg": 98, "mtz": 98, "miller": 98, "tucker": 98, "zemlin": 98, "1960": 98, "segment": 98, "convent": 98, "delta": 98, "elimin": [98, 103], "tour": 98, "0i": 98, "j0": 98, "u_j": 98, "q_j": 98, "neq": 98, "weigh": 98, "arch": 98, "branch": [98, 102], "sake": [98, 103], "bf": 98, "01": 98, "02": 98, "dimens": 98, "stress": 98, "emploi": [98, 103], "worthwhil": 98, "summar": 98, "necessari": [98, 99, 100], "throughout": 98, "notabl": 98, "augment": 98, "lagrangian": 98, "ih": 98, "_i": [98, 101], "_n": 98, "_0": 98, "That": 98, "2an": 98, "2ak": 98, "stack": 98, "acm": 98, "326": 98, "329": 98, "doi": 98, "1145": 98, "321043": 98, "321046": 98, "bixbi": 98, "chv\u00e1tal": 98, "cook": 98, "princeton": 98, "univers": 98, "press": 98, "isbn": 98, "978": 98, "691": 98, "12993": 98, "cplexerror": 98, "math": 98, "place": [98, 103], "plane": 98, "__init__": 98, "generate_inst": 98, "33": 98, "1543": [98, 99], "xc": 98, "rand": 98, "yc": 98, "ii": 98, "jj": 98, "classicaloptim": 98, "compute_allowed_combin": 98, "cplex_solut": 98, "refactor": 98, "my_obj": 98, "reshap": 98, "my_ub": 98, "my_lb": 98, "my_ctyp": 98, "my_rh": 98, "my_sens": 98, "my_prob": 98, "populatebyrow": 98, "exc": 98, "get_valu": 98, "get_objective_valu": 98, "prob": [98, 100], "set_sens": 98, "set_log_stream": 98, "set_error_stream": 98, "set_warning_stream": 98, "set_results_stream": 98, "row": 98, "col": 98, "coef": 98, "lin_expr": 98, "classical_optim": 98, "fashion": 98, "classical_cost": 98, "miss": 98, "visualize_solut": 98, "title_str": 98, "figur": [98, 99], "scatter": 98, "200": 98, "annot": 98, "grid": 98, "ix": 98, "arrow": 98, "length_includes_head": 98, "head_width": 98, "star": 98, "quantumoptim": 98, "binary_represent": 98, "algebra": 98, "construct_problem": 98, "solve_problem": 98, "minimuneigenoptim": 98, "x_sol": 98, "instance_vec": 98, "w_list": 98, "id_n": 98, "ey": 98, "im_n_1": 98, "iv_n_1": 98, "iv_n": 98, "neg_iv_n_1": 98, "vn": 98, "kron": 98, "contribut": 98, "fun": [98, 103], "lambda": [98, 99, 101], "quantum_optim": 98, "saniti": [98, 103], "binary_cost": 98, "unavail": 98, "nameerror": 98, "132": 98, "11148115684045": 98, "1114811568365": 98, "hour": 98, "log": 98, "what": 98, "quantum_solut": 98, "quantum_cost": 98, "x_quantum": 98, "kk": 98, "comparison": [98, 103], "coincid": 98, "ilp": 98, "optima": 98, "harder": 98, "wave": 98, "ipykernel_12733": 98, "08_cvar_optim": 99, "risk": 99, "particularli": 99, "confid": 99, "tradeoff": 99, "smoothen": 99, "landscap": 99, "barkoutso": 99, "256": 99, "linearequalitytopenalti": 99, "123456": 99, "asset": 99, "budget": 99, "mu": [99, 101], "7313": 99, "9893": 99, "2725": 99, "8750": 99, "7667": 99, "3622": 99, "sigma": [99, 101], "7312": 99, "6233": 99, "4689": 99, "5452": 99, "0082": 99, "3809": 99, "4732": 99, "7538": 99, "4659": 99, "0733": 99, "8945": 99, "4095": 99, "0007": 99, "4301": 99, "5067": 99, "2012": 99, "0922": 99, "6231": 99, "1509": 99, "8992": 99, "random_model": 99, "covari": 99, "portfolio_optim": 99, "opt_result": 99, "27835": 99, "x_4": [99, 100, 103], "x_5": [99, 100, 103], "linear2penalti": 99, "num_paramet": 99, "50": 99, "callback": 99, "stddev": 99, "real_if_clos": 99, "opt_alg": 99, "2783500000000174": 99, "figsiz": 99, "linewidth": 99, "label": 99, "2f": [99, 103], "legend": 99, "loc": 99, "fontsiz": 99, "xlim": 99, "xtick": 99, "ytick": 99, "objective_valu": 99, "x_bin": 99, "sb": 99, "argsort": 99, "fromit": 99, "binary_prob": 99, "dtype": 99, "4f": 99, "00": [99, 102], "0000": 99, "2895": 99, "ipykernel_13096": 99, "09_application_class": 100, "subcollect": 100, "multiset": 100, "disjoint": 100, "cliqu": 100, "induc": 100, "subgraph": 100, "endpoint": 100, "beforehand": 100, "vertexcov": 100, "random_regular_graph": [100, 103], "c6": 100, "c7": 100, "c8": 100, "nsolut": 100, "ntime": 100, "335968017578125": 100, "915625810623169": 100, "624": 100, "520": 100, "468": 100, "780": 100, "936": 100, "832": 100, "1040": 100, "1248": 100, "650": 100, "1560": 100, "2080": 100, "1043": 100, "1564": 100, "2085": 100, "2606": 100, "3127": 100, "2600": 100, "num": 100, "1417": 100, "258": [100, 101], "388": 100, "517": 100, "647": 100, "776": 100, "390": 100, "195": 100, "65": 100, "ipykernel_13743": 100, "10_warm_start_qaoa": 101, "tx": 101, "Such": 101, "marecek": 101, "quadratic_program_to_qubo": 101, "create_problem": 101, "relax_problem": 101, "relaxed_problem": 101, "deepcopi": 101, "0913": 101, "2415": 101, "4436": 101, "892": 101, "4051": 101, "07978412": 101, "00768914": 101, "11227606": 101, "06842969": 101, "01016793": 101, "00839765": 101, "10922887": 101, "03043424": 101, "0020045": 101, "00670929": 101, "0147937": 101, "985353": 101, "02307313": 101, "05249785": 101, "00904119": 101, "6043817": 101, "03740115": 101, "00945322": 101, "79839634": 101, "07616951": 101, "08464544": 101, "15956824": 101, "03075656": 101, "44910424": 101, "27371876": 101, "04067172": 101, "x4": 101, "0335906": 101, "21845774": 101, "12173696": 101, "008018": 101, "02683716": 101, "0591748": 101, "970706": 101, "09229252": 101, "2099914": 101, "03616476": 101, "2087634": 101, "1496046": 101, "03781288": 101, "59679268": 101, "30467804": 101, "16929088": 101, "7689322": 101, "44": [101, 103], "848800180000005": 101, "85": 101, "40922044000001": 101, "82756812000001": 101, "10474512000002": 101, "33779216000002": 101, "34487328000002": 101, "42": 101, "907689680000004": 101, "25672692": 101, "37044588": 101, "40530104000001": 101, "43763868000002": 101, "659937940000006": 101, "47075640000001": 101, "16847248000002": 101, "41462864000002": 101, "43": 101, "89799534000001": 101, "52806848000002": 101, "34065100000001": 101, "286024620000006": 101, "68314192000001": 101, "858522820000005": 101, "259": 101, "55339164000003": 101, "22669164": 101, "262": 101, "37689164": 101, "57899164": 101, "267": 101, "02739164": 101, "54049164": 101, "384": 101, "20308746000006": 101, "sol": 101, "012055025682855": 101, "1752499576180142": 101, "4803888163988428e": 101, "9709053264087596": 101, "7384168677494174": 101, "9999999916475085": 101, "14438904470168756": 101, "c_star": 101, "12345": 101, "768932200000002": 101, "phi": 101, "bigotimes_": 101, "r_y": 101, "theta_i": 101, "angl": 101, "arcsin": 101, "init_qc": 101, "idx": 101, "mpl": 101, "style": 101, "clifford": 101, "chose": 101, "h_": 101, "pmatrix": 101, "2c_i": 101, "c_i": 101, "\u03b2": 101, "ws_mixer": 101, "ws_qaoa_m": 101, "initial_st": 101, "ws_qaoa": 101, "ws_qaoa_result": 101, "much": 101, "format_qaoa_sampl": 101, "max_len": 101, "qaoa_r": 101, "3f": 101, "1e2": 101, "1f": 101, "001110": 101, "769": 101, "011010": 101, "744": 101, "001011": 101, "671": 101, "101010": 101, "626": 101, "010110": 101, "100110": 101, "953": 101, "000111": 101, "349": 101, "110010": 101, "410": 101, "010011": 101, "013": 101, "100011": 101, "559": 101, "79": 101, "ws_result": 101, "ipykernel_14165": 101, "09": [101, 102, 103], "11_using_classical_optimization_solvers_and_model": 102, "api": 102, "cplex_result": 102, "gurobi_result": 102, "restrict": 102, "expir": 102, "2025": 102, "24": 102, "timelimit": 102, "identifi": [102, 103], "03": 102, "54982fbec": 102, "cpxparam_read_datacheck": 102, "cpxparam_thread": 102, "cpxparam_timelimit": 102, "10000000000000001": 102, "incumb": 102, "000000": 102, "sec": 102, "tick": 102, "amp": 102, "sequenti": 102, "ndisplai": 102, "1305411562032251": 102, "1167094470574642": 102, "08161165517949098": 102, "1136687559480952": 102, "0464259187911496": 102, "docplex_model": 102, "dvar": 102, "stringio": 102, "tempfil": 102, "namedtemporaryfil": 102, "gp": 102, "gpy_displai": 102, "tmp_file": 102, "gurobipy_model": 102, "addvar": 102, "vtype": 102, "grb": 102, "setobject": 102, "addconstr": 102, "brows": 102, "captur": 102, "r0": 102, "docpblex": 102, "qp2": 102, "too": 102, "gmod": 102, "dmod": 102, "nconvert": 102, "ind_mod": 102, "add_ind": 102, "lc1": 102, "nativ": 102, "ncplex": 102, "optimal_solut": 102, "ipykernel_20408": 102, "12_quantum_random_access_optim": 103, "proceed": 103, "num_nod": 103, "with_label": 103, "accommod": 103, "achiev": 103, "examin": 103, "aka": 103, "xx": 103, "xy": 103, "xz": 103, "yx": 103, "zx": 103, "yy": 103, "yz": 103, "zy": 103, "zz": 103, "successfulli": 103, "desir": 103, "pdf": 103, "03167v2": 103, "semidterministic_round": 103, "move": 103, "forward": 103, "flow": 103, "adjust": 103, "unit": 103, "999999940760864": 103, "tell": 103, "belong": 103, "maxcut_partit": 103, "vqeresult": 103, "0x7f4d797f9670": 103, "semideterministricround": 103, "candid": 103, "assess": 103, "impact": 103, "divers": 103, "enhanc": 103, "aim": 103, "largest": 103, "tail": 103, "magic_round": 103, "999995184895": 103, "nondeterminist": 103, "duplic": 103, "empir": 103, "56": 103, "0094": 103, "011099999999999999": 103, "0212": 103, "0224": 103, "019": 103, "0202": 103, "0226": 103, "0238": 103, "0204": 103, "0214": 103, "benefici": 103, "especi": 103, "across": 103, "focu": 103, "sole": 103, "entri": 103, "encapsul": 103, "dir": 103, "startswith": 103, "getattr": 103, "aux_operators_evalu": 103, "01077701410810778": 103, "9999999771030237": 103, "026133164198470896": 103, "9999999771030168": 103, "010449337841060821": 103, "0000000000000002": 103, "04120945001189342": 103, "028630004855762115": 103, "999999999999981": 103, "014115442055980103": 103, "9999999999999742": 103, "algorithmresult": 103, "0x7f4da9eed1c0": 103, "cost_function_ev": 103, "150": 103, "499991361691686": 103, "optimal_circuit": 103, "\u03b8": 103, "q_1": 103, "optimal_paramet": 103, "parametervectorel": 103, "931845269903189": 103, "3381899861254701": 103, "9789155650474981": 103, "8716894716741508": 103, "29312237633987": 103, "19902685121557584": 103, "5519558808017244": 103, "3715141402586086": 103, "optimal_point": 103, "93184527": 103, "33818999": 103, "97891557": 103, "87168947": 103, "29312238": 103, "19902685": 103, "55195588": 103, "37151414": 103, "optimal_valu": 103, "optimizer_ev": 103, "optimizer_result": 103, "jac": 103, "nfev": 103, "nit": 103, "njev": 103, "40552330017089844": 103, "sdr_result": 103, "qrao_results_sdr": 103, "999991361691686": 103, "mr_result": 103, "qrao_results_mr": 103, "pedagog": 103, "unexpect": 103, "bug": 103, "discov": 103, "submit": 103, "encodingcommutationverifi": 103, "discrep": 103, "str_dvar": 103, "obj_val": 103, "encoded_obj_v": 103, "isclos": 103, "quit": 103, "greatli": 103, "appreci": 103, "ipykernel_20805": 103}, "objects": {"": [[0, 0, 0, "-", "qiskit_optimization"]], "qiskit_optimization": [[15, 1, 1, "", "QiskitOptimizationError"], [16, 3, 1, "", "QuadraticProgram"], [1, 0, 0, "-", "algorithms"], [3, 0, 0, "-", "applications"], [4, 0, 0, "-", "converters"], [5, 0, 0, "-", "problems"], [6, 0, 0, "-", "translators"]], "qiskit_optimization.QiskitOptimizationError": [[15, 2, 1, "", "with_traceback"]], "qiskit_optimization.QuadraticProgram": [[16, 2, 1, "", "binary_var"], [16, 2, 1, "", "binary_var_dict"], [16, 2, 1, "", "binary_var_list"], [16, 2, 1, "", "clear"], [16, 2, 1, "", "continuous_var"], [16, 2, 1, "", "continuous_var_dict"], [16, 2, 1, "", "continuous_var_list"], [16, 2, 1, "", "export_as_lp_string"], [16, 2, 1, "", "from_ising"], [16, 2, 1, "", "get_feasibility_info"], [16, 2, 1, "", "get_linear_constraint"], [16, 2, 1, "", "get_num_binary_vars"], [16, 2, 1, "", "get_num_continuous_vars"], [16, 2, 1, "", "get_num_integer_vars"], [16, 2, 1, "", "get_num_linear_constraints"], [16, 2, 1, "", "get_num_quadratic_constraints"], [16, 2, 1, "", "get_num_vars"], [16, 2, 1, "", "get_quadratic_constraint"], [16, 2, 1, "", "get_variable"], [16, 2, 1, "", "integer_var"], [16, 2, 1, "", "integer_var_dict"], [16, 2, 1, "", "integer_var_list"], [16, 2, 1, "", "is_feasible"], [16, 2, 1, "", "linear_constraint"], [16, 4, 1, "", "linear_constraints"], [16, 4, 1, "", "linear_constraints_index"], [16, 2, 1, "", "maximize"], [16, 2, 1, "", "minimize"], [16, 4, 1, "", "name"], [16, 4, 1, "", "objective"], [16, 2, 1, "", "prettyprint"], [16, 2, 1, "", "quadratic_constraint"], [16, 4, 1, "", "quadratic_constraints"], [16, 4, 1, "", "quadratic_constraints_index"], [16, 2, 1, "", "read_from_lp_file"], [16, 2, 1, "", "remove_linear_constraint"], [16, 2, 1, "", "remove_quadratic_constraint"], [16, 4, 1, "", "status"], [16, 2, 1, "", "substitute_variables"], [16, 2, 1, "", "to_ising"], [16, 4, 1, "", "variables"], [16, 4, 1, "", "variables_index"], [16, 2, 1, "", "write_to_lp_file"]], "qiskit_optimization.algorithms": [[17, 3, 1, "", "ADMMOptimizationResult"], [18, 3, 1, "", "ADMMOptimizer"], [19, 3, 1, "", "ADMMParameters"], [20, 3, 1, "", "ADMMState"], [21, 3, 1, "", "BaseAggregator"], [22, 3, 1, "", "CobylaOptimizer"], [23, 3, 1, "", "CplexOptimizer"], [24, 3, 1, "", "GoemansWilliamsonOptimizationResult"], [25, 3, 1, "", "GoemansWilliamsonOptimizer"], [26, 3, 1, "", "GroverOptimizationResult"], [27, 3, 1, "", "GroverOptimizer"], [28, 3, 1, "", "GurobiOptimizer"], [29, 3, 1, "", "IntermediateResult"], [30, 3, 1, "", "MeanAggregator"], [31, 3, 1, "", "MinimumEigenOptimizationResult"], [32, 3, 1, "", "MinimumEigenOptimizer"], [33, 3, 1, "", "MultiStartOptimizer"], [34, 3, 1, "", "OptimizationAlgorithm"], [35, 3, 1, "", "OptimizationResult"], [36, 3, 1, "", "OptimizationResultStatus"], [37, 3, 1, "", "RecursiveMinimumEigenOptimizationResult"], [38, 3, 1, "", "RecursiveMinimumEigenOptimizer"], [39, 3, 1, "", "ScipyMilpOptimizer"], [40, 3, 1, "", "SlsqpOptimizationResult"], [41, 3, 1, "", "SlsqpOptimizer"], [42, 3, 1, "", "SolutionSample"], [43, 3, 1, "", "WarmStartQAOAFactory"], [44, 3, 1, "", "WarmStartQAOAOptimizer"], [2, 0, 0, "-", "qrao"]], "qiskit_optimization.algorithms.ADMMOptimizationResult": [[17, 4, 1, "", "fval"], [17, 2, 1, "", "get_correlations"], [17, 2, 1, "", "prettyprint"], [17, 4, 1, "", "raw_results"], [17, 4, 1, "", "samples"], [17, 4, 1, "", "state"], [17, 4, 1, "", "status"], [17, 4, 1, "", "variable_names"], [17, 4, 1, "", "variables"], [17, 4, 1, "", "variables_dict"], [17, 4, 1, "", "x"]], "qiskit_optimization.algorithms.ADMMOptimizer": [[18, 2, 1, "", "get_compatibility_msg"], [18, 2, 1, "", "is_compatible"], [18, 4, 1, "", "parameters"], [18, 2, 1, "", "solve"]], "qiskit_optimization.algorithms.BaseAggregator": [[21, 2, 1, "", "aggregate"]], "qiskit_optimization.algorithms.CobylaOptimizer": [[22, 4, 1, "", "clip"], [22, 2, 1, "", "get_compatibility_msg"], [22, 2, 1, "", "is_compatible"], [22, 2, 1, "", "multi_start_solve"], [22, 2, 1, "", "solve"], [22, 4, 1, "", "trials"]], "qiskit_optimization.algorithms.CplexOptimizer": [[23, 4, 1, "", "cplex_parameters"], [23, 4, 1, "", "disp"], [23, 2, 1, "", "get_compatibility_msg"], [23, 2, 1, "", "is_compatible"], [23, 2, 1, "", "is_cplex_installed"], [23, 2, 1, "", "solve"]], "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult": [[24, 4, 1, "", "fval"], [24, 2, 1, "", "get_correlations"], [24, 2, 1, "", "prettyprint"], [24, 4, 1, "", "raw_results"], [24, 4, 1, "", "samples"], [24, 4, 1, "", "sdp_solution"], [24, 4, 1, "", "status"], [24, 4, 1, "", "variable_names"], [24, 4, 1, "", "variables"], [24, 4, 1, "", "variables_dict"], [24, 4, 1, "", "x"]], "qiskit_optimization.algorithms.GoemansWilliamsonOptimizer": [[25, 2, 1, "", "get_compatibility_msg"], [25, 2, 1, "", "is_compatible"], [25, 2, 1, "", "max_cut_value"], [25, 2, 1, "", "solve"]], "qiskit_optimization.algorithms.GroverOptimizationResult": [[26, 4, 1, "", "fval"], [26, 2, 1, "", "get_correlations"], [26, 4, 1, "", "intermediate_fval"], [26, 4, 1, "", "n_input_qubits"], [26, 4, 1, "", "n_output_qubits"], [26, 4, 1, "", "operation_counts"], [26, 2, 1, "", "prettyprint"], [26, 4, 1, "", "raw_results"], [26, 4, 1, "", "raw_samples"], [26, 4, 1, "", "samples"], [26, 4, 1, "", "status"], [26, 4, 1, "", "threshold"], [26, 4, 1, "", "variable_names"], [26, 4, 1, "", "variables"], [26, 4, 1, "", "variables_dict"], [26, 4, 1, "", "x"]], "qiskit_optimization.algorithms.GroverOptimizer": [[27, 2, 1, "", "get_compatibility_msg"], [27, 2, 1, "", "is_compatible"], [27, 2, 1, "", "solve"]], "qiskit_optimization.algorithms.GurobiOptimizer": [[28, 4, 1, "", "disp"], [28, 2, 1, "", "get_compatibility_msg"], [28, 2, 1, "", "is_compatible"], [28, 2, 1, "", "is_gurobi_installed"], [28, 2, 1, "", "solve"]], "qiskit_optimization.algorithms.IntermediateResult": [[29, 4, 1, "", "ALL_ITERATIONS"], [29, 4, 1, "", "LAST_ITERATION"], [29, 4, 1, "", "NO_ITERATIONS"]], "qiskit_optimization.algorithms.MeanAggregator": [[30, 2, 1, "", "aggregate"]], "qiskit_optimization.algorithms.MinimumEigenOptimizationResult": [[31, 4, 1, "", "fval"], [31, 2, 1, "", "get_correlations"], [31, 4, 1, "", "min_eigen_solver_result"], [31, 2, 1, "", "prettyprint"], [31, 4, 1, "", "raw_results"], [31, 4, 1, "", "raw_samples"], [31, 4, 1, "", "samples"], [31, 4, 1, "", "status"], [31, 4, 1, "", "variable_names"], [31, 4, 1, "", "variables"], [31, 4, 1, "", "variables_dict"], [31, 4, 1, "", "x"]], "qiskit_optimization.algorithms.MinimumEigenOptimizer": [[32, 2, 1, "", "get_compatibility_msg"], [32, 2, 1, "", "is_compatible"], [32, 4, 1, "", "min_eigen_solver"], [32, 2, 1, "", "solve"]], "qiskit_optimization.algorithms.MultiStartOptimizer": [[33, 4, 1, "", "clip"], [33, 2, 1, "", "get_compatibility_msg"], [33, 2, 1, "", "is_compatible"], [33, 2, 1, "", "multi_start_solve"], [33, 2, 1, "", "solve"], [33, 4, 1, "", "trials"]], "qiskit_optimization.algorithms.OptimizationAlgorithm": [[34, 2, 1, "", "get_compatibility_msg"], [34, 2, 1, "", "is_compatible"], [34, 2, 1, "", "solve"]], "qiskit_optimization.algorithms.OptimizationResult": [[35, 4, 1, "", "fval"], [35, 2, 1, "", "get_correlations"], [35, 2, 1, "", "prettyprint"], [35, 4, 1, "", "raw_results"], [35, 4, 1, "", "samples"], [35, 4, 1, "", "status"], [35, 4, 1, "", "variable_names"], [35, 4, 1, "", "variables"], [35, 4, 1, "", "variables_dict"], [35, 4, 1, "", "x"]], "qiskit_optimization.algorithms.OptimizationResultStatus": [[36, 4, 1, "", "FAILURE"], [36, 4, 1, "", "INFEASIBLE"], [36, 4, 1, "", "SUCCESS"]], "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult": [[37, 4, 1, "", "fval"], [37, 2, 1, "", "get_correlations"], [37, 4, 1, "", "history"], [37, 2, 1, "", "prettyprint"], [37, 4, 1, "", "raw_results"], [37, 4, 1, "", "replacements"], [37, 4, 1, "", "samples"], [37, 4, 1, "", "status"], [37, 4, 1, "", "variable_names"], [37, 4, 1, "", "variables"], [37, 4, 1, "", "variables_dict"], [37, 4, 1, "", "x"]], "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizer": [[38, 2, 1, "", "get_compatibility_msg"], [38, 2, 1, "", "is_compatible"], [38, 2, 1, "", "solve"]], "qiskit_optimization.algorithms.ScipyMilpOptimizer": [[39, 4, 1, "", "disp"], [39, 2, 1, "", "get_compatibility_msg"], [39, 2, 1, "", "is_compatible"], [39, 2, 1, "", "solve"]], "qiskit_optimization.algorithms.SlsqpOptimizationResult": [[40, 4, 1, "", "fval"], [40, 4, 1, "", "fx"], [40, 2, 1, "", "get_correlations"], [40, 4, 1, "", "imode"], [40, 4, 1, "", "its"], [40, 2, 1, "", "prettyprint"], [40, 4, 1, "", "raw_results"], [40, 4, 1, "", "samples"], [40, 4, 1, "", "smode"], [40, 4, 1, "", "status"], [40, 4, 1, "", "variable_names"], [40, 4, 1, "", "variables"], [40, 4, 1, "", "variables_dict"], [40, 4, 1, "", "x"]], "qiskit_optimization.algorithms.SlsqpOptimizer": [[41, 4, 1, "", "clip"], [41, 2, 1, "", "get_compatibility_msg"], [41, 2, 1, "", "is_compatible"], [41, 2, 1, "", "multi_start_solve"], [41, 2, 1, "", "solve"], [41, 4, 1, "", "trials"]], "qiskit_optimization.algorithms.SolutionSample": [[42, 4, 1, "", "fval"], [42, 4, 1, "", "probability"], [42, 4, 1, "", "status"], [42, 4, 1, "", "x"]], "qiskit_optimization.algorithms.WarmStartQAOAFactory": [[43, 2, 1, "", "create_initial_state"], [43, 2, 1, "", "create_initial_variables"], [43, 2, 1, "", "create_mixer"]], "qiskit_optimization.algorithms.WarmStartQAOAOptimizer": [[44, 2, 1, "", "get_compatibility_msg"], [44, 2, 1, "", "is_compatible"], [44, 4, 1, "", "min_eigen_solver"], [44, 2, 1, "", "solve"]], "qiskit_optimization.algorithms.qrao": [[45, 3, 1, "", "EncodingCommutationVerifier"], [46, 3, 1, "", "MagicRounding"], [47, 3, 1, "", "QuantumRandomAccessEncoding"], [48, 3, 1, "", "QuantumRandomAccessOptimizationResult"], [49, 3, 1, "", "QuantumRandomAccessOptimizer"], [50, 3, 1, "", "RoundingContext"], [51, 3, 1, "", "RoundingResult"], [52, 3, 1, "", "RoundingScheme"], [53, 3, 1, "", "SemideterministicRounding"]], "qiskit_optimization.algorithms.qrao.MagicRounding": [[46, 4, 1, "", "basis_sampling"], [46, 2, 1, "", "round"], [46, 4, 1, "", "sampler"]], "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding": [[47, 4, 1, "", "compression_ratio"], [47, 2, 1, "", "encode"], [47, 2, 1, "", "freeze"], [47, 4, 1, "", "frozen"], [47, 4, 1, "", "max_vars_per_qubit"], [47, 4, 1, "", "minimum_recovery_probability"], [47, 4, 1, "", "num_qubits"], [47, 4, 1, "", "num_vars"], [47, 4, 1, "", "offset"], [47, 4, 1, "", "problem"], [47, 4, 1, "", "q2vars"], [47, 4, 1, "", "qubit_op"], [47, 2, 1, "", "state_preparation_circuit"], [47, 4, 1, "", "var2op"]], "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult": [[48, 4, 1, "", "encoding"], [48, 4, 1, "", "fval"], [48, 2, 1, "", "get_correlations"], [48, 2, 1, "", "prettyprint"], [48, 4, 1, "", "raw_results"], [48, 4, 1, "", "relaxed_fval"], [48, 4, 1, "", "relaxed_result"], [48, 4, 1, "", "rounding_result"], [48, 4, 1, "", "samples"], [48, 4, 1, "", "status"], [48, 4, 1, "", "variable_names"], [48, 4, 1, "", "variables"], [48, 4, 1, "", "variables_dict"], [48, 4, 1, "", "x"]], "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer": [[49, 2, 1, "", "get_compatibility_msg"], [49, 2, 1, "", "is_compatible"], [49, 4, 1, "", "max_vars_per_qubit"], [49, 4, 1, "", "min_eigen_solver"], [49, 2, 1, "", "process_result"], [49, 4, 1, "", "rounding_scheme"], [49, 2, 1, "", "solve"], [49, 2, 1, "", "solve_relaxed"]], "qiskit_optimization.algorithms.qrao.RoundingContext": [[50, 4, 1, "", "circuit"], [50, 4, 1, "", "encoding"], [50, 4, 1, "", "expectation_values"]], "qiskit_optimization.algorithms.qrao.RoundingResult": [[51, 4, 1, "", "bases"], [51, 4, 1, "", "basis_counts"], [51, 4, 1, "", "basis_shots"], [51, 4, 1, "", "expectation_values"], [51, 4, 1, "", "samples"]], "qiskit_optimization.algorithms.qrao.RoundingScheme": [[52, 2, 1, "", "round"]], "qiskit_optimization.algorithms.qrao.SemideterministicRounding": [[53, 2, 1, "", "round"]], "qiskit_optimization.applications": [[54, 3, 1, "", "BinPacking"], [55, 3, 1, "", "Clique"], [56, 3, 1, "", "ExactCover"], [57, 3, 1, "", "GraphOptimizationApplication"], [58, 3, 1, "", "GraphPartition"], [59, 3, 1, "", "Knapsack"], [60, 3, 1, "", "Maxcut"], [61, 3, 1, "", "NumberPartition"], [62, 3, 1, "", "OptimizationApplication"], [63, 3, 1, "", "SKModel"], [64, 3, 1, "", "SetPacking"], [65, 3, 1, "", "StableSet"], [66, 3, 1, "", "Tsp"], [67, 3, 1, "", "VehicleRouting"], [68, 3, 1, "", "VertexCover"]], "qiskit_optimization.applications.BinPacking": [[54, 2, 1, "", "get_figure"], [54, 2, 1, "", "interpret"], [54, 2, 1, "", "sample_most_likely"], [54, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.Clique": [[55, 2, 1, "", "draw"], [55, 4, 1, "", "graph"], [55, 2, 1, "", "interpret"], [55, 2, 1, "", "sample_most_likely"], [55, 4, 1, "", "size"], [55, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.ExactCover": [[56, 2, 1, "", "interpret"], [56, 2, 1, "", "sample_most_likely"], [56, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.GraphOptimizationApplication": [[57, 2, 1, "", "draw"], [57, 4, 1, "", "graph"], [57, 2, 1, "", "interpret"], [57, 2, 1, "", "sample_most_likely"], [57, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.GraphPartition": [[58, 2, 1, "", "draw"], [58, 4, 1, "", "graph"], [58, 2, 1, "", "interpret"], [58, 2, 1, "", "sample_most_likely"], [58, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.Knapsack": [[59, 2, 1, "", "interpret"], [59, 4, 1, "", "max_weight"], [59, 2, 1, "", "sample_most_likely"], [59, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.Maxcut": [[60, 2, 1, "", "draw"], [60, 2, 1, "", "get_gset_result"], [60, 4, 1, "", "graph"], [60, 2, 1, "", "interpret"], [60, 2, 1, "", "parse_gset_format"], [60, 2, 1, "", "sample_most_likely"], [60, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.NumberPartition": [[61, 2, 1, "", "interpret"], [61, 2, 1, "", "sample_most_likely"], [61, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.OptimizationApplication": [[62, 2, 1, "", "interpret"], [62, 2, 1, "", "sample_most_likely"], [62, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.SKModel": [[63, 2, 1, "", "disorder"], [63, 4, 1, "", "graph"], [63, 2, 1, "", "interpret"], [63, 4, 1, "", "num_sites"], [63, 2, 1, "", "sample_most_likely"], [63, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.SetPacking": [[64, 2, 1, "", "interpret"], [64, 2, 1, "", "sample_most_likely"], [64, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.StableSet": [[65, 2, 1, "", "draw"], [65, 4, 1, "", "graph"], [65, 2, 1, "", "interpret"], [65, 2, 1, "", "sample_most_likely"], [65, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.Tsp": [[66, 2, 1, "", "create_random_instance"], [66, 2, 1, "", "draw"], [66, 4, 1, "", "graph"], [66, 2, 1, "", "interpret"], [66, 2, 1, "", "parse_tsplib_format"], [66, 2, 1, "", "sample_most_likely"], [66, 2, 1, "", "to_quadratic_program"], [66, 2, 1, "", "tsp_value"]], "qiskit_optimization.applications.VehicleRouting": [[67, 2, 1, "", "create_random_instance"], [67, 4, 1, "", "depot"], [67, 2, 1, "", "draw"], [67, 4, 1, "", "graph"], [67, 2, 1, "", "interpret"], [67, 4, 1, "", "num_vehicles"], [67, 2, 1, "", "sample_most_likely"], [67, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.applications.VertexCover": [[68, 2, 1, "", "draw"], [68, 4, 1, "", "graph"], [68, 2, 1, "", "interpret"], [68, 2, 1, "", "sample_most_likely"], [68, 2, 1, "", "to_quadratic_program"]], "qiskit_optimization.converters": [[69, 3, 1, "", "InequalityToEquality"], [70, 3, 1, "", "IntegerToBinary"], [71, 3, 1, "", "LinearEqualityToPenalty"], [72, 3, 1, "", "LinearInequalityToPenalty"], [73, 3, 1, "", "MaximizeToMinimize"], [74, 3, 1, "", "MinimizeToMaximize"], [75, 3, 1, "", "QuadraticProgramConverter"], [76, 3, 1, "", "QuadraticProgramToQubo"]], "qiskit_optimization.converters.InequalityToEquality": [[69, 2, 1, "", "convert"], [69, 2, 1, "", "interpret"], [69, 4, 1, "", "mode"]], "qiskit_optimization.converters.IntegerToBinary": [[70, 2, 1, "", "convert"], [70, 2, 1, "", "interpret"]], "qiskit_optimization.converters.LinearEqualityToPenalty": [[71, 2, 1, "", "convert"], [71, 2, 1, "", "interpret"], [71, 4, 1, "", "penalty"]], "qiskit_optimization.converters.LinearInequalityToPenalty": [[72, 2, 1, "", "convert"], [72, 2, 1, "", "interpret"], [72, 4, 1, "", "penalty"]], "qiskit_optimization.converters.MaximizeToMinimize": [[73, 2, 1, "", "convert"], [73, 2, 1, "", "interpret"]], "qiskit_optimization.converters.MinimizeToMaximize": [[74, 2, 1, "", "convert"], [74, 2, 1, "", "interpret"]], "qiskit_optimization.converters.QuadraticProgramConverter": [[75, 2, 1, "", "convert"], [75, 2, 1, "", "interpret"]], "qiskit_optimization.converters.QuadraticProgramToQubo": [[76, 2, 1, "", "convert"], [76, 2, 1, "", "get_compatibility_msg"], [76, 2, 1, "", "interpret"], [76, 2, 1, "", "is_compatible"], [76, 4, 1, "", "penalty"]], "qiskit_optimization.infinity": [[77, 5, 1, "", "INFINITY"]], "qiskit_optimization.problems": [[78, 3, 1, "", "Constraint"], [79, 3, 1, "", "LinearConstraint"], [80, 3, 1, "", "LinearExpression"], [81, 3, 1, "", "QuadraticConstraint"], [82, 3, 1, "", "QuadraticExpression"], [83, 3, 1, "", "QuadraticObjective"], [84, 3, 1, "", "QuadraticProgramElement"], [85, 3, 1, "", "Variable"]], "qiskit_optimization.problems.Constraint": [[78, 2, 1, "", "evaluate"], [78, 4, 1, "", "name"], [78, 4, 1, "", "quadratic_program"], [78, 4, 1, "", "rhs"], [78, 4, 1, "", "sense"]], "qiskit_optimization.problems.LinearConstraint": [[79, 2, 1, "", "evaluate"], [79, 4, 1, "", "linear"], [79, 4, 1, "", "name"], [79, 4, 1, "", "quadratic_program"], [79, 4, 1, "", "rhs"], [79, 4, 1, "", "sense"]], "qiskit_optimization.problems.LinearExpression": [[80, 4, 1, "", "bounds"], [80, 4, 1, "", "coefficients"], [80, 2, 1, "", "evaluate"], [80, 2, 1, "", "evaluate_gradient"], [80, 4, 1, "", "quadratic_program"], [80, 2, 1, "", "to_array"], [80, 2, 1, "", "to_dict"]], "qiskit_optimization.problems.QuadraticConstraint": [[81, 2, 1, "", "evaluate"], [81, 4, 1, "", "linear"], [81, 4, 1, "", "name"], [81, 4, 1, "", "quadratic"], [81, 4, 1, "", "quadratic_program"], [81, 4, 1, "", "rhs"], [81, 4, 1, "", "sense"]], "qiskit_optimization.problems.QuadraticExpression": [[82, 4, 1, "", "bounds"], [82, 4, 1, "", "coefficients"], [82, 2, 1, "", "evaluate"], [82, 2, 1, "", "evaluate_gradient"], [82, 4, 1, "", "quadratic_program"], [82, 2, 1, "", "to_array"], [82, 2, 1, "", "to_dict"]], "qiskit_optimization.problems.QuadraticObjective": [[83, 4, 1, "", "constant"], [83, 2, 1, "", "evaluate"], [83, 2, 1, "", "evaluate_gradient"], [83, 4, 1, "", "linear"], [83, 4, 1, "", "quadratic"], [83, 4, 1, "", "quadratic_program"], [83, 4, 1, "", "sense"]], "qiskit_optimization.problems.QuadraticProgramElement": [[84, 4, 1, "", "quadratic_program"]], "qiskit_optimization.problems.Variable": [[85, 2, 1, "", "as_tuple"], [85, 4, 1, "", "lowerbound"], [85, 4, 1, "", "name"], [85, 4, 1, "", "quadratic_program"], [85, 4, 1, "", "upperbound"], [85, 4, 1, "", "vartype"]], "qiskit_optimization.translators": [[86, 6, 1, "", "from_docplex_mp"], [87, 6, 1, "", "from_gurobipy"], [88, 6, 1, "", "from_ising"], [89, 6, 1, "", "to_docplex_mp"], [90, 6, 1, "", "to_gurobipy"], [91, 6, 1, "", "to_ising"]]}, "objtypes": {"0": "py:module", "1": "py:exception", "2": "py:method", "3": "py:class", "4": "py:attribute", "5": "py:data", "6": "py:function"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "exception", "Python exception"], "2": ["py", "method", "Python method"], "3": ["py", "class", "Python class"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "data", "Python data"], "6": ["py", "function", "Python function"]}, "titleterms": {"qiskit": [0, 7, 10, 11, 12, 13, 102], "optim": [0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104], "api": 0, "refer": [0, 8, 94, 95, 96, 98, 99, 101], "modul": 0, "qiskit_optim": [0, 1, 2, 3, 4, 5, 6], "submodul": [0, 1], "algorithm": [1, 2, 96], "base": [1, 3, 4], "class": [1, 3, 4, 97, 100], "result": [1, 96, 103], "quantum": [2, 8, 96, 97, 98, 99, 101, 103], "random": [2, 8, 103], "access": [2, 8, 103], "qrao": 2, "encod": [2, 8, 103], "round": [2, 8, 103], "scheme": [2, 8], "applic": [3, 97, 100], "convert": [4, 93, 94], "problem": [5, 8, 95, 97, 100, 103], "quadrat": [5, 6, 92, 93], "program": [5, 6, 92, 93], "translat": [6, 102], "explan": 7, "background": 8, "relax": [8, 101, 103], "code": 8, "A": 8, "simpl": 8, "via": 8, "qrac": 8, "1": [8, 98], "2": [8, 14, 98], "p": 8, "3": [8, 14, 96, 98], "recov": 8, "bit": 8, "hamiltonian": [8, 97, 98, 100, 103], "commut": 8, "semi": 8, "determinist": 8, "magic": 8, "state": 8, "get": 9, "start": [9, 101], "instal": 9, "option": 9, "readi": 9, "go": 9, "overview": [10, 11, 12], "next": 10, "step": [10, 98, 103], "v0": [11, 12], "5": [11, 14, 98], "migrat": [11, 12, 13], "guid": [11, 12, 13], "minimumeigenoptim": [11, 12, 32, 94], "numpyminimumeigensolv": [11, 12, 103], "qaoa": [11, 12, 101], "vqe": 11, "former": 11, "samplingvq": [11, 12, 99], "new": [11, 14], "warmstartqaoaoptim": [11, 12, 44], "groveroptim": [11, 12, 27, 95], "6": [12, 14], "releas": 14, "note": 14, "0": 14, "prelud": 14, "featur": 14, "upgrad": 14, "bug": 14, "fix": 14, "4": [14, 98], "other": 14, "deprec": 14, "qiskitoptimizationerror": 15, "quadraticprogram": [16, 92, 102], "admmoptimizationresult": 17, "admmoptim": 18, "admmparamet": 19, "admmstat": 20, "baseaggreg": 21, "cobylaoptim": 22, "cplexoptim": 23, "goemanswilliamsonoptimizationresult": 24, "goemanswilliamsonoptim": 25, "groveroptimizationresult": 26, "gurobioptim": 28, "intermediateresult": 29, "meanaggreg": 30, "minimumeigenoptimizationresult": 31, "multistartoptim": 33, "optimizationalgorithm": 34, "optimizationresult": 35, "optimizationresultstatu": 36, "recursiveminimumeigenoptimizationresult": 37, "recursiveminimumeigenoptim": [38, 94], "scipymilpoptim": 39, "slsqpoptimizationresult": 40, "slsqpoptim": 41, "solutionsampl": 42, "warmstartqaoafactori": 43, "encodingcommutationverifi": 45, "magicround": [46, 103], "quantumrandomaccessencod": 47, "quantumrandomaccessoptimizationresult": 48, "quantumrandomaccessoptim": [49, 103], "roundingcontext": 50, "roundingresult": 51, "roundingschem": 52, "semideterministicround": 53, "binpack": 54, "cliqu": 55, "exactcov": 56, "graphoptimizationappl": 57, "graphpartit": 58, "knapsack": [59, 100], "maxcut": 60, "numberpartit": 61, "optimizationappl": 62, "skmodel": 63, "setpack": 64, "stableset": 65, "tsp": 66, "vehiclerout": 67, "vertexcov": 68, "inequalitytoequ": [69, 93], "integertobinari": [70, 93], "linearequalitytopenalti": [71, 93], "linearinequalitytopenalti": 72, "maximizetominim": 73, "minimizetomaxim": 74, "quadraticprogramconvert": 75, "quadraticprogramtoqubo": 76, "infin": 77, "constraint": [78, 92, 102], "linearconstraint": 79, "linearexpress": 80, "quadraticconstraint": 81, "quadraticexpress": 82, "quadraticobject": 83, "quadraticprogramel": 84, "variabl": [85, 92], "from_docplex_mp": 86, "from_gurobipi": 87, "from_is": 88, "to_docplex_mp": 89, "to_gurobipi": 90, "to_is": 91, "introduct": [92, 94, 95, 96, 97, 98, 99, 100, 101], "load": 92, "from": [92, 98], "an": 92, "lp": 92, "file": 92, "docplex": [92, 102], "model": [92, 98, 102], "directli": 92, "construct": [92, 98], "ad": 92, "remov": 92, "linear": 92, "substitut": 92, "minimum": [94, 95, 99], "eigen": [94, 99], "qubo": [94, 95, 101], "sparsepauliop": 94, "solv": [94, 103], "analysi": [94, 101], "sampl": 94, "grover": 95, "adapt": 95, "search": 95, "find": 95, "us": [95, 98, 99, 102, 103], "check": [95, 97, 100], "correct": [95, 103], "valu": 95, "admm": 96, "initi": [96, 98], "exampl": 96, "classic": [96, 98, 102], "solut": [96, 98, 103], "paramet": 96, "call": 96, "h": 96, "solver": [96, 102], "max": 97, "cut": 97, "travel": 97, "salesman": 97, "weight": 97, "approxim": 97, "univers": 97, "comput": 97, "brute": 97, "forc": 97, "approach": 97, "map": 97, "Ising": [97, 98], "full": 97, "give": 97, "right": 97, "cost": 97, "run": 97, "vehicl": 98, "rout": 98, "The": 98, "qp": 98, "formul": 98, "ibm": 98, "ilog": 98, "cplex": 98, "ground": 98, "up": [98, 103], "improv": 99, "variat": 99, "cvar": 99, "portfolio": 99, "vertex": 100, "cover": 100, "how": [100, 103], "warm": 101, "preliminari": 101, "standard": 101, "cplexsolv": 102, "gurobisolv": 102, "between": 102, "gurobipi": 102, "indic": 102, "set": 103, "combinatori": 103, "interpret": 103, "inspect": 103, "subroutin": 103, "exact": 103, "altern": 103, "two": 103, "explicit": 103, "manual": 103, "perform": 103, "appendix": 103, "verifi": 103, "your": 103, "tutori": 104}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "nbsphinx": 4, "sphinx.ext.intersphinx": 1, "sphinx": 58}, "alltitles": {"Qiskit Optimization API Reference": [[0, "qiskit-optimization-api-reference"]], "Qiskit optimization module (qiskit_optimization)": [[0, "qiskit-optimization-module-qiskit-optimization"]], "Submodules": [[0, "submodules"], [1, "submodules"]], "Optimization algorithms (qiskit_optimization.algorithms)": [[1, "optimization-algorithms-qiskit-optimization-algorithms"]], "Base classes for algorithms and results": [[1, "base-classes-for-algorithms-and-results"]], "Algorithms and results": [[1, "algorithms-and-results"]], "Quantum Random Access Optimization (qiskit_optimization.algorithms.qrao)": [[2, "quantum-random-access-optimization-qiskit-optimization-algorithms-qrao"]], "Quantum Random Access Encoding and Optimization": [[2, "quantum-random-access-encoding-and-optimization"]], "Rounding schemes": [[2, "rounding-schemes"]], "Optimization applications (qiskit_optimization.applications)": [[3, "optimization-applications-qiskit-optimization-applications"]], "Base classes for applications": [[3, "base-classes-for-applications"]], "Applications": [[3, "applications"]], "Optimization converters (qiskit_optimization.converters)": [[4, "optimization-converters-qiskit-optimization-converters"]], "Base class for converters": [[4, "base-class-for-converters"]], "Converters": [[4, "converters"]], "Optimization problems (qiskit_optimization.problems)": [[5, "optimization-problems-qiskit-optimization-problems"]], "Quadratic program": [[5, "quadratic-program"]], "Quadratic program translators (qiskit_optimization.translators)": [[6, "quadratic-program-translators-qiskit-optimization-translators"]], "Translators": [[6, "translators"]], "Qiskit Optimization Explanations": [[7, "qiskit-optimization-explanations"]], "Explanations\u2026": [[7, "explanations"]], "Background on Quantum Random Access Optimization: Quantum relaxations, quantum random access codes, rounding schemes": [[8, "background-on-quantum-random-access-optimization-quantum-relaxations-quantum-random-access-codes-rounding-schemes"]], "Relaxations": [[8, "relaxations"]], "Quantum Relaxation": [[8, "quantum-relaxation"]], "A Simple Quantum Relaxation": [[8, "a-simple-quantum-relaxation"]], "Quantum Relaxations via Quantum Random Access Codes (QRACs)": [[8, "quantum-relaxations-via-quantum-random-access-codes-qracs"]], "(1,1,1), (2,1,p), and (3,1,p) Quantum Random Access Codes": [[8, "p-and-3-1-p-quantum-random-access-codes"]], "Recovering Encoded Bits": [[8, "recovering-encoded-bits"]], "Encoded Problem Hamiltonians": [[8, "encoded-problem-hamiltonians"]], "Commutation of Quantum Relaxation": [[8, "commutation-of-quantum-relaxation"]], "Quantum Rounding Schemes": [[8, "quantum-rounding-schemes"]], "Semi-deterministic Rounding": [[8, "semi-deterministic-rounding"]], "Magic State Rounding": [[8, "magic-state-rounding"]], "References": [[8, "references"], [94, "References"], [95, "References"], [96, "References"], [98, "References"], [99, "References"], [101, "References"]], "Getting started": [[9, "getting-started"]], "Installation": [[9, "installation"]], "Optional installs": [[9, "optional-installs"]], "Ready to get going?\u2026": [[9, "ready-to-get-going"]], "Qiskit Optimization overview": [[10, "qiskit-optimization-overview"]], "Overview": [[10, "overview"], [11, "overview"], [12, "overview"]], "Next Steps": [[10, "next-steps"]], "Qiskit Optimization v0.5 Migration Guide": [[11, "qiskit-optimization-v0-5-migration-guide"]], "MinimumEigenOptimizer": [[11, "minimumeigenoptimizer"], [12, "minimumeigenoptimizer"], [32, "minimumeigenoptimizer"]], "NumPyMinimumEigensolver": [[11, "numpyminimumeigensolver"], [12, "numpyminimumeigensolver"]], "QAOA": [[11, "qaoa"], [12, "qaoa"], [101, "QAOA"]], "VQE (former) \u2192 SamplingVQE (new)": [[11, "vqe-former-samplingvqe-new"]], "WarmStartQAOAOptimizer": [[11, "warmstartqaoaoptimizer"], [12, "warmstartqaoaoptimizer"], [44, "warmstartqaoaoptimizer"]], "GroverOptimizer": [[11, "groveroptimizer"], [12, "groveroptimizer"], [27, "groveroptimizer"]], "Qiskit Optimization v0.6 Migration Guide": [[12, "qiskit-optimization-v0-6-migration-guide"]], "SamplingVQE": [[12, "samplingvqe"]], "Qiskit Optimization Migration Guide": [[13, "qiskit-optimization-migration-guide"]], "Release Notes": [[14, "release-notes"]], "0.6.0": [[14, "release-notes-0-6-0"]], "Prelude": [[14, "prelude"], [14, "release-notes-0-5-0-prelude"]], "New Features": [[14, "new-features"], [14, "release-notes-0-5-0-new-features"], [14, "release-notes-0-4-0-new-features"], [14, "release-notes-0-3-0-new-features"], [14, "release-notes-0-2-0-new-features"]], "Upgrade Notes": [[14, "upgrade-notes"], [14, "release-notes-0-5-0-upgrade-notes"], [14, "release-notes-0-4-0-upgrade-notes"], [14, "release-notes-0-3-0-upgrade-notes"], [14, "release-notes-0-2-0-upgrade-notes"]], "Bug Fixes": [[14, "bug-fixes"], [14, "release-notes-0-5-0-bug-fixes"], [14, "release-notes-0-4-0-bug-fixes"], [14, "release-notes-0-3-0-bug-fixes"], [14, "release-notes-0-2-0-bug-fixes"]], "0.5.0": [[14, "release-notes-0-5-0"]], "0.4.0": [[14, "release-notes-0-4-0"]], "Other Notes": [[14, "other-notes"]], "0.3.0": [[14, "release-notes-0-3-0"]], "Deprecation Notes": [[14, "deprecation-notes"], [14, "release-notes-0-2-0-deprecation-notes"]], "0.2.0": [[14, "release-notes-0-2-0"]], "QiskitOptimizationError": [[15, "qiskitoptimizationerror"]], "QuadraticProgram": [[16, "quadraticprogram"]], "ADMMOptimizationResult": [[17, "admmoptimizationresult"]], "ADMMOptimizer": [[18, "admmoptimizer"]], "ADMMParameters": [[19, "admmparameters"]], "ADMMState": [[20, "admmstate"]], "BaseAggregator": [[21, "baseaggregator"]], "CobylaOptimizer": [[22, "cobylaoptimizer"]], "CplexOptimizer": [[23, "cplexoptimizer"]], "GoemansWilliamsonOptimizationResult": [[24, "goemanswilliamsonoptimizationresult"]], "GoemansWilliamsonOptimizer": [[25, "goemanswilliamsonoptimizer"]], "GroverOptimizationResult": [[26, "groveroptimizationresult"]], "GurobiOptimizer": [[28, "gurobioptimizer"]], "IntermediateResult": [[29, "intermediateresult"]], "MeanAggregator": [[30, "meanaggregator"]], "MinimumEigenOptimizationResult": [[31, "minimumeigenoptimizationresult"]], "MultiStartOptimizer": [[33, "multistartoptimizer"]], "OptimizationAlgorithm": [[34, "optimizationalgorithm"]], "OptimizationResult": [[35, "optimizationresult"]], "OptimizationResultStatus": [[36, "optimizationresultstatus"]], "RecursiveMinimumEigenOptimizationResult": [[37, "recursiveminimumeigenoptimizationresult"]], "RecursiveMinimumEigenOptimizer": [[38, "recursiveminimumeigenoptimizer"], [94, "RecursiveMinimumEigenOptimizer"]], "ScipyMilpOptimizer": [[39, "scipymilpoptimizer"]], "SlsqpOptimizationResult": [[40, "slsqpoptimizationresult"]], "SlsqpOptimizer": [[41, "slsqpoptimizer"]], "SolutionSample": [[42, "solutionsample"]], "WarmStartQAOAFactory": [[43, "warmstartqaoafactory"]], "EncodingCommutationVerifier": [[45, "encodingcommutationverifier"]], "MagicRounding": [[46, "magicrounding"]], "QuantumRandomAccessEncoding": [[47, "quantumrandomaccessencoding"]], "QuantumRandomAccessOptimizationResult": [[48, "quantumrandomaccessoptimizationresult"]], "QuantumRandomAccessOptimizer": [[49, "quantumrandomaccessoptimizer"]], "RoundingContext": [[50, "roundingcontext"]], "RoundingResult": [[51, "roundingresult"]], "RoundingScheme": [[52, "roundingscheme"]], "SemideterministicRounding": [[53, "semideterministicrounding"]], "BinPacking": [[54, "binpacking"]], "Clique": [[55, "clique"]], "ExactCover": [[56, "exactcover"]], "GraphOptimizationApplication": [[57, "graphoptimizationapplication"]], "GraphPartition": [[58, "graphpartition"]], "Knapsack": [[59, "knapsack"]], "Maxcut": [[60, "maxcut"]], "NumberPartition": [[61, "numberpartition"]], "OptimizationApplication": [[62, "optimizationapplication"]], "SKModel": [[63, "skmodel"]], "SetPacking": [[64, "setpacking"]], "StableSet": [[65, "stableset"]], "Tsp": [[66, "tsp"]], "VehicleRouting": [[67, "vehiclerouting"]], "VertexCover": [[68, "vertexcover"]], "InequalityToEquality": [[69, "inequalitytoequality"], [93, "InequalityToEquality"]], "IntegerToBinary": [[70, "integertobinary"], [93, "IntegerToBinary"]], "LinearEqualityToPenalty": [[71, "linearequalitytopenalty"], [93, "LinearEqualityToPenalty"]], "LinearInequalityToPenalty": [[72, "linearinequalitytopenalty"]], "MaximizeToMinimize": [[73, "maximizetominimize"]], "MinimizeToMaximize": [[74, "minimizetomaximize"]], "QuadraticProgramConverter": [[75, "quadraticprogramconverter"]], "QuadraticProgramToQubo": [[76, "quadraticprogramtoqubo"]], "INFINITY": [[77, "infinity"]], "Constraint": [[78, "constraint"]], "LinearConstraint": [[79, "linearconstraint"]], "LinearExpression": [[80, "linearexpression"]], "QuadraticConstraint": [[81, "quadraticconstraint"]], "QuadraticExpression": [[82, "quadraticexpression"]], "QuadraticObjective": [[83, "quadraticobjective"]], "QuadraticProgramElement": [[84, "quadraticprogramelement"]], "Variable": [[85, "variable"]], "from_docplex_mp": [[86, "from-docplex-mp"]], "from_gurobipy": [[87, "from-gurobipy"]], "from_ising": [[88, "from-ising"]], "to_docplex_mp": [[89, "to-docplex-mp"]], "to_gurobipy": [[90, "to-gurobipy"]], "to_ising": [[91, "to-ising"]], "Quadratic Programs": [[92, "Quadratic-Programs"]], "Introduction": [[92, "Introduction"], [94, "Introduction"], [95, "Introduction"], [96, "Introduction"], [97, "Introduction"], [99, "Introduction"], [100, "Introduction"], [101, "Introduction"]], "Loading a QuadraticProgram from an LP file": [[92, "Loading-a-QuadraticProgram-from-an-LP-file"]], "Loading a QuadraticProgram from a docplex model": [[92, "Loading-a-QuadraticProgram-from-a-docplex-model"]], "Directly constructing a QuadraticProgram": [[92, "Directly-constructing-a-QuadraticProgram"]], "Adding/removing linear and quadratic constraints": [[92, "Adding/removing-linear-and-quadratic-constraints"]], "Substituting Variables": [[92, "Substituting-Variables"]], "Converters for Quadratic Programs": [[93, "Converters-for-Quadratic-Programs"]], "Minimum Eigen Optimizer": [[94, "Minimum-Eigen-Optimizer"]], "Converting a QUBO to a SparsePauliOp": [[94, "Converting-a-QUBO-to-a-SparsePauliOp"]], "Solving a QUBO with the MinimumEigenOptimizer": [[94, "Solving-a-QUBO-with-the-MinimumEigenOptimizer"]], "Analysis of Samples": [[94, "Analysis-of-Samples"]], "Grover Optimizer": [[95, "Grover-Optimizer"]], "Grover Adaptive Search": [[95, "Grover-Adaptive-Search"]], "Find the Minimum of a QUBO Problem using GroverOptimizer": [[95, "Find-the-Minimum-of-a-QUBO-Problem-using-GroverOptimizer"]], "Check that GroverOptimizer finds the correct value": [[95, "Check-that-GroverOptimizer-finds-the-correct-value"]], "ADMM Optimizer": [[96, "ADMM-Optimizer"]], "Initialization": [[96, "Initialization"], [98, "Initialization"]], "Example": [[96, "Example"]], "Classical Solution": [[96, "Classical-Solution"]], "Parameters": [[96, "Parameters"]], "Calling 3-ADMM-H algorithm": [[96, "Calling-3-ADMM-H-algorithm"]], "Classical Solver Result": [[96, "Classical-Solver-Result"]], "Quantum Solution": [[96, "Quantum-Solution"]], "Quantum Solver Results": [[96, "Quantum-Solver-Results"]], "Max-Cut and Traveling Salesman Problem": [[97, "Max-Cut-and-Traveling-Salesman-Problem"]], "Weighted Max-Cut": [[97, "Weighted-Max-Cut"]], "Approximate Universal Quantum Computing for Optimization Problems": [[97, "Approximate-Universal-Quantum-Computing-for-Optimization-Problems"]], "Application classes": [[97, "Application-classes"]], "Max-Cut problem": [[97, "Max-Cut-problem"]], "Brute force approach": [[97, "Brute-force-approach"], [97, "id2"]], "Mapping to the Ising problem": [[97, "Mapping-to-the-Ising-problem"], [97, "id3"]], "Checking that the full Hamiltonian gives the right cost": [[97, "Checking-that-the-full-Hamiltonian-gives-the-right-cost"], [97, "id4"]], "Running it on quantum computer": [[97, "Running-it-on-quantum-computer"], [97, "id5"]], "Traveling Salesman Problem": [[97, "Traveling-Salesman-Problem"]], "Vehicle Routing": [[98, "Vehicle-Routing"]], "The Introduction": [[98, "The-Introduction"]], "The Model": [[98, "The-Model"]], "Classical solution": [[98, "Classical-solution"]], "Quantum solution": [[98, "Quantum-solution"]], "Construct the Ising Hamiltonian": [[98, "Construct-the-Ising-Hamiltonian"]], "From Hamiltonian to QP formulation": [[98, "From-Hamiltonian-to-QP-formulation"]], "Classical solution using IBM ILOG CPLEX": [[98, "Classical-solution-using-IBM-ILOG-CPLEX"]], "Quantum solution from the ground up": [[98, "Quantum-solution-from-the-ground-up"]], "Step 1": [[98, "Step-1"]], "Step 2": [[98, "Step-2"]], "Step 3": [[98, "Step-3"]], "Step 4": [[98, "Step-4"]], "Step 5": [[98, "Step-5"]], "Improving Variational Quantum Optimization using CVaR": [[99, "Improving-Variational-Quantum-Optimization-using-CVaR"]], "Portfolio Optimization": [[99, "Portfolio-Optimization"]], "Minimum Eigen Optimizer using SamplingVQE": [[99, "Minimum-Eigen-Optimizer-using-SamplingVQE"]], "Application Classes for Optimization Problems": [[100, "Application-Classes-for-Optimization-Problems"]], "Vertex cover problem": [[100, "Vertex-cover-problem"]], "Knapsack problem": [[100, "Knapsack-problem"]], "How to check the Hamiltonian": [[100, "How-to-check-the-Hamiltonian"]], "Warm-starting quantum optimization": [[101, "Warm-starting-quantum-optimization"]], "Preliminaries: relaxing QUBOs": [[101, "Preliminaries:-relaxing-QUBOs"]], "Standard QAOA": [[101, "Standard-QAOA"]], "Warm-start QAOA": [[101, "Warm-start-QAOA"], [101, "id2"]], "Analysis": [[101, "Analysis"]], "Using Classical Optimization Solvers and Models with Qiskit Optimization": [[102, "Using-Classical-Optimization-Solvers-and-Models-with-Qiskit-Optimization"]], "CplexSolver and GurobiSolver": [[102, "CplexSolver-and-GurobiSolver"]], "Translators between QuadraticProgram and Docplex/Gurobipy": [[102, "Translators-between-QuadraticProgram-and-Docplex/Gurobipy"]], "Indicator constraints of Docplex": [[102, "Indicator-constraints-of-Docplex"]], "Quantum Random Access Optimization": [[103, "Quantum-Random-Access-Optimization"]], "Set up a combinatorial optimization problem": [[103, "Set-up-a-combinatorial-optimization-problem"]], "Encode the problem into a quantum Hamiltonian": [[103, "Encode-the-problem-into-a-quantum-Hamiltonian"]], "Solve the problem using the QuantumRandomAccessOptimizer": [[103, "Solve-the-problem-using-the-QuantumRandomAccessOptimizer"]], "Interpret the solution": [[103, "Interpret-the-solution"]], "Inspect the results of subroutines": [[103, "Inspect-the-results-of-subroutines"]], "Exact Problem Solution with the NumpyMinimumEigensolver": [[103, "Exact-Problem-Solution-with-the-NumpyMinimumEigensolver"]], "Solve the problem using the QuantumRandomAccessOptimizer with MagicRounding": [[103, "Solve-the-problem-using-the-QuantumRandomAccessOptimizer-with-MagicRounding"]], "Alternative: Solve the Problem in Two Explicit Steps": [[103, "Alternative:-Solve-the-Problem-in-Two-Explicit-Steps"]], "Manually solve the relaxed problem.": [[103, "Manually-solve-the-relaxed-problem."]], "Manually perform rounding on the relaxed problem results": [[103, "Manually-perform-rounding-on-the-relaxed-problem-results"]], "Appendix": [[103, "Appendix"]], "How to verify correctness of your encoding": [[103, "How-to-verify-correctness-of-your-encoding"]], "Optimization Tutorials": [[104, "optimization-tutorials"]]}, "indexentries": {"module": [[0, "module-qiskit_optimization"], [1, "module-qiskit_optimization.algorithms"], [2, "module-qiskit_optimization.algorithms.qrao"], [3, "module-qiskit_optimization.applications"], [4, "module-qiskit_optimization.converters"], [5, "module-qiskit_optimization.problems"], [6, "module-qiskit_optimization.translators"]], "qiskit_optimization": [[0, "module-qiskit_optimization"]], "qiskit_optimization.algorithms": [[1, "module-qiskit_optimization.algorithms"]], "qiskit_optimization.algorithms.qrao": [[2, "module-qiskit_optimization.algorithms.qrao"]], "qiskit_optimization.applications": [[3, "module-qiskit_optimization.applications"]], "qiskit_optimization.converters": [[4, "module-qiskit_optimization.converters"]], "qiskit_optimization.problems": [[5, "module-qiskit_optimization.problems"]], "qiskit_optimization.translators": [[6, "module-qiskit_optimization.translators"]], "qiskitoptimizationerror": [[15, "qiskit_optimization.QiskitOptimizationError"]], "with_traceback() (qiskitoptimizationerror method)": [[15, "qiskit_optimization.QiskitOptimizationError.with_traceback"]], "quadraticprogram (class in qiskit_optimization)": [[16, "qiskit_optimization.QuadraticProgram"]], "binary_var() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.binary_var"]], "binary_var_dict() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.binary_var_dict"]], "binary_var_list() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.binary_var_list"]], "clear() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.clear"]], "continuous_var() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.continuous_var"]], "continuous_var_dict() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.continuous_var_dict"]], "continuous_var_list() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.continuous_var_list"]], "export_as_lp_string() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.export_as_lp_string"]], "from_ising() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.from_ising"]], "get_feasibility_info() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.get_feasibility_info"]], "get_linear_constraint() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.get_linear_constraint"]], "get_num_binary_vars() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.get_num_binary_vars"]], "get_num_continuous_vars() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.get_num_continuous_vars"]], "get_num_integer_vars() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.get_num_integer_vars"]], "get_num_linear_constraints() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.get_num_linear_constraints"]], "get_num_quadratic_constraints() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.get_num_quadratic_constraints"]], "get_num_vars() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.get_num_vars"]], "get_quadratic_constraint() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.get_quadratic_constraint"]], "get_variable() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.get_variable"]], "integer_var() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.integer_var"]], "integer_var_dict() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.integer_var_dict"]], "integer_var_list() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.integer_var_list"]], "is_feasible() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.is_feasible"]], "linear_constraint() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.linear_constraint"]], "linear_constraints (quadraticprogram attribute)": [[16, "qiskit_optimization.QuadraticProgram.linear_constraints"]], "linear_constraints_index (quadraticprogram attribute)": [[16, "qiskit_optimization.QuadraticProgram.linear_constraints_index"]], "maximize() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.maximize"]], "minimize() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.minimize"]], "name (quadraticprogram attribute)": [[16, "qiskit_optimization.QuadraticProgram.name"]], "objective (quadraticprogram attribute)": [[16, "qiskit_optimization.QuadraticProgram.objective"]], "prettyprint() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.prettyprint"]], "quadratic_constraint() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.quadratic_constraint"]], "quadratic_constraints (quadraticprogram attribute)": [[16, "qiskit_optimization.QuadraticProgram.quadratic_constraints"]], "quadratic_constraints_index (quadraticprogram attribute)": [[16, "qiskit_optimization.QuadraticProgram.quadratic_constraints_index"]], "read_from_lp_file() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.read_from_lp_file"]], "remove_linear_constraint() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.remove_linear_constraint"]], "remove_quadratic_constraint() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.remove_quadratic_constraint"]], "status (quadraticprogram attribute)": [[16, "qiskit_optimization.QuadraticProgram.status"]], "substitute_variables() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.substitute_variables"]], "to_ising() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.to_ising"]], "variables (quadraticprogram attribute)": [[16, "qiskit_optimization.QuadraticProgram.variables"]], "variables_index (quadraticprogram attribute)": [[16, "qiskit_optimization.QuadraticProgram.variables_index"]], "write_to_lp_file() (quadraticprogram method)": [[16, "qiskit_optimization.QuadraticProgram.write_to_lp_file"]], "admmoptimizationresult (class in qiskit_optimization.algorithms)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult"]], "fval (admmoptimizationresult attribute)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult.fval"]], "get_correlations() (admmoptimizationresult method)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult.get_correlations"]], "prettyprint() (admmoptimizationresult method)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult.prettyprint"]], "raw_results (admmoptimizationresult attribute)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult.raw_results"]], "samples (admmoptimizationresult attribute)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult.samples"]], "state (admmoptimizationresult attribute)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult.state"]], "status (admmoptimizationresult attribute)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult.status"]], "variable_names (admmoptimizationresult attribute)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult.variable_names"]], "variables (admmoptimizationresult attribute)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult.variables"]], "variables_dict (admmoptimizationresult attribute)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult.variables_dict"]], "x (admmoptimizationresult attribute)": [[17, "qiskit_optimization.algorithms.ADMMOptimizationResult.x"]], "admmoptimizer (class in qiskit_optimization.algorithms)": [[18, "qiskit_optimization.algorithms.ADMMOptimizer"]], "get_compatibility_msg() (admmoptimizer method)": [[18, "qiskit_optimization.algorithms.ADMMOptimizer.get_compatibility_msg"]], "is_compatible() (admmoptimizer method)": [[18, "qiskit_optimization.algorithms.ADMMOptimizer.is_compatible"]], "parameters (admmoptimizer attribute)": [[18, "qiskit_optimization.algorithms.ADMMOptimizer.parameters"]], "solve() (admmoptimizer method)": [[18, "qiskit_optimization.algorithms.ADMMOptimizer.solve"]], "admmparameters (class in qiskit_optimization.algorithms)": [[19, "qiskit_optimization.algorithms.ADMMParameters"]], "admmstate (class in qiskit_optimization.algorithms)": [[20, "qiskit_optimization.algorithms.ADMMState"]], "baseaggregator (class in qiskit_optimization.algorithms)": [[21, "qiskit_optimization.algorithms.BaseAggregator"]], "aggregate() (baseaggregator method)": [[21, "qiskit_optimization.algorithms.BaseAggregator.aggregate"]], "cobylaoptimizer (class in qiskit_optimization.algorithms)": [[22, "qiskit_optimization.algorithms.CobylaOptimizer"]], "clip (cobylaoptimizer attribute)": [[22, "qiskit_optimization.algorithms.CobylaOptimizer.clip"]], "get_compatibility_msg() (cobylaoptimizer method)": [[22, "qiskit_optimization.algorithms.CobylaOptimizer.get_compatibility_msg"]], "is_compatible() (cobylaoptimizer method)": [[22, "qiskit_optimization.algorithms.CobylaOptimizer.is_compatible"]], "multi_start_solve() (cobylaoptimizer method)": [[22, "qiskit_optimization.algorithms.CobylaOptimizer.multi_start_solve"]], "solve() (cobylaoptimizer method)": [[22, "qiskit_optimization.algorithms.CobylaOptimizer.solve"]], "trials (cobylaoptimizer attribute)": [[22, "qiskit_optimization.algorithms.CobylaOptimizer.trials"]], "cplexoptimizer (class in qiskit_optimization.algorithms)": [[23, "qiskit_optimization.algorithms.CplexOptimizer"]], "cplex_parameters (cplexoptimizer attribute)": [[23, "qiskit_optimization.algorithms.CplexOptimizer.cplex_parameters"]], "disp (cplexoptimizer attribute)": [[23, "qiskit_optimization.algorithms.CplexOptimizer.disp"]], "get_compatibility_msg() (cplexoptimizer method)": [[23, "qiskit_optimization.algorithms.CplexOptimizer.get_compatibility_msg"]], "is_compatible() (cplexoptimizer method)": [[23, "qiskit_optimization.algorithms.CplexOptimizer.is_compatible"]], "is_cplex_installed() (cplexoptimizer static method)": [[23, "qiskit_optimization.algorithms.CplexOptimizer.is_cplex_installed"]], "solve() (cplexoptimizer method)": [[23, "qiskit_optimization.algorithms.CplexOptimizer.solve"]], "goemanswilliamsonoptimizationresult (class in qiskit_optimization.algorithms)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult"]], "fval (goemanswilliamsonoptimizationresult attribute)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.fval"]], "get_correlations() (goemanswilliamsonoptimizationresult method)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.get_correlations"]], "prettyprint() (goemanswilliamsonoptimizationresult method)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.prettyprint"]], "raw_results (goemanswilliamsonoptimizationresult attribute)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.raw_results"]], "samples (goemanswilliamsonoptimizationresult attribute)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.samples"]], "sdp_solution (goemanswilliamsonoptimizationresult attribute)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.sdp_solution"]], "status (goemanswilliamsonoptimizationresult attribute)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.status"]], "variable_names (goemanswilliamsonoptimizationresult attribute)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.variable_names"]], "variables (goemanswilliamsonoptimizationresult attribute)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.variables"]], "variables_dict (goemanswilliamsonoptimizationresult attribute)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.variables_dict"]], "x (goemanswilliamsonoptimizationresult attribute)": [[24, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizationResult.x"]], "goemanswilliamsonoptimizer (class in qiskit_optimization.algorithms)": [[25, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizer"]], "get_compatibility_msg() (goemanswilliamsonoptimizer method)": [[25, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizer.get_compatibility_msg"]], "is_compatible() (goemanswilliamsonoptimizer method)": [[25, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizer.is_compatible"]], "max_cut_value() (goemanswilliamsonoptimizer static method)": [[25, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizer.max_cut_value"]], "solve() (goemanswilliamsonoptimizer method)": [[25, "qiskit_optimization.algorithms.GoemansWilliamsonOptimizer.solve"]], "groveroptimizationresult (class in qiskit_optimization.algorithms)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult"]], "fval (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.fval"]], "get_correlations() (groveroptimizationresult method)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.get_correlations"]], "intermediate_fval (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.intermediate_fval"]], "n_input_qubits (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.n_input_qubits"]], "n_output_qubits (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.n_output_qubits"]], "operation_counts (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.operation_counts"]], "prettyprint() (groveroptimizationresult method)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.prettyprint"]], "raw_results (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.raw_results"]], "raw_samples (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.raw_samples"]], "samples (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.samples"]], "status (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.status"]], "threshold (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.threshold"]], "variable_names (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.variable_names"]], "variables (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.variables"]], "variables_dict (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.variables_dict"]], "x (groveroptimizationresult attribute)": [[26, "qiskit_optimization.algorithms.GroverOptimizationResult.x"]], "groveroptimizer (class in qiskit_optimization.algorithms)": [[27, "qiskit_optimization.algorithms.GroverOptimizer"]], "get_compatibility_msg() (groveroptimizer method)": [[27, "qiskit_optimization.algorithms.GroverOptimizer.get_compatibility_msg"]], "is_compatible() (groveroptimizer method)": [[27, "qiskit_optimization.algorithms.GroverOptimizer.is_compatible"]], "solve() (groveroptimizer method)": [[27, "qiskit_optimization.algorithms.GroverOptimizer.solve"]], "gurobioptimizer (class in qiskit_optimization.algorithms)": [[28, "qiskit_optimization.algorithms.GurobiOptimizer"]], "disp (gurobioptimizer attribute)": [[28, "qiskit_optimization.algorithms.GurobiOptimizer.disp"]], "get_compatibility_msg() (gurobioptimizer method)": [[28, "qiskit_optimization.algorithms.GurobiOptimizer.get_compatibility_msg"]], "is_compatible() (gurobioptimizer method)": [[28, "qiskit_optimization.algorithms.GurobiOptimizer.is_compatible"]], "is_gurobi_installed() (gurobioptimizer static method)": [[28, "qiskit_optimization.algorithms.GurobiOptimizer.is_gurobi_installed"]], "solve() (gurobioptimizer method)": [[28, "qiskit_optimization.algorithms.GurobiOptimizer.solve"]], "all_iterations (intermediateresult attribute)": [[29, "qiskit_optimization.algorithms.IntermediateResult.ALL_ITERATIONS"]], "intermediateresult (class in qiskit_optimization.algorithms)": [[29, "qiskit_optimization.algorithms.IntermediateResult"]], "last_iteration (intermediateresult attribute)": [[29, "qiskit_optimization.algorithms.IntermediateResult.LAST_ITERATION"]], "no_iterations (intermediateresult attribute)": [[29, "qiskit_optimization.algorithms.IntermediateResult.NO_ITERATIONS"]], "meanaggregator (class in qiskit_optimization.algorithms)": [[30, "qiskit_optimization.algorithms.MeanAggregator"]], "aggregate() (meanaggregator method)": [[30, "qiskit_optimization.algorithms.MeanAggregator.aggregate"]], "minimumeigenoptimizationresult (class in qiskit_optimization.algorithms)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult"]], "fval (minimumeigenoptimizationresult attribute)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.fval"]], "get_correlations() (minimumeigenoptimizationresult method)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.get_correlations"]], "min_eigen_solver_result (minimumeigenoptimizationresult attribute)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.min_eigen_solver_result"]], "prettyprint() (minimumeigenoptimizationresult method)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.prettyprint"]], "raw_results (minimumeigenoptimizationresult attribute)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.raw_results"]], "raw_samples (minimumeigenoptimizationresult attribute)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.raw_samples"]], "samples (minimumeigenoptimizationresult attribute)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.samples"]], "status (minimumeigenoptimizationresult attribute)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.status"]], "variable_names (minimumeigenoptimizationresult attribute)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.variable_names"]], "variables (minimumeigenoptimizationresult attribute)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.variables"]], "variables_dict (minimumeigenoptimizationresult attribute)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.variables_dict"]], "x (minimumeigenoptimizationresult attribute)": [[31, "qiskit_optimization.algorithms.MinimumEigenOptimizationResult.x"]], "minimumeigenoptimizer (class in qiskit_optimization.algorithms)": [[32, "qiskit_optimization.algorithms.MinimumEigenOptimizer"]], "get_compatibility_msg() (minimumeigenoptimizer method)": [[32, "qiskit_optimization.algorithms.MinimumEigenOptimizer.get_compatibility_msg"]], "is_compatible() (minimumeigenoptimizer method)": [[32, "qiskit_optimization.algorithms.MinimumEigenOptimizer.is_compatible"]], "min_eigen_solver (minimumeigenoptimizer attribute)": [[32, "qiskit_optimization.algorithms.MinimumEigenOptimizer.min_eigen_solver"]], "solve() (minimumeigenoptimizer method)": [[32, "qiskit_optimization.algorithms.MinimumEigenOptimizer.solve"]], "multistartoptimizer (class in qiskit_optimization.algorithms)": [[33, "qiskit_optimization.algorithms.MultiStartOptimizer"]], "clip (multistartoptimizer attribute)": [[33, "qiskit_optimization.algorithms.MultiStartOptimizer.clip"]], "get_compatibility_msg() (multistartoptimizer method)": [[33, "qiskit_optimization.algorithms.MultiStartOptimizer.get_compatibility_msg"]], "is_compatible() (multistartoptimizer method)": [[33, "qiskit_optimization.algorithms.MultiStartOptimizer.is_compatible"]], "multi_start_solve() (multistartoptimizer method)": [[33, "qiskit_optimization.algorithms.MultiStartOptimizer.multi_start_solve"]], "solve() (multistartoptimizer method)": [[33, "qiskit_optimization.algorithms.MultiStartOptimizer.solve"]], "trials (multistartoptimizer attribute)": [[33, "qiskit_optimization.algorithms.MultiStartOptimizer.trials"]], "optimizationalgorithm (class in qiskit_optimization.algorithms)": [[34, "qiskit_optimization.algorithms.OptimizationAlgorithm"]], "get_compatibility_msg() (optimizationalgorithm method)": [[34, "qiskit_optimization.algorithms.OptimizationAlgorithm.get_compatibility_msg"]], "is_compatible() (optimizationalgorithm method)": [[34, "qiskit_optimization.algorithms.OptimizationAlgorithm.is_compatible"]], "solve() (optimizationalgorithm method)": [[34, "qiskit_optimization.algorithms.OptimizationAlgorithm.solve"]], "optimizationresult (class in qiskit_optimization.algorithms)": [[35, "qiskit_optimization.algorithms.OptimizationResult"]], "fval (optimizationresult attribute)": [[35, "qiskit_optimization.algorithms.OptimizationResult.fval"]], "get_correlations() (optimizationresult method)": [[35, "qiskit_optimization.algorithms.OptimizationResult.get_correlations"]], "prettyprint() (optimizationresult method)": [[35, "qiskit_optimization.algorithms.OptimizationResult.prettyprint"]], "raw_results (optimizationresult attribute)": [[35, "qiskit_optimization.algorithms.OptimizationResult.raw_results"]], "samples (optimizationresult attribute)": [[35, "qiskit_optimization.algorithms.OptimizationResult.samples"]], "status (optimizationresult attribute)": [[35, "qiskit_optimization.algorithms.OptimizationResult.status"]], "variable_names (optimizationresult attribute)": [[35, "qiskit_optimization.algorithms.OptimizationResult.variable_names"]], "variables (optimizationresult attribute)": [[35, "qiskit_optimization.algorithms.OptimizationResult.variables"]], "variables_dict (optimizationresult attribute)": [[35, "qiskit_optimization.algorithms.OptimizationResult.variables_dict"]], "x (optimizationresult attribute)": [[35, "qiskit_optimization.algorithms.OptimizationResult.x"]], "failure (optimizationresultstatus attribute)": [[36, "qiskit_optimization.algorithms.OptimizationResultStatus.FAILURE"]], "infeasible (optimizationresultstatus attribute)": [[36, "qiskit_optimization.algorithms.OptimizationResultStatus.INFEASIBLE"]], "optimizationresultstatus (class in qiskit_optimization.algorithms)": [[36, "qiskit_optimization.algorithms.OptimizationResultStatus"]], "success (optimizationresultstatus attribute)": [[36, "qiskit_optimization.algorithms.OptimizationResultStatus.SUCCESS"]], "recursiveminimumeigenoptimizationresult (class in qiskit_optimization.algorithms)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult"]], "fval (recursiveminimumeigenoptimizationresult attribute)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.fval"]], "get_correlations() (recursiveminimumeigenoptimizationresult method)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.get_correlations"]], "history (recursiveminimumeigenoptimizationresult attribute)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.history"]], "prettyprint() (recursiveminimumeigenoptimizationresult method)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.prettyprint"]], "raw_results (recursiveminimumeigenoptimizationresult attribute)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.raw_results"]], "replacements (recursiveminimumeigenoptimizationresult attribute)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.replacements"]], "samples (recursiveminimumeigenoptimizationresult attribute)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.samples"]], "status (recursiveminimumeigenoptimizationresult attribute)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.status"]], "variable_names (recursiveminimumeigenoptimizationresult attribute)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.variable_names"]], "variables (recursiveminimumeigenoptimizationresult attribute)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.variables"]], "variables_dict (recursiveminimumeigenoptimizationresult attribute)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.variables_dict"]], "x (recursiveminimumeigenoptimizationresult attribute)": [[37, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizationResult.x"]], "recursiveminimumeigenoptimizer (class in qiskit_optimization.algorithms)": [[38, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizer"]], "get_compatibility_msg() (recursiveminimumeigenoptimizer method)": [[38, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizer.get_compatibility_msg"]], "is_compatible() (recursiveminimumeigenoptimizer method)": [[38, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizer.is_compatible"]], "solve() (recursiveminimumeigenoptimizer method)": [[38, "qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizer.solve"]], "scipymilpoptimizer (class in qiskit_optimization.algorithms)": [[39, "qiskit_optimization.algorithms.ScipyMilpOptimizer"]], "disp (scipymilpoptimizer attribute)": [[39, "qiskit_optimization.algorithms.ScipyMilpOptimizer.disp"]], "get_compatibility_msg() (scipymilpoptimizer method)": [[39, "qiskit_optimization.algorithms.ScipyMilpOptimizer.get_compatibility_msg"]], "is_compatible() (scipymilpoptimizer method)": [[39, "qiskit_optimization.algorithms.ScipyMilpOptimizer.is_compatible"]], "solve() (scipymilpoptimizer method)": [[39, "qiskit_optimization.algorithms.ScipyMilpOptimizer.solve"]], "slsqpoptimizationresult (class in qiskit_optimization.algorithms)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult"]], "fval (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.fval"]], "fx (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.fx"]], "get_correlations() (slsqpoptimizationresult method)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.get_correlations"]], "imode (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.imode"]], "its (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.its"]], "prettyprint() (slsqpoptimizationresult method)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.prettyprint"]], "raw_results (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.raw_results"]], "samples (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.samples"]], "smode (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.smode"]], "status (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.status"]], "variable_names (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.variable_names"]], "variables (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.variables"]], "variables_dict (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.variables_dict"]], "x (slsqpoptimizationresult attribute)": [[40, "qiskit_optimization.algorithms.SlsqpOptimizationResult.x"]], "slsqpoptimizer (class in qiskit_optimization.algorithms)": [[41, "qiskit_optimization.algorithms.SlsqpOptimizer"]], "clip (slsqpoptimizer attribute)": [[41, "qiskit_optimization.algorithms.SlsqpOptimizer.clip"]], "get_compatibility_msg() (slsqpoptimizer method)": [[41, "qiskit_optimization.algorithms.SlsqpOptimizer.get_compatibility_msg"]], "is_compatible() (slsqpoptimizer method)": [[41, "qiskit_optimization.algorithms.SlsqpOptimizer.is_compatible"]], "multi_start_solve() (slsqpoptimizer method)": [[41, "qiskit_optimization.algorithms.SlsqpOptimizer.multi_start_solve"]], "solve() (slsqpoptimizer method)": [[41, "qiskit_optimization.algorithms.SlsqpOptimizer.solve"]], "trials (slsqpoptimizer attribute)": [[41, "qiskit_optimization.algorithms.SlsqpOptimizer.trials"]], "solutionsample (class in qiskit_optimization.algorithms)": [[42, "qiskit_optimization.algorithms.SolutionSample"]], "fval (solutionsample attribute)": [[42, "qiskit_optimization.algorithms.SolutionSample.fval"]], "probability (solutionsample attribute)": [[42, "qiskit_optimization.algorithms.SolutionSample.probability"]], "status (solutionsample attribute)": [[42, "qiskit_optimization.algorithms.SolutionSample.status"]], "x (solutionsample attribute)": [[42, "qiskit_optimization.algorithms.SolutionSample.x"]], "warmstartqaoafactory (class in qiskit_optimization.algorithms)": [[43, "qiskit_optimization.algorithms.WarmStartQAOAFactory"]], "create_initial_state() (warmstartqaoafactory method)": [[43, "qiskit_optimization.algorithms.WarmStartQAOAFactory.create_initial_state"]], "create_initial_variables() (warmstartqaoafactory method)": [[43, "qiskit_optimization.algorithms.WarmStartQAOAFactory.create_initial_variables"]], "create_mixer() (warmstartqaoafactory method)": [[43, "qiskit_optimization.algorithms.WarmStartQAOAFactory.create_mixer"]], "warmstartqaoaoptimizer (class in qiskit_optimization.algorithms)": [[44, "qiskit_optimization.algorithms.WarmStartQAOAOptimizer"]], "get_compatibility_msg() (warmstartqaoaoptimizer method)": [[44, "qiskit_optimization.algorithms.WarmStartQAOAOptimizer.get_compatibility_msg"]], "is_compatible() (warmstartqaoaoptimizer method)": [[44, "qiskit_optimization.algorithms.WarmStartQAOAOptimizer.is_compatible"]], "min_eigen_solver (warmstartqaoaoptimizer attribute)": [[44, "qiskit_optimization.algorithms.WarmStartQAOAOptimizer.min_eigen_solver"]], "solve() (warmstartqaoaoptimizer method)": [[44, "qiskit_optimization.algorithms.WarmStartQAOAOptimizer.solve"]], "encodingcommutationverifier (class in qiskit_optimization.algorithms.qrao)": [[45, "qiskit_optimization.algorithms.qrao.EncodingCommutationVerifier"]], "magicrounding (class in qiskit_optimization.algorithms.qrao)": [[46, "qiskit_optimization.algorithms.qrao.MagicRounding"]], "basis_sampling (magicrounding attribute)": [[46, "qiskit_optimization.algorithms.qrao.MagicRounding.basis_sampling"]], "round() (magicrounding method)": [[46, "qiskit_optimization.algorithms.qrao.MagicRounding.round"]], "sampler (magicrounding attribute)": [[46, "qiskit_optimization.algorithms.qrao.MagicRounding.sampler"]], "quantumrandomaccessencoding (class in qiskit_optimization.algorithms.qrao)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding"]], "compression_ratio (quantumrandomaccessencoding attribute)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.compression_ratio"]], "encode() (quantumrandomaccessencoding method)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.encode"]], "freeze() (quantumrandomaccessencoding method)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.freeze"]], "frozen (quantumrandomaccessencoding attribute)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.frozen"]], "max_vars_per_qubit (quantumrandomaccessencoding attribute)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.max_vars_per_qubit"]], "minimum_recovery_probability (quantumrandomaccessencoding attribute)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.minimum_recovery_probability"]], "num_qubits (quantumrandomaccessencoding attribute)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.num_qubits"]], "num_vars (quantumrandomaccessencoding attribute)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.num_vars"]], "offset (quantumrandomaccessencoding attribute)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.offset"]], "problem (quantumrandomaccessencoding attribute)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.problem"]], "q2vars (quantumrandomaccessencoding attribute)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.q2vars"]], "qubit_op (quantumrandomaccessencoding attribute)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.qubit_op"]], "state_preparation_circuit() (quantumrandomaccessencoding method)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.state_preparation_circuit"]], "var2op (quantumrandomaccessencoding attribute)": [[47, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessEncoding.var2op"]], "quantumrandomaccessoptimizationresult (class in qiskit_optimization.algorithms.qrao)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult"]], "encoding (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.encoding"]], "fval (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.fval"]], "get_correlations() (quantumrandomaccessoptimizationresult method)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.get_correlations"]], "prettyprint() (quantumrandomaccessoptimizationresult method)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.prettyprint"]], "raw_results (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.raw_results"]], "relaxed_fval (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.relaxed_fval"]], "relaxed_result (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.relaxed_result"]], "rounding_result (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.rounding_result"]], "samples (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.samples"]], "status (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.status"]], "variable_names (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.variable_names"]], "variables (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.variables"]], "variables_dict (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.variables_dict"]], "x (quantumrandomaccessoptimizationresult attribute)": [[48, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizationResult.x"]], "quantumrandomaccessoptimizer (class in qiskit_optimization.algorithms.qrao)": [[49, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer"]], "get_compatibility_msg() (quantumrandomaccessoptimizer method)": [[49, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer.get_compatibility_msg"]], "is_compatible() (quantumrandomaccessoptimizer method)": [[49, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer.is_compatible"]], "max_vars_per_qubit (quantumrandomaccessoptimizer attribute)": [[49, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer.max_vars_per_qubit"]], "min_eigen_solver (quantumrandomaccessoptimizer attribute)": [[49, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer.min_eigen_solver"]], "process_result() (quantumrandomaccessoptimizer method)": [[49, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer.process_result"]], "rounding_scheme (quantumrandomaccessoptimizer attribute)": [[49, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer.rounding_scheme"]], "solve() (quantumrandomaccessoptimizer method)": [[49, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer.solve"]], "solve_relaxed() (quantumrandomaccessoptimizer method)": [[49, "qiskit_optimization.algorithms.qrao.QuantumRandomAccessOptimizer.solve_relaxed"]], "roundingcontext (class in qiskit_optimization.algorithms.qrao)": [[50, "qiskit_optimization.algorithms.qrao.RoundingContext"]], "circuit (roundingcontext attribute)": [[50, "qiskit_optimization.algorithms.qrao.RoundingContext.circuit"]], "encoding (roundingcontext attribute)": [[50, "qiskit_optimization.algorithms.qrao.RoundingContext.encoding"]], "expectation_values (roundingcontext attribute)": [[50, "qiskit_optimization.algorithms.qrao.RoundingContext.expectation_values"]], "roundingresult (class in qiskit_optimization.algorithms.qrao)": [[51, "qiskit_optimization.algorithms.qrao.RoundingResult"]], "bases (roundingresult attribute)": [[51, "qiskit_optimization.algorithms.qrao.RoundingResult.bases"]], "basis_counts (roundingresult attribute)": [[51, "qiskit_optimization.algorithms.qrao.RoundingResult.basis_counts"]], "basis_shots (roundingresult attribute)": [[51, "qiskit_optimization.algorithms.qrao.RoundingResult.basis_shots"]], "expectation_values (roundingresult attribute)": [[51, "qiskit_optimization.algorithms.qrao.RoundingResult.expectation_values"]], "samples (roundingresult attribute)": [[51, "qiskit_optimization.algorithms.qrao.RoundingResult.samples"]], "roundingscheme (class in qiskit_optimization.algorithms.qrao)": [[52, "qiskit_optimization.algorithms.qrao.RoundingScheme"]], "round() (roundingscheme method)": [[52, "qiskit_optimization.algorithms.qrao.RoundingScheme.round"]], "semideterministicrounding (class in qiskit_optimization.algorithms.qrao)": [[53, "qiskit_optimization.algorithms.qrao.SemideterministicRounding"]], "round() (semideterministicrounding method)": [[53, "qiskit_optimization.algorithms.qrao.SemideterministicRounding.round"]], "binpacking (class in qiskit_optimization.applications)": [[54, "qiskit_optimization.applications.BinPacking"]], "get_figure() (binpacking method)": [[54, "qiskit_optimization.applications.BinPacking.get_figure"]], "interpret() (binpacking method)": [[54, "qiskit_optimization.applications.BinPacking.interpret"]], "sample_most_likely() (binpacking static method)": [[54, "qiskit_optimization.applications.BinPacking.sample_most_likely"]], "to_quadratic_program() (binpacking method)": [[54, "qiskit_optimization.applications.BinPacking.to_quadratic_program"]], "clique (class in qiskit_optimization.applications)": [[55, "qiskit_optimization.applications.Clique"]], "draw() (clique method)": [[55, "qiskit_optimization.applications.Clique.draw"]], "graph (clique attribute)": [[55, "qiskit_optimization.applications.Clique.graph"]], "interpret() (clique method)": [[55, "qiskit_optimization.applications.Clique.interpret"]], "sample_most_likely() (clique static method)": [[55, "qiskit_optimization.applications.Clique.sample_most_likely"]], "size (clique attribute)": [[55, "qiskit_optimization.applications.Clique.size"]], "to_quadratic_program() (clique method)": [[55, "qiskit_optimization.applications.Clique.to_quadratic_program"]], "exactcover (class in qiskit_optimization.applications)": [[56, "qiskit_optimization.applications.ExactCover"]], "interpret() (exactcover method)": [[56, "qiskit_optimization.applications.ExactCover.interpret"]], "sample_most_likely() (exactcover static method)": [[56, "qiskit_optimization.applications.ExactCover.sample_most_likely"]], "to_quadratic_program() (exactcover method)": [[56, "qiskit_optimization.applications.ExactCover.to_quadratic_program"]], "graphoptimizationapplication (class in qiskit_optimization.applications)": [[57, "qiskit_optimization.applications.GraphOptimizationApplication"]], "draw() (graphoptimizationapplication method)": [[57, "qiskit_optimization.applications.GraphOptimizationApplication.draw"]], "graph (graphoptimizationapplication attribute)": [[57, "qiskit_optimization.applications.GraphOptimizationApplication.graph"]], "interpret() (graphoptimizationapplication method)": [[57, "qiskit_optimization.applications.GraphOptimizationApplication.interpret"]], "sample_most_likely() (graphoptimizationapplication static method)": [[57, "qiskit_optimization.applications.GraphOptimizationApplication.sample_most_likely"]], "to_quadratic_program() (graphoptimizationapplication method)": [[57, "qiskit_optimization.applications.GraphOptimizationApplication.to_quadratic_program"]], "graphpartition (class in qiskit_optimization.applications)": [[58, "qiskit_optimization.applications.GraphPartition"]], "draw() (graphpartition method)": [[58, "qiskit_optimization.applications.GraphPartition.draw"]], "graph (graphpartition attribute)": [[58, "qiskit_optimization.applications.GraphPartition.graph"]], "interpret() (graphpartition method)": [[58, "qiskit_optimization.applications.GraphPartition.interpret"]], "sample_most_likely() (graphpartition static method)": [[58, "qiskit_optimization.applications.GraphPartition.sample_most_likely"]], "to_quadratic_program() (graphpartition method)": [[58, "qiskit_optimization.applications.GraphPartition.to_quadratic_program"]], "knapsack (class in qiskit_optimization.applications)": [[59, "qiskit_optimization.applications.Knapsack"]], "interpret() (knapsack method)": [[59, "qiskit_optimization.applications.Knapsack.interpret"]], "max_weight (knapsack attribute)": [[59, "qiskit_optimization.applications.Knapsack.max_weight"]], "sample_most_likely() (knapsack static method)": [[59, "qiskit_optimization.applications.Knapsack.sample_most_likely"]], "to_quadratic_program() (knapsack method)": [[59, "qiskit_optimization.applications.Knapsack.to_quadratic_program"]], "maxcut (class in qiskit_optimization.applications)": [[60, "qiskit_optimization.applications.Maxcut"]], "draw() (maxcut method)": [[60, "qiskit_optimization.applications.Maxcut.draw"]], "get_gset_result() (maxcut static method)": [[60, "qiskit_optimization.applications.Maxcut.get_gset_result"]], "graph (maxcut attribute)": [[60, "qiskit_optimization.applications.Maxcut.graph"]], "interpret() (maxcut method)": [[60, "qiskit_optimization.applications.Maxcut.interpret"]], "parse_gset_format() (maxcut static method)": [[60, "qiskit_optimization.applications.Maxcut.parse_gset_format"]], "sample_most_likely() (maxcut static method)": [[60, "qiskit_optimization.applications.Maxcut.sample_most_likely"]], "to_quadratic_program() (maxcut method)": [[60, "qiskit_optimization.applications.Maxcut.to_quadratic_program"]], "numberpartition (class in qiskit_optimization.applications)": [[61, "qiskit_optimization.applications.NumberPartition"]], "interpret() (numberpartition method)": [[61, "qiskit_optimization.applications.NumberPartition.interpret"]], "sample_most_likely() (numberpartition static method)": [[61, "qiskit_optimization.applications.NumberPartition.sample_most_likely"]], "to_quadratic_program() (numberpartition method)": [[61, "qiskit_optimization.applications.NumberPartition.to_quadratic_program"]], "optimizationapplication (class in qiskit_optimization.applications)": [[62, "qiskit_optimization.applications.OptimizationApplication"]], "interpret() (optimizationapplication method)": [[62, "qiskit_optimization.applications.OptimizationApplication.interpret"]], "sample_most_likely() (optimizationapplication static method)": [[62, "qiskit_optimization.applications.OptimizationApplication.sample_most_likely"]], "to_quadratic_program() (optimizationapplication method)": [[62, "qiskit_optimization.applications.OptimizationApplication.to_quadratic_program"]], "skmodel (class in qiskit_optimization.applications)": [[63, "qiskit_optimization.applications.SKModel"]], "disorder() (skmodel method)": [[63, "qiskit_optimization.applications.SKModel.disorder"]], "graph (skmodel attribute)": [[63, "qiskit_optimization.applications.SKModel.graph"]], "interpret() (skmodel method)": [[63, "qiskit_optimization.applications.SKModel.interpret"]], "num_sites (skmodel attribute)": [[63, "qiskit_optimization.applications.SKModel.num_sites"]], "sample_most_likely() (skmodel static method)": [[63, "qiskit_optimization.applications.SKModel.sample_most_likely"]], "to_quadratic_program() (skmodel method)": [[63, "qiskit_optimization.applications.SKModel.to_quadratic_program"]], "setpacking (class in qiskit_optimization.applications)": [[64, "qiskit_optimization.applications.SetPacking"]], "interpret() (setpacking method)": [[64, "qiskit_optimization.applications.SetPacking.interpret"]], "sample_most_likely() (setpacking static method)": [[64, "qiskit_optimization.applications.SetPacking.sample_most_likely"]], "to_quadratic_program() (setpacking method)": [[64, "qiskit_optimization.applications.SetPacking.to_quadratic_program"]], "stableset (class in qiskit_optimization.applications)": [[65, "qiskit_optimization.applications.StableSet"]], "draw() (stableset method)": [[65, "qiskit_optimization.applications.StableSet.draw"]], "graph (stableset attribute)": [[65, "qiskit_optimization.applications.StableSet.graph"]], "interpret() (stableset method)": [[65, "qiskit_optimization.applications.StableSet.interpret"]], "sample_most_likely() (stableset static method)": [[65, "qiskit_optimization.applications.StableSet.sample_most_likely"]], "to_quadratic_program() (stableset method)": [[65, "qiskit_optimization.applications.StableSet.to_quadratic_program"]], "tsp (class in qiskit_optimization.applications)": [[66, "qiskit_optimization.applications.Tsp"]], "create_random_instance() (tsp static method)": [[66, "qiskit_optimization.applications.Tsp.create_random_instance"]], "draw() (tsp method)": [[66, "qiskit_optimization.applications.Tsp.draw"]], "graph (tsp attribute)": [[66, "qiskit_optimization.applications.Tsp.graph"]], "interpret() (tsp method)": [[66, "qiskit_optimization.applications.Tsp.interpret"]], "parse_tsplib_format() (tsp static method)": [[66, "qiskit_optimization.applications.Tsp.parse_tsplib_format"]], "sample_most_likely() (tsp static method)": [[66, "qiskit_optimization.applications.Tsp.sample_most_likely"]], "to_quadratic_program() (tsp method)": [[66, "qiskit_optimization.applications.Tsp.to_quadratic_program"]], "tsp_value() (tsp static method)": [[66, "qiskit_optimization.applications.Tsp.tsp_value"]], "vehiclerouting (class in qiskit_optimization.applications)": [[67, "qiskit_optimization.applications.VehicleRouting"]], "create_random_instance() (vehiclerouting static method)": [[67, "qiskit_optimization.applications.VehicleRouting.create_random_instance"]], "depot (vehiclerouting attribute)": [[67, "qiskit_optimization.applications.VehicleRouting.depot"]], "draw() (vehiclerouting method)": [[67, "qiskit_optimization.applications.VehicleRouting.draw"]], "graph (vehiclerouting attribute)": [[67, "qiskit_optimization.applications.VehicleRouting.graph"]], "interpret() (vehiclerouting method)": [[67, "qiskit_optimization.applications.VehicleRouting.interpret"]], "num_vehicles (vehiclerouting attribute)": [[67, "qiskit_optimization.applications.VehicleRouting.num_vehicles"]], "sample_most_likely() (vehiclerouting static method)": [[67, "qiskit_optimization.applications.VehicleRouting.sample_most_likely"]], "to_quadratic_program() (vehiclerouting method)": [[67, "qiskit_optimization.applications.VehicleRouting.to_quadratic_program"]], "vertexcover (class in qiskit_optimization.applications)": [[68, "qiskit_optimization.applications.VertexCover"]], "draw() (vertexcover method)": [[68, "qiskit_optimization.applications.VertexCover.draw"]], "graph (vertexcover attribute)": [[68, "qiskit_optimization.applications.VertexCover.graph"]], "interpret() (vertexcover method)": [[68, "qiskit_optimization.applications.VertexCover.interpret"]], "sample_most_likely() (vertexcover static method)": [[68, "qiskit_optimization.applications.VertexCover.sample_most_likely"]], "to_quadratic_program() (vertexcover method)": [[68, "qiskit_optimization.applications.VertexCover.to_quadratic_program"]], "inequalitytoequality (class in qiskit_optimization.converters)": [[69, "qiskit_optimization.converters.InequalityToEquality"]], "convert() (inequalitytoequality method)": [[69, "qiskit_optimization.converters.InequalityToEquality.convert"]], "interpret() (inequalitytoequality method)": [[69, "qiskit_optimization.converters.InequalityToEquality.interpret"]], "mode (inequalitytoequality attribute)": [[69, "qiskit_optimization.converters.InequalityToEquality.mode"]], "integertobinary (class in qiskit_optimization.converters)": [[70, "qiskit_optimization.converters.IntegerToBinary"]], "convert() (integertobinary method)": [[70, "qiskit_optimization.converters.IntegerToBinary.convert"]], "interpret() (integertobinary method)": [[70, "qiskit_optimization.converters.IntegerToBinary.interpret"]], "linearequalitytopenalty (class in qiskit_optimization.converters)": [[71, "qiskit_optimization.converters.LinearEqualityToPenalty"]], "convert() (linearequalitytopenalty method)": [[71, "qiskit_optimization.converters.LinearEqualityToPenalty.convert"]], "interpret() (linearequalitytopenalty method)": [[71, "qiskit_optimization.converters.LinearEqualityToPenalty.interpret"]], "penalty (linearequalitytopenalty attribute)": [[71, "qiskit_optimization.converters.LinearEqualityToPenalty.penalty"]], "linearinequalitytopenalty (class in qiskit_optimization.converters)": [[72, "qiskit_optimization.converters.LinearInequalityToPenalty"]], "convert() (linearinequalitytopenalty method)": [[72, "qiskit_optimization.converters.LinearInequalityToPenalty.convert"]], "interpret() (linearinequalitytopenalty method)": [[72, "qiskit_optimization.converters.LinearInequalityToPenalty.interpret"]], "penalty (linearinequalitytopenalty attribute)": [[72, "qiskit_optimization.converters.LinearInequalityToPenalty.penalty"]], "maximizetominimize (class in qiskit_optimization.converters)": [[73, "qiskit_optimization.converters.MaximizeToMinimize"]], "convert() (maximizetominimize method)": [[73, "qiskit_optimization.converters.MaximizeToMinimize.convert"]], "interpret() (maximizetominimize method)": [[73, "qiskit_optimization.converters.MaximizeToMinimize.interpret"]], "minimizetomaximize (class in qiskit_optimization.converters)": [[74, "qiskit_optimization.converters.MinimizeToMaximize"]], "convert() (minimizetomaximize method)": [[74, "qiskit_optimization.converters.MinimizeToMaximize.convert"]], "interpret() (minimizetomaximize method)": [[74, "qiskit_optimization.converters.MinimizeToMaximize.interpret"]], "quadraticprogramconverter (class in qiskit_optimization.converters)": [[75, "qiskit_optimization.converters.QuadraticProgramConverter"]], "convert() (quadraticprogramconverter method)": [[75, "qiskit_optimization.converters.QuadraticProgramConverter.convert"]], "interpret() (quadraticprogramconverter method)": [[75, "qiskit_optimization.converters.QuadraticProgramConverter.interpret"]], "quadraticprogramtoqubo (class in qiskit_optimization.converters)": [[76, "qiskit_optimization.converters.QuadraticProgramToQubo"]], "convert() (quadraticprogramtoqubo method)": [[76, "qiskit_optimization.converters.QuadraticProgramToQubo.convert"]], "get_compatibility_msg() (quadraticprogramtoqubo static method)": [[76, "qiskit_optimization.converters.QuadraticProgramToQubo.get_compatibility_msg"]], "interpret() (quadraticprogramtoqubo method)": [[76, "qiskit_optimization.converters.QuadraticProgramToQubo.interpret"]], "is_compatible() (quadraticprogramtoqubo method)": [[76, "qiskit_optimization.converters.QuadraticProgramToQubo.is_compatible"]], "penalty (quadraticprogramtoqubo attribute)": [[76, "qiskit_optimization.converters.QuadraticProgramToQubo.penalty"]], "infinity (in module qiskit_optimization.infinity)": [[77, "qiskit_optimization.infinity.INFINITY"]], "constraint (class in qiskit_optimization.problems)": [[78, "qiskit_optimization.problems.Constraint"]], "evaluate() (constraint method)": [[78, "qiskit_optimization.problems.Constraint.evaluate"]], "name (constraint attribute)": [[78, "qiskit_optimization.problems.Constraint.name"]], "quadratic_program (constraint attribute)": [[78, "qiskit_optimization.problems.Constraint.quadratic_program"]], "rhs (constraint attribute)": [[78, "qiskit_optimization.problems.Constraint.rhs"]], "sense (constraint attribute)": [[78, "qiskit_optimization.problems.Constraint.sense"]], "linearconstraint (class in qiskit_optimization.problems)": [[79, "qiskit_optimization.problems.LinearConstraint"]], "evaluate() (linearconstraint method)": [[79, "qiskit_optimization.problems.LinearConstraint.evaluate"]], "linear (linearconstraint attribute)": [[79, "qiskit_optimization.problems.LinearConstraint.linear"]], "name (linearconstraint attribute)": [[79, "qiskit_optimization.problems.LinearConstraint.name"]], "quadratic_program (linearconstraint attribute)": [[79, "qiskit_optimization.problems.LinearConstraint.quadratic_program"]], "rhs (linearconstraint attribute)": [[79, "qiskit_optimization.problems.LinearConstraint.rhs"]], "sense (linearconstraint attribute)": [[79, "qiskit_optimization.problems.LinearConstraint.sense"]], "linearexpression (class in qiskit_optimization.problems)": [[80, "qiskit_optimization.problems.LinearExpression"]], "bounds (linearexpression attribute)": [[80, "qiskit_optimization.problems.LinearExpression.bounds"]], "coefficients (linearexpression attribute)": [[80, "qiskit_optimization.problems.LinearExpression.coefficients"]], "evaluate() (linearexpression method)": [[80, "qiskit_optimization.problems.LinearExpression.evaluate"]], "evaluate_gradient() (linearexpression method)": [[80, "qiskit_optimization.problems.LinearExpression.evaluate_gradient"]], "quadratic_program (linearexpression attribute)": [[80, "qiskit_optimization.problems.LinearExpression.quadratic_program"]], "to_array() (linearexpression method)": [[80, "qiskit_optimization.problems.LinearExpression.to_array"]], "to_dict() (linearexpression method)": [[80, "qiskit_optimization.problems.LinearExpression.to_dict"]], "quadraticconstraint (class in qiskit_optimization.problems)": [[81, "qiskit_optimization.problems.QuadraticConstraint"]], "evaluate() (quadraticconstraint method)": [[81, "qiskit_optimization.problems.QuadraticConstraint.evaluate"]], "linear (quadraticconstraint attribute)": [[81, "qiskit_optimization.problems.QuadraticConstraint.linear"]], "name (quadraticconstraint attribute)": [[81, "qiskit_optimization.problems.QuadraticConstraint.name"]], "quadratic (quadraticconstraint attribute)": [[81, "qiskit_optimization.problems.QuadraticConstraint.quadratic"]], "quadratic_program (quadraticconstraint attribute)": [[81, "qiskit_optimization.problems.QuadraticConstraint.quadratic_program"]], "rhs (quadraticconstraint attribute)": [[81, "qiskit_optimization.problems.QuadraticConstraint.rhs"]], "sense (quadraticconstraint attribute)": [[81, "qiskit_optimization.problems.QuadraticConstraint.sense"]], "quadraticexpression (class in qiskit_optimization.problems)": [[82, "qiskit_optimization.problems.QuadraticExpression"]], "bounds (quadraticexpression attribute)": [[82, "qiskit_optimization.problems.QuadraticExpression.bounds"]], "coefficients (quadraticexpression attribute)": [[82, "qiskit_optimization.problems.QuadraticExpression.coefficients"]], "evaluate() (quadraticexpression method)": [[82, "qiskit_optimization.problems.QuadraticExpression.evaluate"]], "evaluate_gradient() (quadraticexpression method)": [[82, "qiskit_optimization.problems.QuadraticExpression.evaluate_gradient"]], "quadratic_program (quadraticexpression attribute)": [[82, "qiskit_optimization.problems.QuadraticExpression.quadratic_program"]], "to_array() (quadraticexpression method)": [[82, "qiskit_optimization.problems.QuadraticExpression.to_array"]], "to_dict() (quadraticexpression method)": [[82, "qiskit_optimization.problems.QuadraticExpression.to_dict"]], "quadraticobjective (class in qiskit_optimization.problems)": [[83, "qiskit_optimization.problems.QuadraticObjective"]], "constant (quadraticobjective attribute)": [[83, "qiskit_optimization.problems.QuadraticObjective.constant"]], "evaluate() (quadraticobjective method)": [[83, "qiskit_optimization.problems.QuadraticObjective.evaluate"]], "evaluate_gradient() (quadraticobjective method)": [[83, "qiskit_optimization.problems.QuadraticObjective.evaluate_gradient"]], "linear (quadraticobjective attribute)": [[83, "qiskit_optimization.problems.QuadraticObjective.linear"]], "quadratic (quadraticobjective attribute)": [[83, "qiskit_optimization.problems.QuadraticObjective.quadratic"]], "quadratic_program (quadraticobjective attribute)": [[83, "qiskit_optimization.problems.QuadraticObjective.quadratic_program"]], "sense (quadraticobjective attribute)": [[83, "qiskit_optimization.problems.QuadraticObjective.sense"]], "quadraticprogramelement (class in qiskit_optimization.problems)": [[84, "qiskit_optimization.problems.QuadraticProgramElement"]], "quadratic_program (quadraticprogramelement attribute)": [[84, "qiskit_optimization.problems.QuadraticProgramElement.quadratic_program"]], "variable (class in qiskit_optimization.problems)": [[85, "qiskit_optimization.problems.Variable"]], "as_tuple() (variable method)": [[85, "qiskit_optimization.problems.Variable.as_tuple"]], "lowerbound (variable attribute)": [[85, "qiskit_optimization.problems.Variable.lowerbound"]], "name (variable attribute)": [[85, "qiskit_optimization.problems.Variable.name"]], "quadratic_program (variable attribute)": [[85, "qiskit_optimization.problems.Variable.quadratic_program"]], "upperbound (variable attribute)": [[85, "qiskit_optimization.problems.Variable.upperbound"]], "vartype (variable attribute)": [[85, "qiskit_optimization.problems.Variable.vartype"]], "from_docplex_mp() (in module qiskit_optimization.translators)": [[86, "qiskit_optimization.translators.from_docplex_mp"]], "from_gurobipy() (in module qiskit_optimization.translators)": [[87, "qiskit_optimization.translators.from_gurobipy"]], "from_ising() (in module qiskit_optimization.translators)": [[88, "qiskit_optimization.translators.from_ising"]], "to_docplex_mp() (in module qiskit_optimization.translators)": [[89, "qiskit_optimization.translators.to_docplex_mp"]], "to_gurobipy() (in module qiskit_optimization.translators)": [[90, "qiskit_optimization.translators.to_gurobipy"]], "to_ising() (in module qiskit_optimization.translators)": [[91, "qiskit_optimization.translators.to_ising"]]}}) \ No newline at end of file diff --git a/tutorials/01_quadratic_program.html b/tutorials/01_quadratic_program.html index a7b7055a..58422b1e 100644 --- a/tutorials/01_quadratic_program.html +++ b/tutorials/01_quadratic_program.html @@ -1068,7 +1068,7 @@

    Substituting Variables
    -/tmp/ipykernel_2278/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0
    +/tmp/ipykernel_2289/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0
       import qiskit.tools.jupyter
     

@@ -1076,7 +1076,7 @@

Substituting Variables
-

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:51:30 2024 UTC
+

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:06:22 2024 UTC
@@ -1093,7 +1093,7 @@

Version Information

diff --git a/tutorials/01_quadratic_program.ipynb b/tutorials/01_quadratic_program.ipynb index bde44054..4b2ba9c7 100644 --- a/tutorials/01_quadratic_program.ipynb +++ b/tutorials/01_quadratic_program.ipynb @@ -54,10 +54,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:28.807243Z", - "iopub.status.busy": "2024-02-09T16:51:28.806782Z", - "iopub.status.idle": "2024-02-09T16:51:29.453282Z", - "shell.execute_reply": "2024-02-09T16:51:29.452613Z" + "iopub.execute_input": "2024-02-14T16:06:20.868422Z", + "iopub.status.busy": "2024-02-14T16:06:20.868219Z", + "iopub.status.idle": "2024-02-14T16:06:21.543286Z", + "shell.execute_reply": "2024-02-14T16:06:21.542601Z" } }, "outputs": [], @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:29.456495Z", - "iopub.status.busy": "2024-02-09T16:51:29.455961Z", - "iopub.status.idle": "2024-02-09T16:51:29.488736Z", - "shell.execute_reply": "2024-02-09T16:51:29.488027Z" + "iopub.execute_input": "2024-02-14T16:06:21.546569Z", + "iopub.status.busy": "2024-02-14T16:06:21.546279Z", + "iopub.status.idle": "2024-02-14T16:06:21.593606Z", + "shell.execute_reply": "2024-02-14T16:06:21.592795Z" } }, "outputs": [ @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:29.519465Z", - "iopub.status.busy": "2024-02-09T16:51:29.519202Z", - "iopub.status.idle": "2024-02-09T16:51:29.528840Z", - "shell.execute_reply": "2024-02-09T16:51:29.528275Z" + "iopub.execute_input": "2024-02-14T16:06:21.627061Z", + "iopub.status.busy": "2024-02-14T16:06:21.626531Z", + "iopub.status.idle": "2024-02-14T16:06:21.636912Z", + "shell.execute_reply": "2024-02-14T16:06:21.636290Z" } }, "outputs": [ @@ -217,10 +217,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:29.531551Z", - "iopub.status.busy": "2024-02-09T16:51:29.530989Z", - "iopub.status.idle": "2024-02-09T16:51:29.535351Z", - "shell.execute_reply": "2024-02-09T16:51:29.534796Z" + "iopub.execute_input": "2024-02-14T16:06:21.639692Z", + "iopub.status.busy": "2024-02-14T16:06:21.639289Z", + "iopub.status.idle": "2024-02-14T16:06:21.643396Z", + "shell.execute_reply": "2024-02-14T16:06:21.642707Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:29.537820Z", - "iopub.status.busy": "2024-02-09T16:51:29.537626Z", - "iopub.status.idle": "2024-02-09T16:51:29.541414Z", - "shell.execute_reply": "2024-02-09T16:51:29.540748Z" + "iopub.execute_input": "2024-02-14T16:06:21.645988Z", + "iopub.status.busy": "2024-02-14T16:06:21.645595Z", + "iopub.status.idle": "2024-02-14T16:06:21.649607Z", + "shell.execute_reply": "2024-02-14T16:06:21.648954Z" } }, "outputs": [ @@ -324,10 +324,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:29.543697Z", - "iopub.status.busy": "2024-02-09T16:51:29.543502Z", - "iopub.status.idle": "2024-02-09T16:51:29.548561Z", - "shell.execute_reply": "2024-02-09T16:51:29.547864Z" + "iopub.execute_input": "2024-02-14T16:06:21.652023Z", + "iopub.status.busy": "2024-02-14T16:06:21.651814Z", + "iopub.status.idle": "2024-02-14T16:06:21.656642Z", + "shell.execute_reply": "2024-02-14T16:06:21.655945Z" } }, "outputs": [ @@ -373,10 +373,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:29.550947Z", - "iopub.status.busy": "2024-02-09T16:51:29.550751Z", - "iopub.status.idle": "2024-02-09T16:51:29.556244Z", - "shell.execute_reply": "2024-02-09T16:51:29.555623Z" + "iopub.execute_input": "2024-02-14T16:06:21.659123Z", + "iopub.status.busy": "2024-02-14T16:06:21.658747Z", + "iopub.status.idle": "2024-02-14T16:06:21.664063Z", + "shell.execute_reply": "2024-02-14T16:06:21.663416Z" } }, "outputs": [ @@ -427,10 +427,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:29.558569Z", - "iopub.status.busy": "2024-02-09T16:51:29.558374Z", - "iopub.status.idle": "2024-02-09T16:51:29.566322Z", - "shell.execute_reply": "2024-02-09T16:51:29.565667Z" + "iopub.execute_input": "2024-02-14T16:06:21.666708Z", + "iopub.status.busy": "2024-02-14T16:06:21.666267Z", + "iopub.status.idle": "2024-02-14T16:06:21.674533Z", + "shell.execute_reply": "2024-02-14T16:06:21.673781Z" } }, "outputs": [ @@ -499,10 +499,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:29.569125Z", - "iopub.status.busy": "2024-02-09T16:51:29.568659Z", - "iopub.status.idle": "2024-02-09T16:51:29.573147Z", - "shell.execute_reply": "2024-02-09T16:51:29.572494Z" + "iopub.execute_input": "2024-02-14T16:06:21.677087Z", + "iopub.status.busy": "2024-02-14T16:06:21.676703Z", + "iopub.status.idle": "2024-02-14T16:06:21.681488Z", + "shell.execute_reply": "2024-02-14T16:06:21.680803Z" } }, "outputs": [ @@ -553,10 +553,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:29.575412Z", - "iopub.status.busy": "2024-02-09T16:51:29.575215Z", - "iopub.status.idle": "2024-02-09T16:51:29.583044Z", - "shell.execute_reply": "2024-02-09T16:51:29.582459Z" + "iopub.execute_input": "2024-02-14T16:06:21.684104Z", + "iopub.status.busy": "2024-02-14T16:06:21.683706Z", + "iopub.status.idle": "2024-02-14T16:06:21.691669Z", + "shell.execute_reply": "2024-02-14T16:06:21.690955Z" } }, "outputs": [ @@ -630,10 +630,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:29.585404Z", - "iopub.status.busy": "2024-02-09T16:51:29.585209Z", - "iopub.status.idle": "2024-02-09T16:51:29.589384Z", - "shell.execute_reply": "2024-02-09T16:51:29.588729Z" + "iopub.execute_input": "2024-02-14T16:06:21.694270Z", + "iopub.status.busy": "2024-02-14T16:06:21.693893Z", + "iopub.status.idle": "2024-02-14T16:06:21.698503Z", + "shell.execute_reply": "2024-02-14T16:06:21.697772Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:29.591776Z", - "iopub.status.busy": "2024-02-09T16:51:29.591581Z", - "iopub.status.idle": "2024-02-09T16:51:29.595162Z", - "shell.execute_reply": "2024-02-09T16:51:29.594524Z" + "iopub.execute_input": "2024-02-14T16:06:21.701032Z", + "iopub.status.busy": "2024-02-14T16:06:21.700580Z", + "iopub.status.idle": "2024-02-14T16:06:21.704563Z", + "shell.execute_reply": "2024-02-14T16:06:21.703890Z" } }, "outputs": [ @@ -738,10 +738,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:29.597513Z", - "iopub.status.busy": "2024-02-09T16:51:29.597319Z", - "iopub.status.idle": "2024-02-09T16:51:29.608908Z", - "shell.execute_reply": "2024-02-09T16:51:29.608367Z" + "iopub.execute_input": "2024-02-14T16:06:21.707203Z", + "iopub.status.busy": "2024-02-14T16:06:21.706804Z", + "iopub.status.idle": "2024-02-14T16:06:21.719071Z", + "shell.execute_reply": "2024-02-14T16:06:21.718526Z" } }, "outputs": [ @@ -787,10 +787,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:29.611188Z", - "iopub.status.busy": "2024-02-09T16:51:29.610991Z", - "iopub.status.idle": "2024-02-09T16:51:29.620872Z", - "shell.execute_reply": "2024-02-09T16:51:29.620223Z" + "iopub.execute_input": "2024-02-14T16:06:21.721930Z", + "iopub.status.busy": "2024-02-14T16:06:21.721293Z", + "iopub.status.idle": "2024-02-14T16:06:21.731491Z", + "shell.execute_reply": "2024-02-14T16:06:21.730900Z" } }, "outputs": [ @@ -827,10 +827,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:29.623474Z", - "iopub.status.busy": "2024-02-09T16:51:29.623024Z", - "iopub.status.idle": "2024-02-09T16:51:29.626775Z", - "shell.execute_reply": "2024-02-09T16:51:29.626127Z" + "iopub.execute_input": "2024-02-14T16:06:21.734308Z", + "iopub.status.busy": "2024-02-14T16:06:21.733786Z", + "iopub.status.idle": "2024-02-14T16:06:21.737765Z", + "shell.execute_reply": "2024-02-14T16:06:21.737069Z" } }, "outputs": [ @@ -867,10 +867,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:29.629193Z", - "iopub.status.busy": "2024-02-09T16:51:29.628997Z", - "iopub.status.idle": "2024-02-09T16:51:29.648416Z", - "shell.execute_reply": "2024-02-09T16:51:29.647708Z" + "iopub.execute_input": "2024-02-14T16:06:21.740515Z", + "iopub.status.busy": "2024-02-14T16:06:21.740037Z", + "iopub.status.idle": "2024-02-14T16:06:21.761340Z", + "shell.execute_reply": "2024-02-14T16:06:21.760644Z" } }, "outputs": [ @@ -911,10 +911,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:29.650998Z", - "iopub.status.busy": "2024-02-09T16:51:29.650618Z", - "iopub.status.idle": "2024-02-09T16:51:30.066219Z", - "shell.execute_reply": "2024-02-09T16:51:30.065559Z" + "iopub.execute_input": "2024-02-14T16:06:21.764339Z", + "iopub.status.busy": "2024-02-14T16:06:21.763933Z", + "iopub.status.idle": "2024-02-14T16:06:22.211651Z", + "shell.execute_reply": "2024-02-14T16:06:22.210927Z" } }, "outputs": [ @@ -922,14 +922,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_2278/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", + "/tmp/ipykernel_2289/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", " import qiskit.tools.jupyter\n" ] }, { "data": { "text/html": [ - "

Version Information

SoftwareVersion
SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:51:30 2024 UTC
" + "

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:06:22 2024 UTC
" ], "text/plain": [ "" @@ -982,7 +982,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0106149443b148e88e2769f7046fbbd9": { + "234623a278c341fb99459bf1b5702184": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -997,15 +997,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_61b45c7c88b5400bbec491d93e4283dc", + "layout": "IPY_MODEL_c2efcc7a599941bca2ec19bd6080e900", "placeholder": "​", - "style": "IPY_MODEL_c3690c648a4647c68e5b0d8795b02643", + "style": "IPY_MODEL_bd3e7fdda08b44cf91bb9dc2ccfd6824", "tabbable": null, "tooltip": null, "value": "

Circuit Properties

" } }, - "61b45c7c88b5400bbec491d93e4283dc": { + "bd3e7fdda08b44cf91bb9dc2ccfd6824": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c2efcc7a599941bca2ec19bd6080e900": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1057,24 +1075,6 @@ "visibility": null, "width": null } - }, - "c3690c648a4647c68e5b0d8795b02643": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/tutorials/02_converters_for_quadratic_programs.html b/tutorials/02_converters_for_quadratic_programs.html index 22014725..a112780b 100644 --- a/tutorials/02_converters_for_quadratic_programs.html +++ b/tutorials/02_converters_for_quadratic_programs.html @@ -946,7 +946,7 @@

LinearEqualityToPenalty
-/tmp/ipykernel_2560/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0
+/tmp/ipykernel_2573/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0
   import qiskit.tools.jupyter
 

@@ -954,7 +954,7 @@

LinearEqualityToPenalty

-

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:51:34 2024 UTC
+

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:06:27 2024 UTC
@@ -971,7 +971,7 @@

Version Information

diff --git a/tutorials/02_converters_for_quadratic_programs.ipynb b/tutorials/02_converters_for_quadratic_programs.ipynb index b6437a44..34046a6d 100644 --- a/tutorials/02_converters_for_quadratic_programs.ipynb +++ b/tutorials/02_converters_for_quadratic_programs.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:33.104639Z", - "iopub.status.busy": "2024-02-09T16:51:33.104438Z", - "iopub.status.idle": "2024-02-09T16:51:33.752421Z", - "shell.execute_reply": "2024-02-09T16:51:33.751650Z" + "iopub.execute_input": "2024-02-14T16:06:25.578194Z", + "iopub.status.busy": "2024-02-14T16:06:25.577995Z", + "iopub.status.idle": "2024-02-14T16:06:26.246753Z", + "shell.execute_reply": "2024-02-14T16:06:26.246071Z" } }, "outputs": [], @@ -70,10 +70,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:33.755340Z", - "iopub.status.busy": "2024-02-09T16:51:33.755007Z", - "iopub.status.idle": "2024-02-09T16:51:33.762874Z", - "shell.execute_reply": "2024-02-09T16:51:33.762224Z" + "iopub.execute_input": "2024-02-14T16:06:26.249982Z", + "iopub.status.busy": "2024-02-14T16:06:26.249468Z", + "iopub.status.idle": "2024-02-14T16:06:26.257200Z", + "shell.execute_reply": "2024-02-14T16:06:26.256570Z" } }, "outputs": [ @@ -124,10 +124,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:33.765432Z", - "iopub.status.busy": "2024-02-09T16:51:33.764922Z", - "iopub.status.idle": "2024-02-09T16:51:33.769937Z", - "shell.execute_reply": "2024-02-09T16:51:33.769283Z" + "iopub.execute_input": "2024-02-14T16:06:26.259687Z", + "iopub.status.busy": "2024-02-14T16:06:26.259325Z", + "iopub.status.idle": "2024-02-14T16:06:26.264646Z", + "shell.execute_reply": "2024-02-14T16:06:26.264111Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:33.772501Z", - "iopub.status.busy": "2024-02-09T16:51:33.772061Z", - "iopub.status.idle": "2024-02-09T16:51:33.778076Z", - "shell.execute_reply": "2024-02-09T16:51:33.777440Z" + "iopub.execute_input": "2024-02-14T16:06:26.267132Z", + "iopub.status.busy": "2024-02-14T16:06:26.266767Z", + "iopub.status.idle": "2024-02-14T16:06:26.272747Z", + "shell.execute_reply": "2024-02-14T16:06:26.272115Z" } }, "outputs": [ @@ -206,10 +206,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:33.780496Z", - "iopub.status.busy": "2024-02-09T16:51:33.780124Z", - "iopub.status.idle": "2024-02-09T16:51:34.001323Z", - "shell.execute_reply": "2024-02-09T16:51:34.000731Z" + "iopub.execute_input": "2024-02-14T16:06:26.275352Z", + "iopub.status.busy": "2024-02-14T16:06:26.274907Z", + "iopub.status.idle": "2024-02-14T16:06:26.508194Z", + "shell.execute_reply": "2024-02-14T16:06:26.507578Z" } }, "outputs": [], @@ -224,10 +224,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:34.004338Z", - "iopub.status.busy": "2024-02-09T16:51:34.003901Z", - "iopub.status.idle": "2024-02-09T16:51:34.040055Z", - "shell.execute_reply": "2024-02-09T16:51:34.039398Z" + "iopub.execute_input": "2024-02-14T16:06:26.511194Z", + "iopub.status.busy": "2024-02-14T16:06:26.510797Z", + "iopub.status.idle": "2024-02-14T16:06:26.548282Z", + "shell.execute_reply": "2024-02-14T16:06:26.547542Z" } }, "outputs": [ @@ -249,10 +249,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:34.042723Z", - "iopub.status.busy": "2024-02-09T16:51:34.042345Z", - "iopub.status.idle": "2024-02-09T16:51:34.065202Z", - "shell.execute_reply": "2024-02-09T16:51:34.064507Z" + "iopub.execute_input": "2024-02-14T16:06:26.551342Z", + "iopub.status.busy": "2024-02-14T16:06:26.550788Z", + "iopub.status.idle": "2024-02-14T16:06:26.575022Z", + "shell.execute_reply": "2024-02-14T16:06:26.574271Z" } }, "outputs": [ @@ -283,10 +283,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:34.067828Z", - "iopub.status.busy": "2024-02-09T16:51:34.067429Z", - "iopub.status.idle": "2024-02-09T16:51:34.071533Z", - "shell.execute_reply": "2024-02-09T16:51:34.070914Z" + "iopub.execute_input": "2024-02-14T16:06:26.577804Z", + "iopub.status.busy": "2024-02-14T16:06:26.577379Z", + "iopub.status.idle": "2024-02-14T16:06:26.581535Z", + "shell.execute_reply": "2024-02-14T16:06:26.580869Z" } }, "outputs": [ @@ -332,10 +332,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:34.074161Z", - "iopub.status.busy": "2024-02-09T16:51:34.073791Z", - "iopub.status.idle": "2024-02-09T16:51:34.077345Z", - "shell.execute_reply": "2024-02-09T16:51:34.076683Z" + "iopub.execute_input": "2024-02-14T16:06:26.584335Z", + "iopub.status.busy": "2024-02-14T16:06:26.583834Z", + "iopub.status.idle": "2024-02-14T16:06:26.587657Z", + "shell.execute_reply": "2024-02-14T16:06:26.587029Z" } }, "outputs": [ @@ -380,10 +380,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:34.079946Z", - "iopub.status.busy": "2024-02-09T16:51:34.079416Z", - "iopub.status.idle": "2024-02-09T16:51:34.082568Z", - "shell.execute_reply": "2024-02-09T16:51:34.081944Z" + "iopub.execute_input": "2024-02-14T16:06:26.590274Z", + "iopub.status.busy": "2024-02-14T16:06:26.589760Z", + "iopub.status.idle": "2024-02-14T16:06:26.592942Z", + "shell.execute_reply": "2024-02-14T16:06:26.592372Z" } }, "outputs": [], @@ -396,10 +396,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:34.084978Z", - "iopub.status.busy": "2024-02-09T16:51:34.084618Z", - "iopub.status.idle": "2024-02-09T16:51:34.091494Z", - "shell.execute_reply": "2024-02-09T16:51:34.090831Z" + "iopub.execute_input": "2024-02-14T16:06:26.595341Z", + "iopub.status.busy": "2024-02-14T16:06:26.594968Z", + "iopub.status.idle": "2024-02-14T16:06:26.601192Z", + "shell.execute_reply": "2024-02-14T16:06:26.600508Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:34.093988Z", - "iopub.status.busy": "2024-02-09T16:51:34.093631Z", - "iopub.status.idle": "2024-02-09T16:51:34.116454Z", - "shell.execute_reply": "2024-02-09T16:51:34.115760Z" + "iopub.execute_input": "2024-02-14T16:06:26.603810Z", + "iopub.status.busy": "2024-02-14T16:06:26.603430Z", + "iopub.status.idle": "2024-02-14T16:06:26.628160Z", + "shell.execute_reply": "2024-02-14T16:06:26.627491Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:34.119097Z", - "iopub.status.busy": "2024-02-09T16:51:34.118681Z", - "iopub.status.idle": "2024-02-09T16:51:34.145028Z", - "shell.execute_reply": "2024-02-09T16:51:34.144311Z" + "iopub.execute_input": "2024-02-14T16:06:26.630967Z", + "iopub.status.busy": "2024-02-14T16:06:26.630551Z", + "iopub.status.idle": "2024-02-14T16:06:26.657956Z", + "shell.execute_reply": "2024-02-14T16:06:26.657242Z" } }, "outputs": [ @@ -507,10 +507,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:34.147895Z", - "iopub.status.busy": "2024-02-09T16:51:34.147503Z", - "iopub.status.idle": "2024-02-09T16:51:34.151895Z", - "shell.execute_reply": "2024-02-09T16:51:34.151214Z" + "iopub.execute_input": "2024-02-14T16:06:26.660833Z", + "iopub.status.busy": "2024-02-14T16:06:26.660443Z", + "iopub.status.idle": "2024-02-14T16:06:26.665158Z", + "shell.execute_reply": "2024-02-14T16:06:26.664466Z" } }, "outputs": [ @@ -552,10 +552,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:34.154408Z", - "iopub.status.busy": "2024-02-09T16:51:34.154046Z", - "iopub.status.idle": "2024-02-09T16:51:34.157564Z", - "shell.execute_reply": "2024-02-09T16:51:34.156932Z" + "iopub.execute_input": "2024-02-14T16:06:26.667819Z", + "iopub.status.busy": "2024-02-14T16:06:26.667463Z", + "iopub.status.idle": "2024-02-14T16:06:26.671402Z", + "shell.execute_reply": "2024-02-14T16:06:26.670701Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:34.160117Z", - "iopub.status.busy": "2024-02-09T16:51:34.159762Z", - "iopub.status.idle": "2024-02-09T16:51:34.162772Z", - "shell.execute_reply": "2024-02-09T16:51:34.162196Z" + "iopub.execute_input": "2024-02-14T16:06:26.674241Z", + "iopub.status.busy": "2024-02-14T16:06:26.673626Z", + "iopub.status.idle": "2024-02-14T16:06:26.676762Z", + "shell.execute_reply": "2024-02-14T16:06:26.676193Z" } }, "outputs": [], @@ -614,10 +614,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:34.165227Z", - "iopub.status.busy": "2024-02-09T16:51:34.164856Z", - "iopub.status.idle": "2024-02-09T16:51:34.174329Z", - "shell.execute_reply": "2024-02-09T16:51:34.173644Z" + "iopub.execute_input": "2024-02-14T16:06:26.679107Z", + "iopub.status.busy": "2024-02-14T16:06:26.678893Z", + "iopub.status.idle": "2024-02-14T16:06:26.688657Z", + "shell.execute_reply": "2024-02-14T16:06:26.687971Z" } }, "outputs": [ @@ -698,10 +698,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:34.176995Z", - "iopub.status.busy": "2024-02-09T16:51:34.176620Z", - "iopub.status.idle": "2024-02-09T16:51:34.202848Z", - "shell.execute_reply": "2024-02-09T16:51:34.202214Z" + "iopub.execute_input": "2024-02-14T16:06:26.691219Z", + "iopub.status.busy": "2024-02-14T16:06:26.691012Z", + "iopub.status.idle": "2024-02-14T16:06:26.718979Z", + "shell.execute_reply": "2024-02-14T16:06:26.718216Z" } }, "outputs": [ @@ -723,10 +723,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:34.205567Z", - "iopub.status.busy": "2024-02-09T16:51:34.205161Z", - "iopub.status.idle": "2024-02-09T16:51:34.361508Z", - "shell.execute_reply": "2024-02-09T16:51:34.360816Z" + "iopub.execute_input": "2024-02-14T16:06:26.721967Z", + "iopub.status.busy": "2024-02-14T16:06:26.721389Z", + "iopub.status.idle": "2024-02-14T16:06:26.880304Z", + "shell.execute_reply": "2024-02-14T16:06:26.879609Z" } }, "outputs": [ @@ -748,10 +748,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:34.364385Z", - "iopub.status.busy": "2024-02-09T16:51:34.363849Z", - "iopub.status.idle": "2024-02-09T16:51:34.368435Z", - "shell.execute_reply": "2024-02-09T16:51:34.367741Z" + "iopub.execute_input": "2024-02-14T16:06:26.883031Z", + "iopub.status.busy": "2024-02-14T16:06:26.882805Z", + "iopub.status.idle": "2024-02-14T16:06:26.887195Z", + "shell.execute_reply": "2024-02-14T16:06:26.886560Z" } }, "outputs": [ @@ -788,10 +788,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:34.370987Z", - "iopub.status.busy": "2024-02-09T16:51:34.370631Z", - "iopub.status.idle": "2024-02-09T16:51:34.374924Z", - "shell.execute_reply": "2024-02-09T16:51:34.374260Z" + "iopub.execute_input": "2024-02-14T16:06:26.889724Z", + "iopub.status.busy": "2024-02-14T16:06:26.889342Z", + "iopub.status.idle": "2024-02-14T16:06:26.893853Z", + "shell.execute_reply": "2024-02-14T16:06:26.893140Z" } }, "outputs": [ @@ -818,10 +818,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:34.377651Z", - "iopub.status.busy": "2024-02-09T16:51:34.377169Z", - "iopub.status.idle": "2024-02-09T16:51:34.741111Z", - "shell.execute_reply": "2024-02-09T16:51:34.740431Z" + "iopub.execute_input": "2024-02-14T16:06:26.896449Z", + "iopub.status.busy": "2024-02-14T16:06:26.896022Z", + "iopub.status.idle": "2024-02-14T16:06:27.270542Z", + "shell.execute_reply": "2024-02-14T16:06:27.269710Z" } }, "outputs": [ @@ -829,14 +829,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_2560/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", + "/tmp/ipykernel_2573/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", " import qiskit.tools.jupyter\n" ] }, { "data": { "text/html": [ - "

Version Information

SoftwareVersion
SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:51:34 2024 UTC
" + "

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:06:27 2024 UTC
" ], "text/plain": [ "" @@ -894,25 +894,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1d321eaa5fc54f59967454008393476c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c1c7489192f54eeda7325035007bce14": { + "30b18c0a28784e9097d21c31ddea4752": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -965,7 +947,7 @@ "width": null } }, - "cf6982454c26489e9c9978f4594fdbc5": { + "f42269846d904417ab4858740dba8bdf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -980,13 +962,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c1c7489192f54eeda7325035007bce14", + "layout": "IPY_MODEL_30b18c0a28784e9097d21c31ddea4752", "placeholder": "​", - "style": "IPY_MODEL_1d321eaa5fc54f59967454008393476c", + "style": "IPY_MODEL_fc55a63bb565444badcf66cb497d480f", "tabbable": null, "tooltip": null, "value": "

Circuit Properties

" } + }, + "fc55a63bb565444badcf66cb497d480f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/tutorials/03_minimum_eigen_optimizer.html b/tutorials/03_minimum_eigen_optimizer.html index 7f71f9b8..cb7c12cd 100644 --- a/tutorials/03_minimum_eigen_optimizer.html +++ b/tutorials/03_minimum_eigen_optimizer.html @@ -789,7 +789,7 @@

Analysis of Samples
-/tmp/ipykernel_2809/365850440.py:1: DeprecationWarning: Using plot_histogram() ``data`` argument with QuasiDistribution, ProbDistribution, or a distribution dictionary is deprecated as of qiskit-terra 0.22.0. It will be removed no earlier than 3 months after the release date. Instead, use ``plot_distribution()``.
+/tmp/ipykernel_2824/365850440.py:1: DeprecationWarning: Using plot_histogram() ``data`` argument with QuasiDistribution, ProbDistribution, or a distribution dictionary is deprecated as of qiskit-terra 0.22.0. It will be removed no earlier than 3 months after the release date. Instead, use ``plot_distribution()``.
   plot_histogram(samples_for_plot)
 

@@ -879,7 +879,7 @@

RecursiveMinimumEigenOptimizer
-/tmp/ipykernel_2809/365850440.py:1: DeprecationWarning: Using plot_histogram() ``data`` argument with QuasiDistribution, ProbDistribution, or a distribution dictionary is deprecated as of qiskit-terra 0.22.0. It will be removed no earlier than 3 months after the release date. Instead, use ``plot_distribution()``.
+/tmp/ipykernel_2824/365850440.py:1: DeprecationWarning: Using plot_histogram() ``data`` argument with QuasiDistribution, ProbDistribution, or a distribution dictionary is deprecated as of qiskit-terra 0.22.0. It will be removed no earlier than 3 months after the release date. Instead, use ``plot_distribution()``.
   plot_histogram(samples_for_plot)
 
@@ -907,7 +907,7 @@

RecursiveMinimumEigenOptimizer
-/tmp/ipykernel_2809/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0
+/tmp/ipykernel_2824/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0
   import qiskit.tools.jupyter
 
@@ -915,7 +915,7 @@

RecursiveMinimumEigenOptimizer
-

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:51:40 2024 UTC
+

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:06:32 2024 UTC
@@ -932,7 +932,7 @@

Version Information

diff --git a/tutorials/03_minimum_eigen_optimizer.ipynb b/tutorials/03_minimum_eigen_optimizer.ipynb index a81b5139..7e38c02d 100644 --- a/tutorials/03_minimum_eigen_optimizer.ipynb +++ b/tutorials/03_minimum_eigen_optimizer.ipynb @@ -63,10 +63,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:37.797449Z", - "iopub.status.busy": "2024-02-09T16:51:37.796966Z", - "iopub.status.idle": "2024-02-09T16:51:38.670002Z", - "shell.execute_reply": "2024-02-09T16:51:38.669364Z" + "iopub.execute_input": "2024-02-14T16:06:30.240959Z", + "iopub.status.busy": "2024-02-14T16:06:30.240761Z", + "iopub.status.idle": "2024-02-14T16:06:31.162451Z", + "shell.execute_reply": "2024-02-14T16:06:31.161737Z" } }, "outputs": [], @@ -92,10 +92,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:38.672880Z", - "iopub.status.busy": "2024-02-09T16:51:38.672613Z", - "iopub.status.idle": "2024-02-09T16:51:38.679734Z", - "shell.execute_reply": "2024-02-09T16:51:38.679100Z" + "iopub.execute_input": "2024-02-14T16:06:31.165740Z", + "iopub.status.busy": "2024-02-14T16:06:31.165153Z", + "iopub.status.idle": "2024-02-14T16:06:31.172929Z", + "shell.execute_reply": "2024-02-14T16:06:31.172226Z" } }, "outputs": [ @@ -140,10 +140,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:38.682149Z", - "iopub.status.busy": "2024-02-09T16:51:38.681801Z", - "iopub.status.idle": "2024-02-09T16:51:38.688576Z", - "shell.execute_reply": "2024-02-09T16:51:38.687925Z" + "iopub.execute_input": "2024-02-14T16:06:31.175754Z", + "iopub.status.busy": "2024-02-14T16:06:31.175290Z", + "iopub.status.idle": "2024-02-14T16:06:31.182866Z", + "shell.execute_reply": "2024-02-14T16:06:31.182152Z" } }, "outputs": [ @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:38.690987Z", - "iopub.status.busy": "2024-02-09T16:51:38.690545Z", - "iopub.status.idle": "2024-02-09T16:51:38.697046Z", - "shell.execute_reply": "2024-02-09T16:51:38.696418Z" + "iopub.execute_input": "2024-02-14T16:06:31.185397Z", + "iopub.status.busy": "2024-02-14T16:06:31.184993Z", + "iopub.status.idle": "2024-02-14T16:06:31.191788Z", + "shell.execute_reply": "2024-02-14T16:06:31.191095Z" } }, "outputs": [ @@ -238,10 +238,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:38.699435Z", - "iopub.status.busy": "2024-02-09T16:51:38.699236Z", - "iopub.status.idle": "2024-02-09T16:51:38.702631Z", - "shell.execute_reply": "2024-02-09T16:51:38.702070Z" + "iopub.execute_input": "2024-02-14T16:06:31.194458Z", + "iopub.status.busy": "2024-02-14T16:06:31.194087Z", + "iopub.status.idle": "2024-02-14T16:06:31.197712Z", + "shell.execute_reply": "2024-02-14T16:06:31.197046Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:38.704803Z", - "iopub.status.busy": "2024-02-09T16:51:38.704609Z", - "iopub.status.idle": "2024-02-09T16:51:38.707594Z", - "shell.execute_reply": "2024-02-09T16:51:38.706936Z" + "iopub.execute_input": "2024-02-14T16:06:31.200502Z", + "iopub.status.busy": "2024-02-14T16:06:31.199983Z", + "iopub.status.idle": "2024-02-14T16:06:31.203289Z", + "shell.execute_reply": "2024-02-14T16:06:31.202765Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:38.710042Z", - "iopub.status.busy": "2024-02-09T16:51:38.709685Z", - "iopub.status.idle": "2024-02-09T16:51:38.725475Z", - "shell.execute_reply": "2024-02-09T16:51:38.724926Z" + "iopub.execute_input": "2024-02-14T16:06:31.205821Z", + "iopub.status.busy": "2024-02-14T16:06:31.205447Z", + "iopub.status.idle": "2024-02-14T16:06:31.220656Z", + "shell.execute_reply": "2024-02-14T16:06:31.219959Z" } }, "outputs": [ @@ -324,10 +324,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:38.727861Z", - "iopub.status.busy": "2024-02-09T16:51:38.727518Z", - "iopub.status.idle": "2024-02-09T16:51:39.140725Z", - "shell.execute_reply": "2024-02-09T16:51:39.140015Z" + "iopub.execute_input": "2024-02-14T16:06:31.223301Z", + "iopub.status.busy": "2024-02-14T16:06:31.223088Z", + "iopub.status.idle": "2024-02-14T16:06:31.636642Z", + "shell.execute_reply": "2024-02-14T16:06:31.635930Z" } }, "outputs": [ @@ -362,10 +362,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:39.143486Z", - "iopub.status.busy": "2024-02-09T16:51:39.143099Z", - "iopub.status.idle": "2024-02-09T16:51:39.147480Z", - "shell.execute_reply": "2024-02-09T16:51:39.146816Z" + "iopub.execute_input": "2024-02-14T16:06:31.639522Z", + "iopub.status.busy": "2024-02-14T16:06:31.639010Z", + "iopub.status.idle": "2024-02-14T16:06:31.643987Z", + "shell.execute_reply": "2024-02-14T16:06:31.643322Z" } }, "outputs": [ @@ -404,10 +404,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:39.150166Z", - "iopub.status.busy": "2024-02-09T16:51:39.149785Z", - "iopub.status.idle": "2024-02-09T16:51:39.154345Z", - "shell.execute_reply": "2024-02-09T16:51:39.153610Z" + "iopub.execute_input": "2024-02-14T16:06:31.646609Z", + "iopub.status.busy": "2024-02-14T16:06:31.646160Z", + "iopub.status.idle": "2024-02-14T16:06:31.651487Z", + "shell.execute_reply": "2024-02-14T16:06:31.650921Z" } }, "outputs": [], @@ -430,10 +430,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:39.157011Z", - "iopub.status.busy": "2024-02-09T16:51:39.156664Z", - "iopub.status.idle": "2024-02-09T16:51:39.161249Z", - "shell.execute_reply": "2024-02-09T16:51:39.160544Z" + "iopub.execute_input": "2024-02-14T16:06:31.653678Z", + "iopub.status.busy": "2024-02-14T16:06:31.653480Z", + "iopub.status.idle": "2024-02-14T16:06:31.658180Z", + "shell.execute_reply": "2024-02-14T16:06:31.657483Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:39.163756Z", - "iopub.status.busy": "2024-02-09T16:51:39.163369Z", - "iopub.status.idle": "2024-02-09T16:51:39.167487Z", - "shell.execute_reply": "2024-02-09T16:51:39.166957Z" + "iopub.execute_input": "2024-02-14T16:06:31.660559Z", + "iopub.status.busy": "2024-02-14T16:06:31.660170Z", + "iopub.status.idle": "2024-02-14T16:06:31.663411Z", + "shell.execute_reply": "2024-02-14T16:06:31.662848Z" } }, "outputs": [], @@ -491,10 +491,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:39.169926Z", - "iopub.status.busy": "2024-02-09T16:51:39.169548Z", - "iopub.status.idle": "2024-02-09T16:51:39.176029Z", - "shell.execute_reply": "2024-02-09T16:51:39.175387Z" + "iopub.execute_input": "2024-02-14T16:06:31.665812Z", + "iopub.status.busy": "2024-02-14T16:06:31.665424Z", + "iopub.status.idle": "2024-02-14T16:06:31.672024Z", + "shell.execute_reply": "2024-02-14T16:06:31.671415Z" } }, "outputs": [ @@ -518,10 +518,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:39.178448Z", - "iopub.status.busy": "2024-02-09T16:51:39.178086Z", - "iopub.status.idle": "2024-02-09T16:51:39.182242Z", - "shell.execute_reply": "2024-02-09T16:51:39.181588Z" + "iopub.execute_input": "2024-02-14T16:06:31.674557Z", + "iopub.status.busy": "2024-02-14T16:06:31.674173Z", + "iopub.status.idle": "2024-02-14T16:06:31.678433Z", + "shell.execute_reply": "2024-02-14T16:06:31.677711Z" } }, "outputs": [ @@ -553,10 +553,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:39.184759Z", - "iopub.status.busy": "2024-02-09T16:51:39.184384Z", - "iopub.status.idle": "2024-02-09T16:51:39.189252Z", - "shell.execute_reply": "2024-02-09T16:51:39.188610Z" + "iopub.execute_input": "2024-02-14T16:06:31.680880Z", + "iopub.status.busy": "2024-02-14T16:06:31.680489Z", + "iopub.status.idle": "2024-02-14T16:06:31.685468Z", + "shell.execute_reply": "2024-02-14T16:06:31.684888Z" } }, "outputs": [ @@ -590,10 +590,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:39.191554Z", - "iopub.status.busy": "2024-02-09T16:51:39.191188Z", - "iopub.status.idle": "2024-02-09T16:51:39.643630Z", - "shell.execute_reply": "2024-02-09T16:51:39.642915Z" + "iopub.execute_input": "2024-02-14T16:06:31.687971Z", + "iopub.status.busy": "2024-02-14T16:06:31.687479Z", + "iopub.status.idle": "2024-02-14T16:06:32.163791Z", + "shell.execute_reply": "2024-02-14T16:06:32.163026Z" } }, "outputs": [ @@ -601,7 +601,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_2809/365850440.py:1: DeprecationWarning: Using plot_histogram() ``data`` argument with QuasiDistribution, ProbDistribution, or a distribution dictionary is deprecated as of qiskit-terra 0.22.0. It will be removed no earlier than 3 months after the release date. Instead, use ``plot_distribution()``.\n", + "/tmp/ipykernel_2824/365850440.py:1: DeprecationWarning: Using plot_histogram() ``data`` argument with QuasiDistribution, ProbDistribution, or a distribution dictionary is deprecated as of qiskit-terra 0.22.0. It will be removed no earlier than 3 months after the release date. Instead, use ``plot_distribution()``.\n", " plot_histogram(samples_for_plot)\n" ] }, @@ -653,10 +653,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:39.647480Z", - "iopub.status.busy": "2024-02-09T16:51:39.646733Z", - "iopub.status.idle": "2024-02-09T16:51:39.650498Z", - "shell.execute_reply": "2024-02-09T16:51:39.649883Z" + "iopub.execute_input": "2024-02-14T16:06:32.168085Z", + "iopub.status.busy": "2024-02-14T16:06:32.167505Z", + "iopub.status.idle": "2024-02-14T16:06:32.171349Z", + "shell.execute_reply": "2024-02-14T16:06:32.170721Z" } }, "outputs": [], @@ -669,10 +669,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:39.653496Z", - "iopub.status.busy": "2024-02-09T16:51:39.652945Z", - "iopub.status.idle": "2024-02-09T16:51:40.238444Z", - "shell.execute_reply": "2024-02-09T16:51:40.237728Z" + "iopub.execute_input": "2024-02-14T16:06:32.174249Z", + "iopub.status.busy": "2024-02-14T16:06:32.173773Z", + "iopub.status.idle": "2024-02-14T16:06:32.764240Z", + "shell.execute_reply": "2024-02-14T16:06:32.763592Z" } }, "outputs": [ @@ -696,10 +696,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:40.241053Z", - "iopub.status.busy": "2024-02-09T16:51:40.240689Z", - "iopub.status.idle": "2024-02-09T16:51:40.243907Z", - "shell.execute_reply": "2024-02-09T16:51:40.243246Z" + "iopub.execute_input": "2024-02-14T16:06:32.766975Z", + "iopub.status.busy": "2024-02-14T16:06:32.766559Z", + "iopub.status.idle": "2024-02-14T16:06:32.769731Z", + "shell.execute_reply": "2024-02-14T16:06:32.769137Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:40.246552Z", - "iopub.status.busy": "2024-02-09T16:51:40.246043Z", - "iopub.status.idle": "2024-02-09T16:51:40.251176Z", - "shell.execute_reply": "2024-02-09T16:51:40.250628Z" + "iopub.execute_input": "2024-02-14T16:06:32.772145Z", + "iopub.status.busy": "2024-02-14T16:06:32.771779Z", + "iopub.status.idle": "2024-02-14T16:06:32.776514Z", + "shell.execute_reply": "2024-02-14T16:06:32.775865Z" } }, "outputs": [ @@ -745,10 +745,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:40.253655Z", - "iopub.status.busy": "2024-02-09T16:51:40.253280Z", - "iopub.status.idle": "2024-02-09T16:51:40.344922Z", - "shell.execute_reply": "2024-02-09T16:51:40.344178Z" + "iopub.execute_input": "2024-02-14T16:06:32.779007Z", + "iopub.status.busy": "2024-02-14T16:06:32.778631Z", + "iopub.status.idle": "2024-02-14T16:06:32.871050Z", + "shell.execute_reply": "2024-02-14T16:06:32.870277Z" } }, "outputs": [ @@ -756,7 +756,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_2809/365850440.py:1: DeprecationWarning: Using plot_histogram() ``data`` argument with QuasiDistribution, ProbDistribution, or a distribution dictionary is deprecated as of qiskit-terra 0.22.0. It will be removed no earlier than 3 months after the release date. Instead, use ``plot_distribution()``.\n", + "/tmp/ipykernel_2824/365850440.py:1: DeprecationWarning: Using plot_histogram() ``data`` argument with QuasiDistribution, ProbDistribution, or a distribution dictionary is deprecated as of qiskit-terra 0.22.0. It will be removed no earlier than 3 months after the release date. Instead, use ``plot_distribution()``.\n", " plot_histogram(samples_for_plot)\n" ] }, @@ -781,10 +781,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:40.348737Z", - "iopub.status.busy": "2024-02-09T16:51:40.348339Z", - "iopub.status.idle": "2024-02-09T16:51:40.453673Z", - "shell.execute_reply": "2024-02-09T16:51:40.453003Z" + "iopub.execute_input": "2024-02-14T16:06:32.875562Z", + "iopub.status.busy": "2024-02-14T16:06:32.875309Z", + "iopub.status.idle": "2024-02-14T16:06:32.984588Z", + "shell.execute_reply": "2024-02-14T16:06:32.983866Z" } }, "outputs": [ @@ -792,14 +792,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_2809/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", + "/tmp/ipykernel_2824/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", " import qiskit.tools.jupyter\n" ] }, { "data": { "text/html": [ - "

Version Information

SoftwareVersion
SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:51:40 2024 UTC
" + "

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:06:32 2024 UTC
" ], "text/plain": [ "" @@ -852,7 +852,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "061bf5c8619e499d983085ce8f341bb1": { + "0362caef9918471ca4e937e0615b932c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4b3bc656947f4fd7a3510c9d4fc61c1c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -905,7 +923,7 @@ "width": null } }, - "ab2f6c80865c479bb981764d291b3bac": { + "90dcbc28d8074a81b5c940a1bf76afc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -920,31 +938,13 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_061bf5c8619e499d983085ce8f341bb1", + "layout": "IPY_MODEL_4b3bc656947f4fd7a3510c9d4fc61c1c", "placeholder": "​", - "style": "IPY_MODEL_fdef2d007834471fbcd8dd059b0c577c", + "style": "IPY_MODEL_0362caef9918471ca4e937e0615b932c", "tabbable": null, "tooltip": null, "value": "

Circuit Properties

" } - }, - "fdef2d007834471fbcd8dd059b0c577c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/tutorials/04_grover_optimizer.html b/tutorials/04_grover_optimizer.html index 26b2daa6..d42c89dc 100644 --- a/tutorials/04_grover_optimizer.html +++ b/tutorials/04_grover_optimizer.html @@ -454,11 +454,11 @@

Grover Adaptive Search

The Grover diffusion operator \(D\), that multiplies the amplitude of the \(|0\rangle_n\) state by -1.

While implementations of GAS vary around the specific use case, the general framework still loosely follows the steps described below.

-

97d377647d7348eb8f3ced0b7f106af3

+

90fffba927f94028af44145ae4c503c6

GroverOptimizer uses QuadraticProgramToNegativeValueOracle to construct \(A_y\) such that it prepares a \(n\)-qubit register to represent the equal superposition of all \(|x\rangle_n\) and a \(m\)-qubit register to (approximately) represent the corresponding \(|Q(x)-y\rangle_m\). Then, all states with \((Q(x) - y)\) negative should be flagged by \(O_y\). Note that in the implementation discussed, the oracle operator is actually independent of \(y\), but this is not a requirement. For clarity, we will refer to the oracle as \(O\) when the oracle is independent of \(y\).

Put formally, QuadraticProgramToNegativeValueOracle constructs an \(A_y\) and \(O\) such that:

-

cb35a1d614014418a39b3c754ec9a806

+

679d5a362a1541d19a30a2e235386083

where \(|x\rangle\) is the binary encoding of the integer \(x\).

At each iteration in which the threshold \(y\) is updated, we adapt \(A_y\) such that the function values are shifted up or down (for minimum and maximum respectively) by \(y\). For example, in the context of finding the minimum, as the value of \(y\) decreases, the search space (negative values) also decreases, until only the minimum value remains. A concrete example will be explored in the next section.

@@ -535,10 +535,10 @@

Find the Minimum of a QUBO Problem using GroverOptimizer\(x_0=1\), \(x_1=0\), \(x_2=1\) and the optimal objective value of \(-6\) (most of the time, since it is a randomized algorithm). In the following, a custom visualization of the quantum state shows a possible run of GroverOptimizer applied to this QUBO.

-

c848ffc3b51a4045a959fac6a57611c7

+

7d4741c185524357a6725871a38aae0a

Each graph shows a single iteration of GAS, with the current values of \(r\) (= iteration counter) and \(y\) (= threshold/offset) shown in the title. The X-axis displays the integer equivalent of the input (e.g. ‘101’ \(\rightarrow\) 5), and the Y-axis shows the possible function values. As there are 3 binary variables, there are \(2^3=8\) possible solutions, which are shown in each graph. The color intensity indicates the probability of measuring a certain result (with bright intensity being the highest), while the actual color indicates the corresponding phase (see phase color-wheel below). Note that as \(y\) decreases, we shift all of the values up by that amount, meaning there are fewer and fewer negative values in the distribution, until only one remains (the minimum).

-
@@ -587,7 +587,7 @@

Check that GroverOptimizer finds the correct value

-

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
qiskit_algorithms0.2.2
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:51:45 2024 UTC
+

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
qiskit_algorithms0.2.2
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:06:39 2024 UTC
@@ -604,7 +604,7 @@

Version Information

diff --git a/tutorials/04_grover_optimizer.ipynb b/tutorials/04_grover_optimizer.ipynb index 01c99d74..35bd7ced 100644 --- a/tutorials/04_grover_optimizer.ipynb +++ b/tutorials/04_grover_optimizer.ipynb @@ -77,10 +77,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:43.312438Z", - "iopub.status.busy": "2024-02-09T16:51:43.312242Z", - "iopub.status.idle": "2024-02-09T16:51:44.167643Z", - "shell.execute_reply": "2024-02-09T16:51:44.166940Z" + "iopub.execute_input": "2024-02-14T16:06:35.805942Z", + "iopub.status.busy": "2024-02-14T16:06:35.805680Z", + "iopub.status.idle": "2024-02-14T16:06:36.705664Z", + "shell.execute_reply": "2024-02-14T16:06:36.704988Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:44.170541Z", - "iopub.status.busy": "2024-02-09T16:51:44.170260Z", - "iopub.status.idle": "2024-02-09T16:51:44.205278Z", - "shell.execute_reply": "2024-02-09T16:51:44.204527Z" + "iopub.execute_input": "2024-02-14T16:06:36.708774Z", + "iopub.status.busy": "2024-02-14T16:06:36.708484Z", + "iopub.status.idle": "2024-02-14T16:06:36.744766Z", + "shell.execute_reply": "2024-02-14T16:06:36.744016Z" } }, "outputs": [ @@ -144,10 +144,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:44.208041Z", - "iopub.status.busy": "2024-02-09T16:51:44.207616Z", - "iopub.status.idle": "2024-02-09T16:51:45.450121Z", - "shell.execute_reply": "2024-02-09T16:51:45.449414Z" + "iopub.execute_input": "2024-02-14T16:06:36.747483Z", + "iopub.status.busy": "2024-02-14T16:06:36.747216Z", + "iopub.status.idle": "2024-02-14T16:06:38.696204Z", + "shell.execute_reply": "2024-02-14T16:06:38.695463Z" } }, "outputs": [ @@ -202,10 +202,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:45.453204Z", - "iopub.status.busy": "2024-02-09T16:51:45.452552Z", - "iopub.status.idle": "2024-02-09T16:51:45.468475Z", - "shell.execute_reply": "2024-02-09T16:51:45.467807Z" + "iopub.execute_input": "2024-02-14T16:06:38.699057Z", + "iopub.status.busy": "2024-02-14T16:06:38.698829Z", + "iopub.status.idle": "2024-02-14T16:06:38.714466Z", + "shell.execute_reply": "2024-02-14T16:06:38.713869Z" } }, "outputs": [ @@ -230,10 +230,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:45.470901Z", - "iopub.status.busy": "2024-02-09T16:51:45.470530Z", - "iopub.status.idle": "2024-02-09T16:51:45.900392Z", - "shell.execute_reply": "2024-02-09T16:51:45.899715Z" + "iopub.execute_input": "2024-02-14T16:06:38.717191Z", + "iopub.status.busy": "2024-02-14T16:06:38.716784Z", + "iopub.status.idle": "2024-02-14T16:06:39.207415Z", + "shell.execute_reply": "2024-02-14T16:06:39.206690Z" } }, "outputs": [ @@ -241,14 +241,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_3386/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", + "/tmp/ipykernel_3399/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", " import qiskit.tools.jupyter\n" ] }, { "data": { "text/html": [ - "

Version Information

SoftwareVersion
SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
qiskit_algorithms0.2.2
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:51:45 2024 UTC
" + "

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
qiskit_algorithms0.2.2
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:06:39 2024 UTC
" ], "text/plain": [ "" @@ -301,7 +301,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "4fb9d2fbaf83479c9eacd2014046b3eb": { + "2232542d3a2a45248ddee62eff0cb979": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -316,15 +316,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f0e722babd56447aa1224e28aa43b301", + "layout": "IPY_MODEL_a41030cbe26745aeba602b0e7dc9f105", "placeholder": "​", - "style": "IPY_MODEL_5f9a25218c8947039f0527490368e04f", + "style": "IPY_MODEL_915154cd7bdc4ddb963c629ef21c143f", "tabbable": null, "tooltip": null, "value": "

Circuit Properties

" } }, - "5f9a25218c8947039f0527490368e04f": { + "915154cd7bdc4ddb963c629ef21c143f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -342,7 +342,7 @@ "text_color": null } }, - "f0e722babd56447aa1224e28aa43b301": { + "a41030cbe26745aeba602b0e7dc9f105": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/tutorials/05_admm_optimizer.html b/tutorials/05_admm_optimizer.html index 03d4d6ca..642ca1d8 100644 --- a/tutorials/05_admm_optimizer.html +++ b/tutorials/05_admm_optimizer.html @@ -770,7 +770,7 @@

Quantum Solver Results
-/tmp/ipykernel_3495/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0
+/tmp/ipykernel_3514/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0
   import qiskit.tools.jupyter
 

@@ -778,7 +778,7 @@

Quantum Solver Results

-

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
qiskit_algorithms0.2.2
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:52:41 2024 UTC
+

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
qiskit_algorithms0.2.2
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:07:34 2024 UTC
@@ -795,7 +795,7 @@

Version Information

diff --git a/tutorials/05_admm_optimizer.ipynb b/tutorials/05_admm_optimizer.ipynb index d767400f..d513c8c7 100644 --- a/tutorials/05_admm_optimizer.ipynb +++ b/tutorials/05_admm_optimizer.ipynb @@ -82,10 +82,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:47.981588Z", - "iopub.status.busy": "2024-02-09T16:51:47.981116Z", - "iopub.status.idle": "2024-02-09T16:51:49.087358Z", - "shell.execute_reply": "2024-02-09T16:51:49.086693Z" + "iopub.execute_input": "2024-02-14T16:06:41.206833Z", + "iopub.status.busy": "2024-02-14T16:06:41.206629Z", + "iopub.status.idle": "2024-02-14T16:06:42.366470Z", + "shell.execute_reply": "2024-02-14T16:06:42.365701Z" } }, "outputs": [], @@ -133,10 +133,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:49.090415Z", - "iopub.status.busy": "2024-02-09T16:51:49.089928Z", - "iopub.status.idle": "2024-02-09T16:51:49.093534Z", - "shell.execute_reply": "2024-02-09T16:51:49.092930Z" + "iopub.execute_input": "2024-02-14T16:06:42.369752Z", + "iopub.status.busy": "2024-02-14T16:06:42.369387Z", + "iopub.status.idle": "2024-02-14T16:06:42.373254Z", + "shell.execute_reply": "2024-02-14T16:06:42.372617Z" } }, "outputs": [], @@ -170,10 +170,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:49.096129Z", - "iopub.status.busy": "2024-02-09T16:51:49.095719Z", - "iopub.status.idle": "2024-02-09T16:51:49.133270Z", - "shell.execute_reply": "2024-02-09T16:51:49.132530Z" + "iopub.execute_input": "2024-02-14T16:06:42.375693Z", + "iopub.status.busy": "2024-02-14T16:06:42.375333Z", + "iopub.status.idle": "2024-02-14T16:06:42.413461Z", + "shell.execute_reply": "2024-02-14T16:06:42.412631Z" } }, "outputs": [ @@ -244,10 +244,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:49.135904Z", - "iopub.status.busy": "2024-02-09T16:51:49.135503Z", - "iopub.status.idle": "2024-02-09T16:51:49.138765Z", - "shell.execute_reply": "2024-02-09T16:51:49.138164Z" + "iopub.execute_input": "2024-02-14T16:06:42.416454Z", + "iopub.status.busy": "2024-02-14T16:06:42.416031Z", + "iopub.status.idle": "2024-02-14T16:06:42.419404Z", + "shell.execute_reply": "2024-02-14T16:06:42.418795Z" } }, "outputs": [], @@ -270,10 +270,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:49.141425Z", - "iopub.status.busy": "2024-02-09T16:51:49.140955Z", - "iopub.status.idle": "2024-02-09T16:51:49.144423Z", - "shell.execute_reply": "2024-02-09T16:51:49.143824Z" + "iopub.execute_input": "2024-02-14T16:06:42.422361Z", + "iopub.status.busy": "2024-02-14T16:06:42.421665Z", + "iopub.status.idle": "2024-02-14T16:06:42.425220Z", + "shell.execute_reply": "2024-02-14T16:06:42.424631Z" } }, "outputs": [], @@ -297,10 +297,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:51:49.146842Z", - "iopub.status.busy": "2024-02-09T16:51:49.146394Z", - "iopub.status.idle": "2024-02-09T16:52:07.693685Z", - "shell.execute_reply": "2024-02-09T16:52:07.692966Z" + "iopub.execute_input": "2024-02-14T16:06:42.427804Z", + "iopub.status.busy": "2024-02-14T16:06:42.427408Z", + "iopub.status.idle": "2024-02-14T16:07:00.935837Z", + "shell.execute_reply": "2024-02-14T16:07:00.934976Z" } }, "outputs": [], @@ -324,10 +324,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:07.696787Z", - "iopub.status.busy": "2024-02-09T16:52:07.696560Z", - "iopub.status.idle": "2024-02-09T16:52:07.700471Z", - "shell.execute_reply": "2024-02-09T16:52:07.699604Z" + "iopub.execute_input": "2024-02-14T16:07:00.939291Z", + "iopub.status.busy": "2024-02-14T16:07:00.938839Z", + "iopub.status.idle": "2024-02-14T16:07:00.942737Z", + "shell.execute_reply": "2024-02-14T16:07:00.942031Z" } }, "outputs": [ @@ -357,10 +357,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:07.703299Z", - "iopub.status.busy": "2024-02-09T16:52:07.703050Z", - "iopub.status.idle": "2024-02-09T16:52:07.857274Z", - "shell.execute_reply": "2024-02-09T16:52:07.856570Z" + "iopub.execute_input": "2024-02-14T16:07:00.945569Z", + "iopub.status.busy": "2024-02-14T16:07:00.945168Z", + "iopub.status.idle": "2024-02-14T16:07:01.102020Z", + "shell.execute_reply": "2024-02-14T16:07:01.101270Z" } }, "outputs": [ @@ -397,10 +397,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:07.860160Z", - "iopub.status.busy": "2024-02-09T16:52:07.859761Z", - "iopub.status.idle": "2024-02-09T16:52:07.863260Z", - "shell.execute_reply": "2024-02-09T16:52:07.862675Z" + "iopub.execute_input": "2024-02-14T16:07:01.105059Z", + "iopub.status.busy": "2024-02-14T16:07:01.104567Z", + "iopub.status.idle": "2024-02-14T16:07:01.108171Z", + "shell.execute_reply": "2024-02-14T16:07:01.107559Z" } }, "outputs": [], @@ -423,10 +423,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:07.865784Z", - "iopub.status.busy": "2024-02-09T16:52:07.865411Z", - "iopub.status.idle": "2024-02-09T16:52:41.123855Z", - "shell.execute_reply": "2024-02-09T16:52:41.123147Z" + "iopub.execute_input": "2024-02-14T16:07:01.110474Z", + "iopub.status.busy": "2024-02-14T16:07:01.110272Z", + "iopub.status.idle": "2024-02-14T16:07:34.261981Z", + "shell.execute_reply": "2024-02-14T16:07:34.261081Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:41.126944Z", - "iopub.status.busy": "2024-02-09T16:52:41.126675Z", - "iopub.status.idle": "2024-02-09T16:52:41.130661Z", - "shell.execute_reply": "2024-02-09T16:52:41.130003Z" + "iopub.execute_input": "2024-02-14T16:07:34.265491Z", + "iopub.status.busy": "2024-02-14T16:07:34.265008Z", + "iopub.status.idle": "2024-02-14T16:07:34.269231Z", + "shell.execute_reply": "2024-02-14T16:07:34.268512Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:41.132926Z", - "iopub.status.busy": "2024-02-09T16:52:41.132723Z", - "iopub.status.idle": "2024-02-09T16:52:41.275732Z", - "shell.execute_reply": "2024-02-09T16:52:41.275083Z" + "iopub.execute_input": "2024-02-14T16:07:34.271793Z", + "iopub.status.busy": "2024-02-14T16:07:34.271409Z", + "iopub.status.idle": "2024-02-14T16:07:34.413140Z", + "shell.execute_reply": "2024-02-14T16:07:34.412374Z" } }, "outputs": [ @@ -505,10 +505,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:41.278210Z", - "iopub.status.busy": "2024-02-09T16:52:41.277995Z", - "iopub.status.idle": "2024-02-09T16:52:41.385528Z", - "shell.execute_reply": "2024-02-09T16:52:41.384874Z" + "iopub.execute_input": "2024-02-14T16:07:34.415952Z", + "iopub.status.busy": "2024-02-14T16:07:34.415509Z", + "iopub.status.idle": "2024-02-14T16:07:34.527161Z", + "shell.execute_reply": "2024-02-14T16:07:34.526429Z" } }, "outputs": [ @@ -516,14 +516,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_3495/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", + "/tmp/ipykernel_3514/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", " import qiskit.tools.jupyter\n" ] }, { "data": { "text/html": [ - "

Version Information

SoftwareVersion
SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
qiskit_algorithms0.2.2
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:52:41 2024 UTC
" + "

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
qiskit_algorithms0.2.2
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:07:34 2024 UTC
" ], "text/plain": [ "" @@ -576,7 +576,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "4b4b7ebef84e4ea6a47e9e89867690b9": { + "3fe607b72ec44b7f8da3d4674bec7944": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -594,7 +594,30 @@ "text_color": null } }, - "7fbde7b3065f4e9f9dbc9f8c894129df": { + "92fe78082f974dba829f9a911a79585f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d452bfbcabac46359df75c7060feae4c", + "placeholder": "​", + "style": "IPY_MODEL_3fe607b72ec44b7f8da3d4674bec7944", + "tabbable": null, + "tooltip": null, + "value": "

Circuit Properties

" + } + }, + "d452bfbcabac46359df75c7060feae4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -646,29 +669,6 @@ "visibility": null, "width": null } - }, - "d746194838314435b0931b56686ef0d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7fbde7b3065f4e9f9dbc9f8c894129df", - "placeholder": "​", - "style": "IPY_MODEL_4b4b7ebef84e4ea6a47e9e89867690b9", - "tabbable": null, - "tooltip": null, - "value": "

Circuit Properties

" - } } }, "version_major": 2, diff --git a/tutorials/06_examples_max_cut_and_tsp.html b/tutorials/06_examples_max_cut_and_tsp.html index f300ea8a..0547e63d 100644 --- a/tutorials/06_examples_max_cut_and_tsp.html +++ b/tutorials/06_examples_max_cut_and_tsp.html @@ -815,7 +815,7 @@

Running it on quantum computer @@ -1260,7 +1260,7 @@

Running it on quantum computer

-

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:53:21 2024 UTC
+

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
qiskit_algorithms0.2.2
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:08:15 2024 UTC
@@ -1277,7 +1277,7 @@

Version Information

diff --git a/tutorials/06_examples_max_cut_and_tsp.ipynb b/tutorials/06_examples_max_cut_and_tsp.ipynb index b79337b6..f5a2e3a2 100644 --- a/tutorials/06_examples_max_cut_and_tsp.ipynb +++ b/tutorials/06_examples_max_cut_and_tsp.ipynb @@ -109,10 +109,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:43.809274Z", - "iopub.status.busy": "2024-02-09T16:52:43.808729Z", - "iopub.status.idle": "2024-02-09T16:52:44.990531Z", - "shell.execute_reply": "2024-02-09T16:52:44.989694Z" + "iopub.execute_input": "2024-02-14T16:07:37.501312Z", + "iopub.status.busy": "2024-02-14T16:07:37.501115Z", + "iopub.status.idle": "2024-02-14T16:07:38.711870Z", + "shell.execute_reply": "2024-02-14T16:07:38.711192Z" } }, "outputs": [], @@ -145,16 +145,16 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:44.993821Z", - "iopub.status.busy": "2024-02-09T16:52:44.993311Z", - "iopub.status.idle": "2024-02-09T16:52:45.182626Z", - "shell.execute_reply": "2024-02-09T16:52:45.181932Z" + "iopub.execute_input": "2024-02-14T16:07:38.715222Z", + "iopub.status.busy": "2024-02-14T16:07:38.714657Z", + "iopub.status.idle": "2024-02-14T16:07:38.902307Z", + "shell.execute_reply": "2024-02-14T16:07:38.901598Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABg3UlEQVR4nO3dd3yT9fr/8Ve6d+mghdKUIZQpoExlFxqQoxzEhchQ3Ee/4oG2IHuDZQgIgorIcIKiuH6SUmSoB0EQUWSvUtpSOtPdprl/f8RWUEYLae6kuZ6PRx/n0JFcEdr73c99XZ+PRlEUBSGEEEI4LCe1CxBCCCGEuiQMCCGEEA5OwoAQQgjh4CQMCCGEEA5OwoAQQgjh4CQMCCGEEA5OwoAQQgjh4Fyq8kkmk4mUlBR8fX3RaDQ1XZMQQgghLEBRFPLy8ggLC8PJ6dq//1cpDKSkpKDVai1WnBBCCCGs5/z584SHh1/z41UKA76+vpUP5ufnZ5nKhBBCCFGjDAYDWq228jp+LVUKAxW3Bvz8/CQMCCGEEHbmRrf4pYFQCCGEcHASBoQQQggHJ2FACCGEcHASBoQQQggHJ2FACCGEcHASBoQQQggHJ2FACCGEcHASBoQQQggHJ2FACCGEcHASBoQQQggHJ2FACCGEcHBVOptACKGi/HxISYHiYtBowMsLtFpwc1O7MiFELSFhQAhbU1QEej3s3QsHDsCpU1BaCiaTOQw4OYGnJ7RsCe3bQ48e5jdnZ7UrF0LYKY2iKMqNPslgMODv709ubq6cWihETUlKgo0b4aOPzCsBimK+wHt4gLu7OQQoijkUlJSYVwpMJnBxgaZN4bHH4IEHICBA7VcihLARVb1+SxgQQm3l5bBuHSxaBJmZ5uX/OnWqfhuguBiys83BoGFDmDEDdDrzKoIQwqFV9fotDYRCqOncORg+HKZMgbw8CAuDkJDq9QN4eED9+hAaal5deOYZiI2F3Nyaq1sIUatIGBBCLYcPwyOPwPbt5pWAkBDzrYCb5eJiDhPu7vDeezByJKSnW6xcIUTtJWFACDUcPQqjRsHZs+YLuKen5R7bz88cLH76CZ54ArKyLPfYQohaScKAENaWnQ1PPw3JyeYgUBNTAG5u5kCwfz+89JK5L0EIIa5BwoAQ1jZvHpw4AfXq3dptgRtxc4OgIPjuO/NtAyGEuAYJA0JY07Zt8PHH5qV8Fyts8+HpaV55WLAATp+u+ecTQtglCQNCWEt5OcyZA2Vl4OtrvecNDoaMDHjtNes9pxDCrsgOhEJYy65dcPIkBAZWaw+AUpOJVRkZfJObi6G8nGbu7vwnJIQu3t5VewAnJ/Dxga1bzZsZhYXd5AsQQtRWsjIghLV89BEYjeZ9Aaphemoq72dmco+fHzGhoThrNLyUlMTBwsKqP4ifHxgM8Omn1SxaCOEIJAwIYQ0ZGeb9BKr62/yfDhcVoTcYeDEkhDGhoQwJCGBVRAT1XV1ZVp09BJyczD0KmzaZtzQWQojLSBgQwhr++AMKC6sdBhLz8nAChtSpU/k+Nycn/l2nDoeKirhYVlb1B/P2Nt8muHSpWjUIIWo/CQNCWMORI38dKlQNR4uLaejmhvff9iJo/ecmRceKi6v+YB4e5hMRjxypVg1CiNpPwoAQ1lBxAa7m4UEZRiPBVwkQFe/LMBqr/mAuLuZAcvRotWoQQtR+EgaEsIaMjJs6RbDEZML1sq8rN5kAcP/zfcXVuf+v0Zh7B+QAIyHE38hooRDWUFp6U2HA3cmJMkWhzGjkzOnTlJSU4O/vT5anJygKHtV9TEUx73MghBCXkZUBIazBze2muviDXVy4ZDSSnJxMSUkJbm5umBSFoxcvUlxSgikri9zc3MoVgypxda12HUKI2k3CgBDWEBJivl9fTZHu7pwqKCCrqIjAoCA0Tk40atiQvLp1cXFxoaFGw4WUFI4fP8755GQMBgOmaz2PopjfAgJu8cUIIWobCQNCWEPLlubbBNVcHegElJWXs8/HB29vb4xGI8VGI9/k59Pe15dOTZrQrGlTQkJCMJaVkXzhAsePHyf5wgUMeXmYLn++sjLzOQUtWlj2tQkh7J70DAhhDS1bmi/EZWXmWwZVUFBYSGBWFn28vXk3P598jQZXo5ED586RUlrKlIYNAXB1dSUoMJCgwEBKS0sxGAwY8vJITk7GyckJX19f/Pz88DaZcPLwMNcihBCXkTAghDW0agVeXuaNh6oQBsrKyriQnIyXlxcLw8NZlZHB17m5XDIaaVFezhKtlju9vP7xdW5ubgQHBxMcHExJRTAwGMjNzaWu0Uh+gwZcPHmSTgEBOP9t7wIhhOPSKMqN1y0NBgP+/v7k5ubi5+dnjbqEqH1efBE++QQaNLjuZIFJUTh39izG8nIaN26My58XbQU4duyY+WIfFFTlp1WAkqIiypOT2dC4MatdXKhTpw5RUVHodDruvPNOnJzkjqEQtVFVr9+yMiCEtQwdCl98AcXF8OcOgn+nAGmpqRSXlNCoUaPKIACgwfybf2lpabWeVgN4FBdDvXo8u3UrvbOz0ev1JCQksHnzZoKCgujbty/9+/fn9ttvl2AghAOSlQEhrMVkggED4LffzMcIX2V1ICs7m7S0NBqEheHv7/+PjydfuIDRaKTRn/0CVX7elBR47DFYtKjy3YqicPjwYfR6Pdu2bSM9PZ2QkBCio6PR6XS0atUKzU3sjSCEsB1VvX5LGBDCmr7/HkaMMDcTXnb4EJgbBpPOnSMwMJDQ0NCrfnn6pUvk5OQQ2axZ1Z8zLQ2CguCrr0CrveqnmEwmfv31VxISEti2bRtZWVmEhYVVBoPIyEgJBkLYIQkDQtiqqVPhrbcgNLRyA6CysjJOnzmDh4cHERERXOuym5ObS0pKCi2aN6/acn5BARgM5hWBoUOrVJ7JZGL//v0kJCSQmJhIbm4uERER6HQ6dDodTZo0qeILFUKoTcKAELbKYID774fDh6F+fUxOTpw9e5byvzUMXk1hURFnz56lSZMmeLi7X/95SkrMxxX/61/w9tvmcwmqyWg0sm/fPvR6Pd999x35+fk0adKkMhhERERU+zGFENYjYUAIW3bmDAwbhnLmDKmAIT+fRo0a4eHhcd0vM5aXc/z4ccLDw/Hz9b32JxYXmw9H6tYN3n0XLPB9W1payp49e0hISGDnzp0UFhYSGRlJ//79iY6OJiws7JafQwhhWRIGhLB1J0+Sfu+9OJ86hXv9+viEhNzwSxTg+LFjBF1rvFBRzKcSFhRAz56walWNbD9cUlLCDz/8QEJCArt27aKkpITWrVuj0+mIjo4mpAqvRQhR8yQMCGHjfv75Z6Y89RQLPTxonZxsfmfduubmwuuo6C0Iq1//yg+UlUF6unlsceRIiI0Fb+8aqv4vhYWFfP/99+j1en788UdKS0tp164dOp2Ofv36EVSNPRGEEJYlYUAIG5aSksKIESNo0aIFy5Yswfmzz2DuXLh40RwGAgLgGj0BV4wXKgoUFUF2tnlUMTIS5swx3x5QQUFBATt37kSv1/O///0Pk8nEnXfeSf/+/YmKiqLO3yYohBA1S8KAEDaquLiY0aNHk5+fz3vvvffX91R6OmzeDO+9B2fP/nXKoYeHORj8OdqXnZVFSW4u9SourG5ucPvtMHw43HefVVYDqsJgMPDdd9+h1+vZt28fAJ07d0an09G7d2/5WSKEFUgYEMIGKYrClClT2LFjB++++y7NrrZfQFkZ7NwJ+/bBr7/C77+bzzT481u1oLiY87m5NH3wQVzat4cePaBjx+tucay27Oxstm/fjl6v58CBAzg7O9O1a1d0Oh29evXC20YCjBC1jYQBIWzQ+++/z2uvvca8efOIjo6u2hdV9AKUlIBGwx9nzjAqNpb3P/yQyMjImi24Bly6dInExET0ej2HDh3Czc2Nbt26ER0dTY8ePfC8xlbNQojqk7MJhLAxe/fuZenSpYwaNarqQQDMGxM1aFD5x/p16qBoNCQnJ9tlGKhbty5Dhw5l6NChpKWlsW3bNvR6PRMnTsTDw4MePXoQHR1Nt27dcL/RXgpCCIuQlQEhrCAlJYXhw4fTunVrli5dekuHASmKQp8+fXj88cd5/PHHLVekyi5cuEBCQgJ6vZ7jx4/j5eVF7969iY6OpmvXrrj+uVujEKLqZGVACBtRVFRETEwMfn5+zJkz55ZPBdRoNERERHD+/HkLVWgbGjRoUBlwzp07V3my4jfffIOvry99+vQhOjqaTp064eIiP7qEsCT5jhKiBimKwqxZszh//jxr16612MpaeHh4rQsDl2vYsCFPP/00Tz/9NKdOnaoMBl988QX+/v707duX6OhoOnToIEcuC2EBEgaEqEEbNmxAr9fz6quvctttt1nscSMiIjhw4IDFHs+W3XbbbTz//PM899xzHD9+vDIYbN68maCgIPr27YtOp6Nt27YSDIS4SRIGhKghe/bsYfny5YwePZq+ffta9LG1Wi0ZGRkUFRU5TPe9RqOhefPmNG/enBdffJHDhw+j1+vZtm0bGzduJCQkhH79+qHT6WjdurUcuSxENUgDoRA1IDk5mZEjR9KmTRuWLFli8d9YDx06xOjRo/nggw/scqLAkkwmE4cOHaoMBllZWYSFhREdHY1OpyMyMlKCgXBYss+AECopLCxk9OjRlJSUsH79enyvd7rgTcrJyaFfv37Ex8cTFRVl8ce3VyaTif3795OQkEBiYiK5ublERERUBgNL3qoRwh7INIEQKlAUhRkzZpCSksLatWtrJAgA+Pv74+PjQ1JSUo08vr1ycnKiU6dOdOrUibi4OPbt20dCQgIbN27knXfeoUmTJpXBoGHDhmqXK4TNkDAghAWtW7eOxMREFixYQJMmTWrseSrGCyUMXJuLiwt33XUXd911FxMmTGDPnj0kJCSwYcMG3nzzTSIjIyuPXG5w2aZOQjgiCQNCWMiPP/7IihUrePLJJ+nTp0+NP59WqyW54uhjcV1ubm707NmTnj17UlJSwg8//EBCQgJvv/02y5cvp1WrVpXBIDQ0VO1yhbA66RkQwgLOnz/PyJEjad++PYsWLbLKiNuqVav4/PPP+fbbb2v8uWqroqIidu/ejV6v58cff6S0tJS2bdui0+no168fwcHBN/W4JpOJsrIy2U5ZqE4aCIWwksLCQh5//HGMRiPr16/Hx8fHKs/7zTffMHXqVHbt2oWXl5dVnrM2KygoYOfOnej1evbs2UN5eTl33nknOp2OqKgoAgICqvxYx44dY8mSJaSlpREVFcWTTz4pf0dCFdJAKIQVKIrC9OnTSUtLY926dVYLAmDehRCw2wOLbI23tzcDBw5k4MCBGAwGduzYUblh1KuvvkqnTp3Q6XT06dPnhr8U5eTkEBoairu7O2PGjMHFxYVnnnkGZ2dnK70aIapHtusS4ha8++67bN++nVmzZtG4cWOrPndERARArd6WWC1+fn4MGjSI5cuXs3XrViZMmIDRaGT27NnodDo2bdrE9RZVu3TpwvTp0+nduzcBAQF07dpVgoCwabIyIMRN+v7771m5ciXPPPMMvXr1svrz+/v74+vrK2GghgUEBDBkyBCGDBlCRkYGiYmJ3HHHHZhMpmte4EtLS3Fzc+Pdd9+lY8eOVg+KQlSXrAwIcROSkpKYPHkyPXr04KmnnlKlBo1Gg1arlfFCKwoODuaRRx6hadOm1/1N383NDYCtW7dy//333/C2wtGjR3n99dcZOnQoH3zwwXVXHYSoCRIGhKimgoICxo0bR3BwMLNmzVL1cBytVisrAzamvLwcgE8//RRXV1e6det23X8jP/30EwMGDGDDhg14eXkxceJEnn32WQoLC61VshBym0CI6jCZTEybNo309HTWr1+Pt7e3qvVotVr279+vag3i6lavXk2vXr0qezsupygKGo2GS5cuMXXqVJo2bcqWLVvw9vbm559/plevXgwdOlS2mhZWIysDQlTDmjVr2LFjB7NmzbKJ7WwjIiLIyMiQ3yJthKIoODs7oygKiYmJ17xFYDKZAPj444+5dOkSL730UmWwbNasGW3atOHgwYPWLF04OFkZEKKKdu3axapVq3juuefo2bOn2uUA5pUBkPFCW1BWVsarr76Kj48PiqLg7+9P9+7d/3Fioslkqrxt8Nlnn9G6dWu6dOlS+fG8vDycnJzIyMgA/lpFEKImycqAEFVw7tw5pkyZQu/evRk9erTa5VSqCAPSN6A+JycnfH19mTt3LuPGjSMzM5NPPvmkssGzqKio8vM0Gg0XLlzg4sWLdOjQ4YotkDMyMjh48CA6nU6V1yEck4QBIW4gPz+fsWPHEhISwsyZM1VtGPy7ivFCmShQn7OzM2PGjCE9Pb0yPC5fvpwnn3wSo9HImjVrGD58OKdOnQLMAdPNze2KIGA0Gtm+fTtubm707t0bQFYFhFXYzk81IWyQyWRi6tSpZGZmsmjRIpvbUrZivFBWBmyLVqtlxowZpKam8uGHH+Li4sLZs2c5fPgw9evXB6BVq1YkJSVdMaJ48uRJNm7cyEMPPQT81VsgRE2TngEhrmP16tXs3r2bJUuWXLUr3BZIGLBtFYcdLViwgIyMDLy8vFAUBU9PT/r168eXX35J3759KSgoYPz48ZSUlPDf//4XuHJVoLy8vPKUSltoXhW1i4QBIa5h586dvPXWW/znP/+hW7duapdzTREREfz8889qlyGqoCIYaDQa3N3diYmJYfjw4TRt2pTbbruNvLw83n77bVq3bl35eRWcnZ1Zv349W7ZsITIykujoaHQ6HQ0aNFDltYjaRU4tFOIqzpw5w6hRo+jatSuvvvqqTd+3ldML7d/evXtJT0+nS5cu1K1b95qfV1JSwo8//khCQgK7du2iuLiYVq1aER0dTXR0NPXq1bNi1cIeyBHGQtyk/Px8Ro4ciYuLC2vXrrX5C+xvv/3GE088wQcffCDjhQ6kqKiI3bt3k5CQwA8//EBpaSlt27ZFp9PRr1+/ylUI4djkCGMhboLJZGLy5MlkZ2ezfv16mw8CcOXphRIGHIenpyc6nQ6dTkdBQQE7d+4kISGBJUuWsGjRIu644w50Oh1RUVEEBgaqXa6wcRIGhLjMm2++yQ8//MDSpUsrZ/htnZ+fn4wXOjhvb28GDhzIwIEDMRgM7NixA71eT3x8PPHx8XTq1AmdTkefPn1kdVdclYQBIf60fft23nnnHV588UXuvvtutcupMhkvFJfz8/Nj0KBBDBo0iOzsbL777jv0ej2zZ89m7ty5dO3aFZ1OR69evfDx8VG7XGEjJAwIAZw+fZrp06fTr18/Ro0apXY51SZhQFxNQEAAQ4YMYciQIWRkZJCYmIher2fatGm4ublx1113odPp6NGjh13cEhM1RxoIhcMzGAyMGjUKd3d31qxZY5c/FN988002b97M1q1b1S5F2IGLFy+ybds29Ho9hw8fxt3dnR49eqDT6ejWrRvu7u5qlygsRBoIhaiCiobB3NzcyvPk7ZFWqyUzM5PCwkK7fQ3CekJDQ3nsscd47LHHSElJISEhAb1eT1xcHF5eXvTs2ROdTkfXrl1xc3NTu1xhBRIGhENbtWoVe/bsYdmyZXa9eYucXihuVlhYGKNGjWLUqFEkJSWh1+vR6/V8++23+Pj40Lt3b3Q6HZ07d8bFRS4ZtZX8zQqHlZiYyJo1a3jppZfo2rWr2uXckorxwqSkJAkD4qZFRETw1FNP8dRTT3H69OnKYPDVV1/h7+9PVFQU0dHRdOzY0aYO7BK3TsKAcEinTp1i+vTp6HQ6RowYoXY5t8zf3x8/Pz9pIhQW06RJE5577jmeffZZTpw4URkMPvvsMwIDA+nbty/R0dG0b99egkEtIGFAOByDwcDYsWMJDw9nypQpNr3VcHWEh4dLGBAWp9FoiIyMJDIykhdeeIE//vgDvV5PQkICmzZtIiQkhH79+hEdHU2bNm1qzfeTo5EwIByKyWRi4sSJ5OXlsXLlSjw9PdUuyWIiIiJk4yFRozQaDa1bt6Z169aMGTOG3377Db1ez9atW/nggw+oX79+5TkJLVq0kGBgRyQMCIeyYsUK9u7dy/LlywkLC1O7HIvSarXs27dP7TKEg3BycqJdu3a0a9eOcePGceDAAfR6PV988QXr169Hq9VWBoOmTZtKMLBxEgaEw0hISGDdunW8/PLLdO7cWe1yLE7GC4VanJyc6NixIx07dmT8+PHs27cPvV7Ppk2bWLNmDY0bN648crlRo0ZqlyuuQjYdEg7h+PHjjB49mt69ezNr1qxa+VvK77//zuOPPy6nFwqbUVZWxp49e0hISGDHjh0UFhbSrFmzymAQHh6udok3dukS/PwzHDkCv/8OJ05AURFoNODlBc2bQ5s20KIFdOoEAQFqV3wFOcJYiD/l5uYyYsQIfHx8WLNmDR4eHmqXVCNyc3Pp27cv8+fPp1+/fmqXI8QVSktL+eGHH0hISGDXrl0UFxfTqlWrylsJ9erVU7vEvygK7NsHGzfCV1+BwWB+H4CbG1RMT5hMUFJiDgYajTkI3H8/PPww3H67+X0qkzAgBFBeXs5LL73E0aNH2bBhQ63rE/i7qKgohg8fzujRo9UuRYhrKioq4vvvvychIYHvv/+e0tJS2rZtS3R0NP369aNu3brqFXfiBEyeDHv2mC/03t7g5wfOztf/OqMRcnPNqwaentCnD8yYASqffiphQAhg6dKlvP/++6xYsYJOnTqpXU6NGzVqFLfddhtTp05VuxQhqqSgoICdO3eSkJDA//73P8rLy7njjjvQ6XRERUURGBhonUKMRli7FhYvhqws82/5Xl7V/+1eUaCgAHJyIDQUJkyARx75azXByiQMCIe3detWJk2axNixYxk2bJja5VjF5MmTSUtLY/Xq1WqXIkS1GQwGduzYQUJCAj/99BMAHTt2rAwGNXb9KSyE//4XvvwSXFwgOPjWL94mE6Snm///o4/C3Lng6nrrtVaThAHh0I4fP84TTzxB3759mTFjRq1sGLyat956i08++QS9Xq92KULckpycHLZv345er+fAgQNoNBq6dOmCTqejd+/e+Pj4WOaJiorguedg61bzaoC3t2Uet0Jenrnn4KGHzKsOVj7fQU4tFA4rJyeHcePG0bhxYyZNmuQwQQDMuxBmZWXJeKGwe3Xq1GHIkCEMGTKEzMxMEhMT0ev1TJ8+HVdXV+666y769+9Pjx49bv7fuskEMTGg10NQkPlev6X5+ppvNWzaBP7+MGuW5Z/DAiQMiFqlvLycV155heLiYt5++22HO5e94sCi8+fP07x5c5WrEcIygoKCePjhh3n44YdJT09n27Zt6PV6Jk2ahLu7O927d0en09GtW7fqTQt98gls2WK+SNfkbqQ+PlBeDuvXQ8+eEB1dc891kyQMiFpl2bJl7N+/n5UrV9rWqJKVSBgQtV1ISAjDhg1j2LBhpKSkkJCQgF6vZ/z48Xh6etKzZ090Oh133XUXbm5u136gCxfM9/HBfLGuaX5+kJoK06ZBhw5grcbIKpIwIGqNb775hvfff5/Y2Fg6dOigdjmq8PPzw8/PT84oEA4hLCyMUaNGMWrUKJKSkiqDwdatW/Hx8aF3797odDo6d+6My9/v1c+bB2lpYK1xY40GQkLg9GlYtgymT7fO81aRNBCKWuHo0aOMHj0anU7HtGnTHKpP4O9GjRpFkyZNmDZtmtqlCKGK06dPVx65nJSUhJ+fH1FRUeh0Ojp06IBzcjL07Wu+QPv7V/lxC00mNmRm8ntREYeLizGUlzOtfn3uq1On6sVlZppHFnfvtsrqgDQQCoeRnZ1NTEwMTZs2ZeLEiQ4dBMB8RoEcZSwcWZMmTXjuued49tlnOXHiRGUw+PzzzwkMDGSCmxs9cnJwiYigOj8tcoxG3s7IoJ6rK83c3dlfWFj94urUMa9IbNkCTzxR/a+vIersgiCEhRiNRiZMmEBpaSkLFiy4/j1CByFHGQthptFoiIyM5MUXX2TLli2sX7+ee/v3J/z778kwGDhx6hRpFy9SWFTEDZfIgWAXF7Y2a8ZXTZsyJiTk5opydjbvYfDhh39tcWwDZGVA2LWlS5dy8OBBVq1aRWhoqNrl2AStVivjhUL8jUajoVWrVrRyckJ5/XWKg4LQlJRgMBjIysrC1dW1sufGw8PjqisGbk5OBFliJ0EfH3PvwKVL5j4CGyBhQNitr7/+mg8//JC4uDjuuOMOtcuxGdo/90KXiQIhruLIETQlJXjWr4+nkxOh9epRWFiIwWAgJyeHzMxM3Fxd8fP3x8/PD3d392rdSqgSDw/IyDCfhGgjYUBuEwi79McffzBnzhwGDRrEQw89pHY5NqVivFBuFQhxFUeOmBsH//wNXwN4e3lRv149IiMjiYiIwMvbm+ysLE6fPs3pU6e4dOkSJSUllqvBxcV8i+DIEcs95i2SlQFhd7KysoiJiaFZs2ZMmDDB4RsG/65iqVOaCIW4irQ08wZAV6EBfLy98fH2xlSvHgUFBRgMBjKzsriUkYG7uzv+f35/3RKNxhwGLl68tcexIAkDwq5UNAwajUZpGLwOmSgQ4hqKi6t0CJGTRoOvjw++Pj6YFIWC/HxyDQYyMjJITUtDadTo1mux5GrDLZIwIOzK4sWLOXToEG+++SYhNnKvzRbJRIEQ1+DkVO0ufieNBl9fX3x9fUm7eJHMjAyKjcZbr8XKhxZdj/QMCLvx5ZdfsnHjRmJjY2nXrp3a5dg0WRkQ4hpuYYk/98/Jg3r16+N5q+eeaDTmzYdshIQBYRcOHz7MvHnzGDx4MEOGDFG7HJtXMV5YUFCgdilC2JamTf+6Z18NxcXFpKak4O/vT+Ct7hxoMpnfmja9tcexINtZoxDiGjIzM4mNjaV58+bExcVJw2AVVEwUJCcny3ihEJdr2dK88Y/RCK6uVfoSY3k555OTcXN3Z7eHBwUZGVz68zbB7vx80v/8/48EBODj7HzjBywpAXd3cy02QsKAsGllZWWMHz+e8vJy4uPjpWGwiir2GkhKSpIwIMTlWrUyH1dcWFilcwkU4MKFC5hMJho2bMiYc+dILSur/Pj2vDy25+UBcI+fX9XCQFEReHtDs2Y3+yosTsKAsGmLFy/m999/56233qJu3bpql2M3ZLxQiGsICoKuXWHbtiqFgfSLFyksKCCiYUPcXF358laX9hXFHEQGDwYb+uVGegaEzdqyZQubNm1i/PjxtG3bVu1y7I40EQpxDcOGmacKbjDal5ubS2ZWFqGhoXhbqtmvqMh8i+CRRyzzeBYiYUDYpN9++4358+czZMgQ7r//frXLsUsyXijENfTtCw0bQlbWNT+lqLiYlNRU6vj7E2DJo4azs6FNG+jUyXKPaQESBoTNycjIIC4ujpYtWxIbG6t2OXZLVgaEuAY3NxgzxjxVcJWJG6PRSPL583i4u1Ovfn3LnU1gMPz13JY48MiCbKsa4fDKysqIi4sDID4+HtcqdvuKf5LxQiGu46GHQKcz/6ZuMlW+W1EUki9cQFEUwrVanCw1vWQ0msPAQw9BdLRlHtOCJAwIm7JgwQKOHDnCggULCA4OVrscu1YxXiirA0JchZMTzJwJ9eqZzyv4c9+BixcvUlRYSHh4OK6W2iHQZDKfQ9C4MUycaF6RsDESBoTN2Lx5M5s3b2bChAm0adNG7XLs3uVHGQshriI8HJYuBV9fSEsjJyeHrOxsQuvVw8tSDYMmE6SmQnAwrFgBluw/sCAJA8ImHDp0iPj4eB566CH+/e9/q11OrSDjhUJUQa9e8PrrlLi7Y0xKIsDPj4CAAMs8dlkZpKRASAi8/TbceadlHrcGSBgQqrt06RKxsbG0adOGsWPHql1OrSITBULcWGaHDkwMDSW7Th3qmUxoDIZqb1d8BUUx9yJcvGje5Gj9evPeBjZMwoBQVWlpKXFxcTg7O0vDYA2QiQIhrq+iafl3Pz8CfvgBzahRUFpq/o2+uqHAZILcXLhwwfx1L7wAX3wBdnCwmuxAKFSjKArx8fEcO3aM1atX3/rhH+IftFotP/30k9plCGGzFi1axOHDh3nrrbcIbtYM4uNh4EB45x344Qfzhd3VFTw8zG9ubn81ACqKOTgUFUFxsXliwMcH7rsPnn4aOndW98VVg4QBoZrNmzfz+eefM23aNFq1aqV2ObVSRERE5Xiht7e32uUIYVM+++wzPvnkEyZPnnzlLqe9e5vfjh+HTz6B776Dc+cgJ8fcB3B5GHBzM4eE2283b2b04IPQqJH1X8wtkjAgVHHw4EEWLFjAww8/zH333ad2ObXW5RMFLVq0ULkaIWzHoUOHePXVV3nggQcYPHjw1T8pMtI8CjhxovmWwdGjkJRkXgVwcjJvK9y4MTRvbj54yI5JGBBWl56eTlxcHG3btpWGwRp2+emFEgaEMLt06RJxcXG0bt2amJiYqn2Rn5952d+Olv6rQxoIhVWVlpYSGxuLi4sL8+fPx8VSm3qIq6oYL0xOTla7FCFsQkXTspOTkzQtX0Z+EgurURSF+fPnc+LECWkYtCIZLxTCTFEUXn31VY4dO8bbb79NUFCQ2iXZDFkZEFazadMmvvjiCyZNmiQNg1YkYUAIs08//ZQtW7YwYcIEWrdurXY5NkXCgLCKAwcOsGjRIh599FH+9a9/qV2OQwkPD5fbBMLh/fLLLyxYsIBHHnmEQYMGqV2OzZEwIGpcUVERU6ZMoX379owZM0btchzO5eOFQjii9PR0xo8fT7t27fjvf/+rdjk2SXoGRI1zd3dn2bJlBAUFScOgCi4/vVAmCoSjKS0tJSYmBldXV2lavg5ZGRA1zsnJiSZNmlCnTh21S3FI4eHhANI3IByOoijMnTuXkydPsnDhQmlavg4JA8IqNDZ4frej8PPzw9/fX84oEA5n48aNfPXVV0yePJmWLVuqXY5NkzAgLMpkMqldgrgKObBIOJr9+/ezaNEiHnvsMQYOHKh2OTZPbp6IW3LixAlSU1MJCAggMjISd3d3TCYTTk6SM22JjBcKR5Kamsr48ePp2LEjL730ktrl2AX5iS1u2owZM3jooYfo27cvw4cPp0ePHuzdu7cyCCi3ch64sCitVivjhcIhFBcXExMTg5eXF3PnzsXZ2VntkuyChAFxU7799lvi4+OZM2cOv/76K1OnTqVhw4bcddddLFu2DDD3CUggsA1arVbGC0WtpygKc+bM4ezZsyxcuFCalqtBbhOIm/LLL79wzz33VG4g1KpVK3r27En79u2JiYkhLS2NuXPnSuOgjagYL0xKSpJGKlFrffDBB/y///f/mDt3LpGRkWqXY1dkZUDcFKPRyA8//HDF++rWrcuYMWNYuHAhn332GYmJiSpVJ/6uYrxQmghFbbV3716WLl3KyJEj0el0apdjdyQMiJvy2GOPUbduXaZNm0ZWVlbl+318fBg+fDjOzs58+eWXKlYoLifjhaI2S0lJYcKECXTu3JkXX3xR7XLskoQBcVPCw8MZOHAgn3/+OatXr77iIhMYGMg999xDYWEh5eXlKlYpLicTBaI2KioqYty4cfj5+TF37lyZZLpJ0jMgqk1RFNzc3Jg/fz5Go5EVK1Zw+vRpBg0axMCBAzlz5gxffPEFQ4cOlU5eGyJ7DYjaRlEUZs6cSXJyMmvXrsXPz0/tkuyWhAFRbRqNhvLycpydnVm4cCFt2rTh3XffJTExkZEjRxIeHk6DBg2YMWOG2qWKy2i1Wv73v/+pXYYQFrN+/XoSEhKIj4/ntttuU7scuyZhQNwUZ2fnys2FHn/8cXr37k1aWhq//PILbdq0oUuXLmqXKP4mIiKC7Oxs8vPz8fHxUbscIW7Jjz/+yPLlyxk9ejRRUVFql2P3JAyI6zp//jwNGjS46n04JyenykDQqFEjGjVqRNeuXVWoUlSFVqsFzH+nMl4o7Nn58+eZNGkS3bp147nnnlO7nFpBOi3ENU2bNo0HHniA77//nrKysn98XFEUnJycOH36NEePHlWhQlEdMl4oaoPCwkLGjRtHQEAAs2bNkoZBC5H/iuKqEhISeOONN0hNTeWRRx5h06ZN5OfnX/E5Go2GkpIS5s+fz3333SeBwMbJeKGwd4qiMH36dNLS0li0aBG+vr5ql1RrSBgQ/1BSUkJiYiIPPPAAJ06cYPDgwYwcOZJFixZx8eLFKz7X3d2de++9l0cffZQWLVqoVLGoKhkvFPbs3XffZfv27cyaNYvGjRurXU6tIj0D4h/c3Ny49957yc3NxcPDg5UrV9KuXTv+85//cOzYMaZPn1651efXX39NVFQUgwYNUrlqURUyXijs1e7du1m5ciXPPPMMvXr1UrucWkfCgPgHjUZD9+7dK/9sMpl47rnnuOOOO7j33ns5ceIEy5YtY+/evcyaNYuff/5ZutPthIwXCnt07tw5Jk+eTM+ePXnqqafULqdWkjAgbkij0WAymejSpQunTp1iwIAB9O/fn/z8fFatWkWjRo3ULlFUkYwXCntTUFDAuHHjqFu3LjNnzpSGwRoi/1XFDWk0GpycnCgvL8fPz4/PPvuM/Px8Jk+ezDPPPKN2eaIaLh8vFMLWmUwmpkyZwqVLl1i8eDHe3t5ql1RrSRgQVebs7ExeXh7//ve/ad++PTNnzlS7JFFNEgaEPVm9ejW7d+9mzpw5lcdwi5ohYUBclaIo1/zYoEGD5L6znfL19aVOnToyUSBs3o4dO3jrrbd4/vnnr+hhEjVDwoD4hwsXLnDs2DFMJtM/Pubr68srr7yCu7u7CpUJS5CJAmHrTp8+zdSpU4mKiuKJJ55QuxyHIA2E4gqFhYX897//BeC9997Dzc3tH5+j0WisXZawIAkDwpbl5eURExND/fr1mT59uvy8sRIJA6LS5bt7rVu37qpBQNi/iIgIuc0jbJLJZGLSpElkZ2ezYcMGvLy81C7JYUgYEJUqdvdatGiR7O5Vi2m1WhkvFDZp1apV7Nmzh6VLl1aepSGsQ3oGBADff/+97O7lIComCqSJUNiSxMRE1qxZw4svvshdd92ldjkOR8KAICkpicmTJ9OjRw/Z3csBVISB5ORklSsRwuzkyZNMnz4dnU7HiBEj1C7HIUkYcHAVu3sFBQXJcaAOQsYLhS0xGAyMGzeO8PBwpkyZIg2DKpGeAQdmMpmYNm0a6enprF+/Xnb3ciByeqGwBSaTiYkTJ5KXl8fKlSvx9PRUuySHJWHAga1Zs4YdO3awePFiGjZsqHY5worCw8PlNoFQ3fLly9m7dy/Lly8nLCxM7XIcmqwJO6hdu3axatUqnn32WXr27Kl2OcLKZGVAqE2v17N+/XpefvllOnfurHY5Dk/CgAM6d+4cU6ZMoXfv3jz55JNqlyNUEBERQU5ODnl5eWqXIhzQ8ePHmTFjBvfccw+PPvqo2uUIJAw4nPz8fMaOHUtISIgcB+rAWrduzTPPPHPVLaeFqEk5OTnExMTQuHFjJk+eLA2DNkJ6BhyIyWRi6tSpZGZmsn79etndy4E1aNCA0aNHSxgUVlVeXs4rr7xCUVERb731lpxxYkMkDDiQiuNAX3vtNTkOVODiIt/+wrqWLl3K/v37WblyJfXq1VO7HHEZ+bXAQezcuVOOAxVCqOabb77hgw8+YNy4cXTo0EHtcsTfSBhwAGfOnGHKlClyHKgQQhVHjhxh9uzZ3HfffTz88MNqlyOuQqMoinKjTzIYDPj7+5Obm4ufn5816hIWkp+fz8iRI3FxcWHt2rXSJyCqrKSkBJPJJBvBiFuSlZXFiBEjCAoKYvXq1XIaqpVV9fotKwO1mMlkYvLkyWRnZ7No0SIJAqJa1q1bx+LFiykvL1e7FGGnjEYjEyZMoKysjIULF0oQsGESBmqxN998kx9++IE5c+ZUHk4jRIV33nmH48ePU15ejtFopLy8nMsXCsPCwvjoo484e/asekUKu7Z48WJ+/fVX4uPjCQkJUbsccR0SBmqp7du388477/DCCy9w9913q12OsEHjx49nx44dODs74+LigrOzMxqNhsLCQo4cOUJSUhKHDx/m4MGDapcq7NAXX3zBxo0biYuLo3379mqXI25AZotqodOnTzN9+nT69evHqFGj1C5H2Ki77rqLjz/+mAsXLvDLL79w/PhxLly4QEFBAc7OztSrV4+2bdvi6+urdqnCzvz+++/MmzeP+++/nyFDhqhdjqgCCQO1TMVxoGFhYUydOlV29xLXdPfddzNp0iQMBgNarZb77ruP2267jYYNGxIaGkpgYCDu7u7UqVNH7VKFHcnMzCQ2NpaWLVsSGxsrP4PshISBWqSiYTA3N1d2GBQ3pNVqCQkJYcuWLdSpUwdXV1dcXV3VLkvYsbKyMuLi4lAUhVdffVUaBu2IhIFaZNWqVezZs4dly5YRHh6udjnCxrVu3RqNRoOPj48ER2ERCxcu5I8//uCtt96ibt26apcjqkEaCGuJxMRE1qxZw4svvkjXrl3VLkfYgTZt2jB37lx8fHzULkXUAps3b+bTTz9l/Pjx3H777WqXI6pJwkAtcOrUKaZPn45Op2PEiBFqlyPshKurK//+97/59ddfMRqNapcj7NihQ4eIj4/nwQcfZPDgwWqXI26ChAE7ZzAYGDt2LOHh4UyZMkWadUS1xMbG8sQTT5CUlARAFTYkFeIKly5dIjY2ljZt2jBu3Di1yxE3SXoG7JjJZGLixInk5eWxcuVK2TZWVFuvXr1o1KhR5b8dRVH+ESiv9j4hAEpLS4mNjcXZ2Zn4+HhpQLVjEgbs2IoVK9i7dy/Lly8nLCxM7XKEHRo5cuQVf3ZyMi8W5uTkkJWVRUBAAAEBAWqUJmycoijMnz+f48ePs3r1agIDA9UuSdwCCQN2KiEhgXXr1vHyyy/TuXNntcsRdq6goIANGzag1+s5duwYpaWlBAQEEBISQo8ePRgzZgweHh5qlylsyCeffMIXX3zBtGnTaNWqldrliFskYcAOHT9+nBkzZjBgwAAee+wxtcsRdi41NZWXXnqJw4cP0759ex544AFCQkIoKyvjt99+Y+XKlVy8eJHFixerXaqwEb/88gsLFy5k6NCh3HfffWqXIyxAjjC2M7m5uYwYMQIfHx/WrFkjv62JW6IoCvPmzePdd99l5cqVtG/fnoCAAJydnSs/Z/v27QwaNIhLly5JX4rg4sWLjBgxgsaNG7NixQpcXOR3SlsmRxjXQuXl5UycOJGCggIWLlwoQUDcMo1Gw9tvv83UqVPp168fwcHBVwQBgHbt2uHh4SGnFwpKSkqIiYnBzc2N+fPnSxCoReRv0o4sX76cffv2sWLFCmkYFBbj7u5OXl7eP95fWlpKRkYGMTExtGnTRg4scnCKojB37lxOnTrFmjVrpLG0lpEwYCe2bt3Khg0bGDt2LJ06dVK7HFGLjB49mjfeeIODBw8yePBg/Pz8yMzM5MiRI+zatYukpCRmzJghW1w7uI8//pivv/6aWbNm0aJFC7XLERYmYcAOHD9+nJkzZzJw4EAeffRRtcsRtcz//d//4eHhwebNm3n++edJTU3FZDIRGhpKjx49eP311+nTp4/aZQoV/fzzzyxevJjhw4dzzz33qF2OqAHSQGjjcnJyGDFiBP7+/rzzzju4u7urXZKopVJSUkhPT6du3bqEhITIBjICME+bjBgxgsjISF5//fV/9JQI21bV67esDNiw8vJyXnnlFYqLi3n77bclCIgaFRYWdkUviqIolbsPyg6Ejqm4uJiYmBi8vLyYN2+eBIFaTMKADVu2bBn79+9n5cqV1KtXT+1yhIOREODYFEVh9uzZnDt3jjVr1uDv7692SaIGSRiwUd988w3vv/8+MTExdOjQQe1yhBAO5v333+fbb79l3rx5REZGql2OqGGyz4ANOnr0KLNnz+bee+/lkUceUbscIYSD+emnn1i2bBmjRo0iOjpa7XKEFUgYsDHZ2dnExMTQtGlTJk6cKMu0QgirunDhAq+88gpdunThhRdeULscYSUSBmyI0WhkwoQJlJaWsmDBAtzc3NQuSTiQsrIyMjIy1C5DqKioqIhx48bh5+fHnDlzKk+xFLWf9AzYkKVLl3Lw4EFWrlxJaGio2uUIBzN37lzOnDnD2rVr1S5FqEBRFGbMmMGFCxdYu3atjJE7GIl9NuLrr7/mww8/ZNy4cdx5551qlyMckFar5fz582qXIVSybt06tm3bxowZM7jtttvULkdYmYQBG/DHH38wZ84cBg0axEMPPaR2OcJBhYeHk5ubi8FgULsUYWU//vgjK1as4MknnyQqKkrtcoQKJAyoLCsri5iYGJo1a8aECROkYVCoJiIiAkBWBxxMUlISkyZNonv37jz77LNqlyNUImFARRUNg0ajURoGheq0Wi0gYcCRFBYWEhMTQ0BAALNmzZKGQQcmDYQqWrx4Mb/++itvvvkmISEhapcjHJy3tzeBgYEkJSWpXYqwApPJxLRp00hLS2PdunX4+PioXZJQkYQBlXz55Zds3LiRV155hfbt26tdjhCAeXUgOTlZ7TKEFbz77rt89913LF68mMaNG6tdjlCZrAmp4PDhw8ybN4/BgwczZMgQtcsRopJWq5WVAQewa9cuVq1axTPPPEPPnj3VLkfYAAkDVpaZmUlsbCzNmzcnLi5OGgaFTYmIiJAwUMudO3eOKVOm0LNnT5566im1yxE2QsKAFZWVlTF+/HjKy8uJj4+XhkFhc8LDwzEYDDJeWEsVFBQwduxYQkJCmDlzpjQMikryL8GKFi9ezO+//86CBQuoW7eu2uUI8Q8yXlh7KYqCq6srkZGRLFq0CG9vb7VLEjZEwoCVbNmyhU2bNhEXF0fbtm3VLkeIq6oYL5RbBbWPRqPBxcWFefPmVYY+ISpIGLCC3377jfnz5zNkyBBpGBQ2rWK8UFYGaie5LSCuRf5l1LCMjAzi4uJo2bIlsbGxapcjxA3JGQVCOB4JAzWorKyMuLg4AOLj43F1dVW5IiFuLCIiQsJALWAymdQuQdgR2XSoBi1YsIAjR47w1ltvERwcrHY5QlSJVqtl586dapchqunkyZOkpaVRp04dmjZtioeHByaTSW4NiCqRfyU1ZPPmzWzevJkJEyZw++23q12OEFWm1WplvNDOzJkzhwcffJCoqCiGDRtGjx492LNnT2UQUBRF5QqFrZMwUAMOHTpEfHw8Dz74IP/+97/VLkeIapEDi+xLYmIic+bMYebMmRw8eJBp06bRuHFj7r77bpYuXQqYJwkkEIjrkdsEFnbp0iViY2Np06YN48aNU7scIaqtYuwsKSmJ1q1bq1yNuJEDBw6g0+kYNGgQAK1ataJnz57ccccdxMXFkZqayvz582W3U3FdEgYsqLS0lLi4OJydnaVhUNgtLy8vGS+0I0ajkf/9738oilJ5wa9bty4vvfQSvr6+rFixgr59+xIdHa1ypcKWyW0CC1EUhfj4eI4dO8aCBQsIDAxUuyQhbpqMF9qPRx99lHr16jFlyhQyMzMr3+/t7c1jjz2Gm5sbX375pYoVCnsgYcBCNm/ezOeff86ECRNkaVXYPTmwyH6EhYXxr3/9iy+//JLVq1df8fcWEBDAgAEDKCgowGg0qlilsHUSBizg4MGDLFiwgIcffrjyvp0Q9kxWBuyDoii4ubkxd+5cdDodb7zxBvPmzeObb74BzCcUfvnll4SGhuLiIneFxbXJv45blJ6eXnnewNixY9UuRwiLuHy80M/PT+1yxDVoNBrKy8txdnZmwYIFtGnThjVr1rBt2zZGjRpFeHg4wcHBzJ07V+1ShY2TMHALSktLiY2NxcXFhfnz50vyFrXG5RMFbdq0UbkacT3Ozs6VmwuNGjWKXr16kZKSwi+//EKbNm3o0qWL2iUKOyBXr5ukKArz58/nxIkTrF69WhoGRa1y+V4DEgZsQ1JSEuHh4VfdUdDJyakyEDRq1IhGjRpx9913q1ClsFfSM3CTNm3axBdffMGkSZNo1aqV2uUIYVEyXmhbpk+fzv3338/u3bspKyv7x8cVRcHJyYkzZ85w9OhRFSoU9k7CwE04cOAAixYt4tFHH+Vf//qX2uUIUSPkwCLbkJiYyBtvvMGlS5d45JFH+Pjjj8nPz7/iczQaDSUlJbz66qvcd999HDlyRKVqhb2SMFBNFy9eZMKECbRv354xY8aoXY4QNUar1cp4ocpKSkpISEjg/vvv5/jx4wwZMoRRo0axcOFCLl68eMXnuru7M3DgQIYOHUrLli1VqljYK+kZqIaSkhJiY2Nxc3OThkFR68nphepzc3PjvvvuIycnBw8PD9544w3atWvH888/z7Fjx5g+fTrNmzcH4JtvviEqKkrGm8VNkatZFSmKwrx58zh58iRr1qwhICBA7ZKEqFEyXqg+jUZDt27dKv9sMpl49tlnad++Pffeey8nTpzg9ddf5+eff2bGjBns3bsXHx8fFSsW9krCQBVt3LiRr776ilmzZtGiRQu1yxGixsl4oe2p2FegS5cunD59mv79+9O/f3/y8/N54403aNKkidolCjslPQNVsH//fhYtWsSwYcO455571C5HCKuoGC+UvgHbodFocHZ2pry8HF9fXz7//HPy8/OZOHEizz33nNrlCTsmYeAG0tLSGD9+PB06dJCGQeFQKsYLk5OT1S5F/I2zszN5eXkMHjyYtm3bMnv2bLVLEnZOwsB1lJSUEBMTg6enJ/PmzcPZ2VntkoSwKjmwSF1FRUWAuVfg7zQaDffeey979uyxdlmiFpIwcA2KojBnzhzOnDnDokWLqFOnjtolCWF1steAesrKynjhhReYM2cOGo3mHx/38fHhlVdewcPDQ4XqRG0jYeAaPvzwQ7755humTp1KZGSk2uUIoYrw8HAJAypZsGABR44cYdCgQVcNA8A13y9EdUkYuIp9+/axZMkSRowYQf/+/dUuRwjVREREYDAYyM3NVbsUh7J582Y2b97MhAkTuP3229UuRzgACQN/k5KSwoQJE+jYsSMvvvii2uUIoarLDywS1vHrr78SHx/PQw89xL///W+1yxEOQsLAZYqLi4mJicHb21saBoVAxgutLT09nbi4OG6//XbGjh2rdjnCgcimQ39SFIXZs2eTlJTEu+++i7+/v9olCaE6Ly8vgoKCZLzQCkpLS4mNjcXZ2ZlXX30VV1dXtUsSDqT2hIHCQjh/HoqLQVHA3R20Wqji1pzvv/8+3377LfPmzaNZs2Y1XKwQ9kMOLKp5iqIwf/58Tpw4werVqwkMDFS7JOFg7DcMlJbC9u3w449w4ACcPGkOAhXzuBqNORDcdhu0bw933QU6HVxlDGfv3r0sW7aMUaNGER0dbd3XIYSNi4iI4OTJk2qXUatt2rSJL774ghkzZtCqVSu1yxEOyP7CQHo6bNwIH34IZ8+aL/7OzuaLvLc3OP3ZBmEymQPDb7/BwYOwbh2Eh8PQofDII9CgAfBXw2CXLl144YUXVHtZQtiq8PBwduzYoXYZtdaBAwdYtGgRjz76KP/617/ULkc4KPsJA4oCn30Gs2dDaiq4uEBgoPm3/2vx9ISKe/+lpZCWBgsWwLvvwvjxFN1/P+PGjcPX15c5c+bg5CT9lEL83eXjhdJLY1kXL15k/Pjx3HHHHbLduVCVfYSBS5dg8mT45htzKKhXz7waUB1ubhASYl4xuHQJZfx4js6fT4mXF4s++ECOaBXiGi4/vVBm3i2nYrtzd3d35s2bh4uLffw4FrWT7f8qfP48DBsGW7aYbwPcTBC4nJMThIaSA0QcO8aaoiKaXmXfbyGEWXh4OCB7DViSoijMnTuX06dPs2jRIgICAtQuSTg42w4DqakwcqT5vn9oaJUnA24kv6CAtJwcTKGh1Ll0yfwcp09b5LGFqG0qxgslDFjORx99xNdff82UKVNo3ry52uUIYcNhoLQUnn8ejhwxBwELzdyWlpZy4cIFvH18CK5XD+rXNzciPv005OVZ5DmEqG3kwCLL2bdvH6+99hrDhw9nwIABapcjBGDLYWDVKvjpJ6hb12JBoNxk4nxyMs7OzjRo0AANmG85hIbC4cOweLFFnkeI2kb2GrCMy7c7/7//+z+1yxGikm2Ggd9+gxUrzJMC15sWqAYFSE1JoaysDG14OM6XTw64uppvQaxbZ963QAhxBa1Wy/nz51EURe1S7JZsdy5smW2GgQULIDcXgoIs9pCZmZkY8vIICwvD/WoBw98fiopgzhzzxIIQopJWqyUvLw+DwaB2KXZJURRmzZpFUlISixYtkhFNYXNsb5bl+HH4/nvw8zPvIlgFp0tKePPSJY4UF5NpNOLh5EQTd3dGBAbS09eX/Px80tPTCQ4Oxs/X9+oPotFAQAD8/jvs2wedO1vwRQlh32S88Na89957bN26VbY7FzbL9lYGPvnEfM7AtS7aV5FaVkahycS9/v7EhIbyVHAwAGOTk9l46RIXLlzAx8eHunXrXv+BPD2hpMS8w6EQopKMF968n376iddff53HH39ctjsXNsu2VgbKy+HTT819AlVcFQDo5uNDt7+NHT4SEMBjZ86wJjWV5d7efzUMXo9GA15e8PXXMH26xUYZhbB3Ml54cy5cuMArr7xC165d+c9//qN2OUJck22tDJw9C1lZ5gvyLdJoNHiXlJBnMv2zYfB6vL2hoACOHbvlGoSoTSIiImSioBoKCwsZN24c/v7+zJ49W7Y7FzbNtv51HjliPnnwKicLVkWRyUSO0UhyaSlvnTvHT8XF3O3vf/WGwWtxc4OyMnMtQohKFRMF4sYURWHGjBmkpKSwaNEi2e5c2Dzbuk1w7Jh5qf4mR25eu3iRzTk5mMrLKSsro7e3N1P+bHyqsorbE7IyIMQVtFot3333HYqioKnGbTxHtHbtWhITE4mPj6dJkyZqlyPEDdlWGMjNvaUvHxYYSE9PT35PTmafuzvuXl4Yb2ZMUFEgJ+eWahGitomIiCAvL4/c3Fzq1Kmjdjk268cff+SNN97gqaeeIioqSu1yhKgS27pNYDSaTxW8SY3c3ens5cXdJhOTPD3JLizkpaSk6m+UotGYpwqEEJW0Wi0gEwXXk5SUxMSJE+nevTvPPPOM2uUIUWW2FQZcXKo1RXDVh3B1pWGjRri6uNCutJSDubn8cOYMWdnZGI3Gqj2Iolhs50MhagsZL7y+wsJCYmJiCAoKYtasWdIwKOyKbd0mCAy85TDgpNHg7+eHv58fQZ6euKalUQxcTEvjYloaXt7e+Pv54evre+3tQDUacy1CiEpeXl4EBwdLGLgKk8nE1KlTSUtLY/369fjIWLKwM7YVBpo3N/9WXl5erSbCLKORQJcrX4pRUfh/eXl4ubhwd6NGuCmKeTvV3FxSUlPRpKXh/Wcw8PH1/Wv0sOKWQosWlnpVQtQacmDR1a1Zs4YdO3awePFiGjVqpHY5QlSbbYWBli3NuwAWF5vn/atobloaBeXl3OHlRYirK5lGI/8vN5ezpaX8NyQErz8v9AF16hBQpw5lRiN5BgMGg4ELKSloNBp8fXzw8/PDx9UVJ1dXcy1CiCtotVpOnjypdhk2ZdeuXaxatYpnn32Wnj17ql2OEDfFtsJARIT5yOLU1GqFAZ2fH5/n5PBJdja55eV4OzvTwsODl0JC6HmVbY1dXVwIDAwkMDCQsrIyDAYDuQYDyRcuUKe8HGdfX45fvEiX0lLc3Nws+QqFsGtarZbt27fLeOGfzp49y+TJk+nduzdPPvmk2uUIcdNsKww4OcHDD5tPLTSZzH+uAp2fH7qb3NTD1dWVoKAggoKCKC0pwZiUxNa6dZkzaRI+Pj707t0bnU5H586dcXGxrf9cQlhbREQE+fn5Ml4I5OfnM27cOOrVq8fMmTOlYVDYNdu7uj34IKxcCXl55mOFrcitrAy3gADu//BD2vn6kpCQwNatW/nqq6/w9/enb9++REdH06FDB/nGFw6pYrwwKSnJocOAyWRiypQpZGZmsn79erwssIW6EGqyvTDQsCH07QtbtphPLrTWRbdio6Hu3aFtW5poNDz77LM888wzHD9+HL1ej16vZ/PmzQQFBdGvXz90Oh233367BAPhMCrGC5OTk2nbtq3K1ajnrbfe4vvvv2fp0qWVxzsLYc9sLwwAxMbC7t2QkQEhIdZ5zqwsc/iYPPmK8UaNRkPz5s1p3rw5L774IocPH0av15OQkMDHH39MaGgo0dHR6HQ6WrZsKfdRRa1WMV7oyBMF27dvZ/Xq1bzwwgvcfffdapcjhEXYZhho2hRiYswX5qIi84RBTSopMU8wxMZC+/bX/DSNRkObNm1o06YNL7/8MgcPHiQhIYGvv/6a9957jwYNGtC/f3+io6Np2rSpBANRK0VERDjsXgOnT59m+vTp9O3bl8cff1ztcoSwGI1Shb16DQYD/v7+5ObmWu/0LaMRRo6E7dvNqwM11dVvNEJaGnTsCJ98clMnJpaXl7N//362bt3Kd999h8FgoHHjxkRHR9O/f38aNmxYA4ULoY6ZM2dy8uRJ1q9fr3YpVmUwGBg1ahTu7u6sWbNG+gSEXajq9dt2wwCYl+5HjoSffzaPHFp6i+CyMrh40bynwAcfQP36FnjIMn766Sf0ej07duygsLCQyMhIdDodOp2OsLAwCxQuhHrWrl3L2rVr+e677xxm9ctkMvHyyy/z+++/s2HDBho0aKB2SUJUSVWv37Z5m6BCYCCsXQtPPw3/+5/5nr6f3y1vWQyYpxVyc6FtW1izxiJBAMyjit27d6d79+6UlJTw448/otfrefvtt1m+fDmtW7dGp9MRHR1NiLX6IYSwIK1W63DjhStXrmTPnj0sW7ZMgoColWy/DT44GNatgyefNP8mn5Ji/t+bZTSaNzUqKjLvafDhh/Bnh7Slubu706dPH+bNm0dCQgJz584lODiY5cuXM3DgQJ5++mk2btxIVlZWjTy/EDXh8vFCR5CQkMC7777L//3f/9G1a1e1yxGiRtj2bYK/27EDpkyBU6fMf65Tx9xcWJWVgqIi8+igyQRaLUyfDvfcY5lVhmrKz89nx44d6PV6fvrpJxRFoWPHjuh0OqKiotT9byzEDRQVFdGjRw9mzpzJwIED1S6nRp04cYInnniCXr16MXv2bIe5LSJqj9rRM3A1eXnw5Zfw/vvw++9QWmp+v7u7+c3JyXyBN5n+mhIA8/HIzZvDY4/B4MEQEKDaS7hcbm4u27dvR6/Xs3//fjQaDV27dkWn09GrVy85/UzYpAEDBjB48GCee+45tUupMbm5uYwYMQIfHx/WrFmDx000FwuhttobBiqYTLBvH/z4I/z2Gxw8aO4BUBTzm5OTucegbVvzW+fO5g2FbHiDoMzMTBITE9m6dSu//vorbm5u3H333eh0Onr06IFnTY9YClFFzzzzDMHBwcydO1ftUmpEeXk5L730EkePHmXDhg3S+CvsVu1oILweJyfo0sX8BuZwkJHx10qAu7t5AsGGL/5/FxQUxMMPP8zDDz/MxYsXSUhIQK/XM3HiRDw8POjZsyc6nY67775bDlASqgoPD6/VpxcuX76cffv2sWLFCgkCwiHYbxj4Oycn6+1WaAWhoaEMHz6c4cOHk5ycXBkMYmJi8Pb2vuIAJVdXV7XLFQ4mIiKi1p5e+O2337JhwwbGjh1Lp06d1C5HCKuoPWGgFgsPD+eJJ57giSee4MyZM5UHKH399df4+fkRFRWFTqejY8eOck6CsIqK0wtzcnIIsJH+G0s4duxYZWPko48+qnY5QliN/fYMODhFUThx4kTlAUopKSkEBgbSr18/oqOjadeunQQDUWOOHz/OsGHDWLNmTa05sCg7O5sRI0YQEBDA6tWrcbf0JmdCqKD29ww4OI1GQ2RkJJGRkbzwwgv88ccflQcobdy4kZCQEPr160f//v1p1apVrVvKFeqq2Gvg/PnztSIMGI1GXnnlFUpKSli4cKEEAeFwJAzUAhqNhtatW9O6dWvGjBnDoUOH0Ov1fPvtt3zwwQeEhYVVbofcrFkzCQbilnl6elK3bt1ac2DR0qVL+eWXX1i5ciWhoaFqlyOE1UkYqGWcnJxo37497du3Z9y4cezfv5+EhAQ2b97M2rVradiwYeXJio0bN1a7XGHHtFptrdiF8Ouvv+bDDz8kLi6OO++8U+1yhFCF9Aw4iLKyMvbu3Yter+e7776jsLCQZs2aER0djU6nI7yGtmQWtdesWbM4fvw4GzZsULuUm/bHH3/w1FNPMWDAAKZMmSKrZqLWqf2bDombVlpaWnmA0q5duyguLqZVq1aVByjJMqmoCns/vTArK4vhw4dTt25d3n77bdm7Q9RK0kAorsnNzY3evXvTu3dvioqK2L17NwkJCbzxxhssWbKEdu3a0b9/f/r27UtQUJDa5QobZc/jhWVlZYwfPx6j0ciCBQskCAiHJ2HAwXl6elY2FxYUFLBz5062bt3KokWLWLhwIR06dCA6OpqoqCiHOa5WVM3lEwX2FgZee+01fvvtN9588005SlwI7OEIY2E13t7eDBw4kKVLl1Zug6zRaJg/fz79+/fnpZde4quvviI/P1/tUoUNqOgzsbeJgi1btrBx40bi4uJo166d2uUIYRNkZUBclb+/P4MHD2bw4MFkZWWRmJiIXq9n+vTpuLq6XnGAkpeX1009h8lkoqysTGa67VTFeKE9TRT89ttvzJ8/nyFDhjBkyBC1yxHCZkgDoaiW9PR0tm3bxtatWzl8+DDu7u707NmT6OhounXrVq0L+4kTJ1iyZAmpqalERUXx5JNPysmMdsaeTi/MyMhg+PDhhIWFsWrVKukTEA5BGghFjQgJCWHYsGEMGzaMCxcuVB6gFBcXh5eXV+UBSl26dLnhAUrZ2dkEBwfj6urKSy+9BMDzzz+Ps7OzNV6KsACtVsvx48fVLuOGSktLiYuLQ6PREB8fL0FAiL+RngFx0xo0aMDjjz/OBx98wKeffsqIESP4448/ePnll+nfvz+7du3iegtPnTt3ZsaMGfTt2xd/f3+6du0qQcDOREREkJSUdN2/Z1uwcOFCjhw5woIFCwgODla7HCFsjqwMCIto2LAhTz/9NE899RQnT54kISGBZs2aXfdrSktLcXNzY926dXTo0IGmTZtaqVphKVqtloKCApseL9y8eTObN29m6tSptGnTRu1yhLBJEgaERWk0Gpo1a3bDIABULtV+/fXXLFy48Ib9KCdPniQxMZEff/yRQYMG8cADD1ikZnHzbH288NdffyU+Pp6HH36YQYMGqV2OEDZLbhMIVZSXlwPmMS9nZ2e6d+9+3SOX9+/fz4ABA3jzzTcpLy9nzJgxPPvssxQVFVmrZHEVtjxemJ6eTmxsLG3btmXs2LFqlyOETZOVAaGqN998k549e9KoUaN/fExRFDQaDRkZGUyePJnw8HC2bNmCv78/e/fupW/fvjzyyCNERUVZv3AB2O54YWlpKbGxsbi4uDB//nxcXORHnRDXIysDwuoURalsFExMTOT++++/6i0Ck8kEwKeffkpaWhovv/wy/v7+ALRo0YKWLVvy66+/Wq9wcVVardamVgYURWH+/PmcOHGChQsXEhgYqHZJQtg8icvCqsrKyoiPj8fHxwcAX19fevTo8Y+DbkwmU+Vtg08++YRWrVrRtWvXyo8bDAZcXFy4ePEi8NcqgrA+Wxsv3LRpE1988QUzZsygVatWapcjhF2QlQFhVU5OTvj4+DB79mz++9//kpWVxWeffUZycjJAZQ+Ak5MTGo2G1NRUUlNT6dixI/Xq1at8nMzMTA4ePEh0dLQqr0P8xZbGCw8cOMCiRYsYNmwY//rXv9QuRwi7IWFAWJWzszNjxozh0qVLnD17lkmTJrFkyRKeeOIJjEYja9euZeTIkZw+fRqA06dP4+bmdsWxykajkR07duDs7Ezfvn0BZFVARRXjhdnZ2arWkZaWxvjx47njjjsYM2aMqrUIYW8kDAjVREREMGvWLC5evMj777+Pi4sLJ0+e5Ndff61cBWjVqhVJSUlX7Bh36tQpPvroIx588EHgr94CoY6K8cKK1R01lJSUEBMTg4eHB/PmzZPNq4SoJgkDwiZUHCO7aNEiEhIS8PLyQlGUyi2Ov/zyS7Kzs7lw4QITJ06ksLCwclzs8lWB8vJyzp8/T2FhoSqvwxFVhAG1JgoURWHOnDmcOXOGhQsX2uR+B0LYOmkgFDanIhhoNBrc3d2Ji4vjscceo1mzZjRu3Jjs7Gzeeustbr/99srPq+Ds7MzcuXM5dOgQ3bt3p3///tU+QElUj4eHByEhIapNFHz44Yd88803zJkzh+bNm6tSgxD2TsKAsHmdO3fmxIkT7N69m4yMDO66664rmgn/bsqUKZUnK1YcoNSrVy+io6Pp2rWrHFJTA8LDw1UJA3v37mXJkiWMGDGC/v37W/35hagt5AhjUaslJSWh1+vR6/WcPn0aX19f+vTpg06no1OnTnJv2UJmz57N0aNHee+996z2nCkpKYwYMYIWLVqwbNky+bsU4iqqev2WMCAcxqlTpyqDwfnz56lTpw59+/ZFp9Nxxx13XHc7ZHF969atY82aNezYscMqkx3FxcWMHj2agoICNmzYID+XhLiGql6/5TaBcBi33XYbzz//PM899xxHjx4lISEBvV7Pp59+SnBwMP369UOn03H77bfLqGI1XT5eWNM7/imKwsyZM0lKSmLt2rUSBISwAAkDwuFoNBpatmxJy5YtefHFF/n999/R6/Vs27aNjz76iHr16qHT6dDpdDRv3lyCQRVEREQA5vHCmg4DGzZsQK/XM3/+fDn2WggLkTAgHJqTkxNt27atPNnul19+Qa/X88UXX7B+/Xq0Wm1lMLjtttvULtdmVZxemJSURNu2bWvsefbs2cPy5ct54okn6NevX409jxCORnoGhLgKo9HIvn37SEhIYPv27eTn59OkSZPKYFDxm7D4y8CBA7n33nv5z3/+UyOPn5yczMiRI2nTpg1LliyRHg8hqkAaCIWwkNLSUvbs2UNCQgI7d+6ksLCQFi1aoNPp6NevH2FhYWqXaBOeeeYZgoODmTt3rsUfu7CwkCeeeILS0lLWr1+Pr6+vxZ9DiNpIGgiFsBA3Nzd69uxJz549KS4u5ocffkCv17Nq1SqWLVvG7bffXhkM6tatq3a5qomIiODo0aMWf1xFUZgxYwapqamsXbtWgoAQNUDCgBDV4OHhQd++fenbty+FhYXs2rULvV7P0qVLWbx4MXfccQc6nY6+ffs63La4ERER6PV6ix8nvXbtWhITE1mwYAFNmjSx2OMKIf4iYUCIm+Tl5cWAAQMYMGAABoOBHTt2kJCQQHx8PPHx8XTq1In+/fvTu3dvh7i9Fh4eTmFhoUXHC3/44QfeeOMNnn76afr06WORxxRC/JP0DAhhYdnZ2Xz33Xds3bqVAwcO4OzszF133UV0dDS9e/fGy8tL7RJrxMmTJxk6dCjvvPMO7dq1u+XHS0pKYuTIkdx5550sXLhQGgaFuAnSQCiEDbh06RKJiYno9XoOHTqEm5sb3bt3R6fT0b17dzw8PNQu0WKKi4vp3r0706dP5957772lxyooKODxxx/HZDKxbt06fHx8LFSlEI5FGgiFsAF169Zl6NChDB06lNTUVBISEkhISGDChAl4enrSs2dP+vfvXysOUKo4vfBWjzI2mUxMmzaN9PR01q9fL0FACCuQMCCEldSvX5+RI0cycuRIkpKSKk9W3Lp1Kz4+PvTp04fo6Gg6d+6Mi4t9fmtqtdpbPr3wnXfeYefOnSxevJiGDRtaqDIhxPXIbQIhVHb69OnKA5SSkpLw9/evPEDpzjvvtI975fn5cOQIW+bPR3P0KIO6doWSEnB1hcBAaNECWraEVq3Mf76GXbt2MXbsWJ577jmeeuopK74AIWon6RkQws4oisLx48fZunUrCQkJpKamEhQUdMUBSjYVDBQFfvkFNm2CLVsgL4/CvDyKCgsJDAoyjxcqivlNowFnZ/D0hKgoeOQR6NXL/L4/nT17lpEjR9KlSxdeffVV23qtQtgpCQNC2DFFUfj9998rewwuXbpEaGgo0dHR6HQ6WrZsqe4BSr/8ArNmwYEDUFwMXl7g7Y2hpITkCxeIbNbsylsdigJlZVBYCAUF4OICTZvChAmg05FfUMDIkSNxcXFh7dq1tXbiQghrkzAgRC1hMpk4ePAger2exMREsrOzCQ8Pv+IAJasFg+JiWLECVq2CvDwICDAHgT+fv7ikhNOnT9OoUSO8PD2v/zhZWeDqijJkCJMKC/nf8eOVh0MJISxDwoAQtVB5eTk///wzer2e7du3k5eXR+PGjSuDQY023KWlwdNPw88/g4eH+d7/30KISVE4evQoYWFh1PH3v/FjGgwUpqVx0mTCtHIl7UeMqKHihXBMEgaEqOXKysoqD1DasWMHhYWFREZGVgYDix6glJICI0bA4cNQty64u1/zU0+cOIF/nTqEVOGcBkNeHinnzxPh6opXkyawZg3ccYfl6hbCwUkYEMKBlJSUVB6gtHv3bkpKSmjdujX9+/enX79+hISE3PyDZ2fDsGHmPoHQUPOEwHWcO3cOZxcXwhs0uO7nFZeUcPbsWXx8fGhQvz6a1FQIC4MPP4TIyJuvVwhRScKAEA6qsLCQ3bt3o9fr+fHHHzEajbRv377yAKVqnRugKBAbC++9ByEhUIWNkVJTUykqLqZJ48bX/Jzy8nLOnDmDxsmJxo0amScHTCbzCkTXrrBxY5WeSwhxfRIGhBDk5eWxc+dO9Ho9e/bsAaBjx47odDqioqJu/P2s15v7BNzdoYrf+xmZmWRkZNC8eXOu1taoAOeTkigqLqZx48a4Xb7SUNFYOGkSvPBC1V6kEOKaJAwIIa6Qk5PD9u3bSUhI4Oeff8bJyYmuXbvSv39/evXqhbe395VfkJcHOh2cO2devq8iQ14eycnJ/xwv/FN6ejqZmZloIyLw+ftzAmRkmMPHl1/K7QIhbpGcTSCEuEKdOnUYMmQIQ4YMISMjo/IApalTp+Lm5ka3bt2Ijo6mR48eeHp6mi/G586ZGwaroeKMhdKysn+EAYPBQEZmJqGhoVcPAgBBQXDhAnzwAUyffjMvVQhRTbIyIISDS0tLY9u2bej1ev744w88PDzo1aMHY7/7jsBz59DcoBHwcn8UFfFlTg7fXbxIjqsrQW5u3O7pyX9CQggxmTh79iy+vr6ENWhw1VsIlTIywNcXvv8eqjKiKIS4KrlNIISotuTkZPR6Pac/+ogXdu6k2NkZtzp18Pfzw9vb+4abG8UlJ/NrURHtS0po6etLubc3H2dlUWgyMUOjobGbG40aNcLpRpskGY2Qng4LFsBjj1nwFQrhWOQ2gRCi2sLDwxk9ejQUFmI8eJBsDw9y8/LIzc3F2dkZP19f/Pz88PL2vupv9sMDA5nj6UlKUpJ5vDA4mH5+fgw5coRPnZxY0qTJjYMAmLcrVhTYs0fCgBBWIGFACPFPv/+Oi5MTdUNCCA4JoaS4GIPBQK7BQHZODi7Ozvj5+eHn54enl1dlMGj755kCbm5uFBUXA+CRnU2YopDl4XHl5MCNuLmZzz6oOOhICFFjJAwIIa5UcRrhn7sMagAPDw88PDyoGxJCcVERuQYDeQYDWdnZuLq4mIOBvz8eHh5oAFc3N3INBnJzc8nIzKTYzY2G19m18Ko8PODiRbh0ybzHgRCixkgYEEJcKT/fPOt/lYu3BvD09MTT05PQ0FCKCgvNKwa5uWRmZeHm6oqfnx9Ozs4YjUZSUlLY7+FBdkkJuur2G7m5QU4OnD8vYUCIGiZhQAhxpeJi8+qAs/N1P00DeHl54eXlRWi9ehQWFFTeRjCWlVFaWorB25t3yspo6+nJvdWdCnByMtdRUnLzr0UIUSUSBoQQV6q4P3/jQaO/vgTw9vbG29sbU716FBQUkFVezvT0dHw0Gl5t0KBqjYPXq0cIUWOc1C5ACGFjPD3NF2CT6aa+3EmjQePpySuZmeQrCq9HRFC3Oo2DFUwm8+qAh8dN1SGEqDoJA0KIK3l7Q716N708X2oy8d/kZJJKS1kSHk6T6jYOVigpMfctXOfAIyGEZUgYEEL80513Qmlptb/MpChMuHCBQ4WFvBoeXjlqeFOKikCrhTp1bv4xhBBVIj0DQoh/at3afKugmjP+r6Wnsys/n54+PuSWl/NNbu4VHx9YnSbCsjLo0KHqny+EuGkSBoQQ/9S9u/lefX6++YyAKjr250ZDu/Lz2ZWf/4+PVzkMlJaa+wW6davycwshbp6EASHEP7VqBV27wo4d1QoDbzVsaJnnz8mBBg1gwADLPJ4Q4rqkZ0AIcXXDhplvEVh7zt9kMq8MPPqoTBIIYSUSBoQQV6fTQZs25uOEq7HnwC1LTzdPMwwdar3nFMLBSRgQQlyduzvMm2ceNczOts5zFhSY//eVVyAszDrPKYSQMCCEuI4OHeCZZ8xjfkVFNftcZWXm0KHTwUMP1exzCSGuIGFACHF9L70E0dGQmWk+t6AmGI3mEwpbtzavRjjJjyYhrEm+44QQ1+fhAStWQJ8+5v6BiqV8SykpgbQ0aNEC1qyB0FDLPr4Q4oYkDAghbszXF1avhsGDIS/PfPG+ybMLKimKOVxkZEDnzvDBB2Cp0UQhRLVIGBBCVI23N7zxBrz2GtStCykp5nv81Q0FigIGA1y4YG5SfOUV+OQTaRgUQkWy6ZAQouqcnMzNfd26weLF8OWXkJoKzs7msODhAS4u/9zC2Gg09xsUFpr3EPD2hnvugXHjzOOLQghVaRTlxgPEBoMBf39/cnNz8fPzs0ZdQgh7kJ4OmzfDxx/D+fPmiYOKHyl/P9fAwwOCguCBB8yB4rbb1KlZCAdS1eu3hAEhxK1TFLh0CY4cMb9lZZlXAFxdzf0GLVqY38LDZVJACCuq6vVbbhMIIW6dRgMhIea3Xr3UrkYIUU0S0YUQQggHJ2FACCGEcHASBoQQQggHJ2FACCGEcHASBoQQQggHJ2FACCGEcHASBoQQQggHJ2FACCGEcHASBoQQQggHJ2FACCGEcHASBoQQQggHJ2FACCGEcHBVOqio4mBDg8FQo8UIIYQQwnIqrts3OqC4SmEgLy8PAK1We4tlCSGEEMLa8vLy8Pf3v+bHNcqN4gJgMplISUnB19cXjUZj0QKFEEIIUTMURSEvL4+wsDCcnK7dGVClMCCEEEKI2ksaCIUQQggHJ2FACCGEcHASBoQQQggHJ2FACCGEcHASBoQQQggHJ2FACCGEcHASBoQQQggH9/8BPDCsQGWhi9MAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWIUlEQVR4nO3deXib5Zn+/a9kW97XeIttxUnIHrKvZLWlQAsUGOZHoUxoA7SFlqWUrYW2wADt0HamZTq8XaZAO11ogdJCWVoKkZw9IRskZCEJZLPj2I6dxPIuy3reP55IjWM7sRPbkq3zcxw+QixZugUkOnU/131dFsMwDERERCRiWUO9ABEREQkthQEREZEIpzAgIiIS4RQGREREIpzCgIiISIRTGBAREYlwCgMiIiIRLro7d/L7/ZSXl5OcnIzFYunrNYmIiEgvMAyDuro68vLysFq7/vzfrTBQXl6O3W7vtcWJiIhI/yktLaWgoKDL27sVBpKTk4MPlpKS0jsrExERkT7l8Xiw2+3B9/GudCsMBC4NpKSkKAyIiIgMMOe6xK8CQhERkQinMCAiIhLhFAZEREQinMKAiIhIhFMYEBERiXAKAyIiIhFOYUBERCTCKQyIiIhEOIUBERGRCKcwICIiEuEUBkRERCJct2YTiIiIhC2/H44cgbo68PkgJgaGDIGsLDhHT34xKQyIiMjAs3s3/OMfsH07fPABnDwJbW1gGGYAiImBnByYPh2mToUrr4Tc3BAvOnxZDMMwznUnj8dDamoqtbW1mlooIiKh4fPB22/DH/4AGzZAU5P5/bg48ysqygwChgGtrdDcDF6veZ+UFLjiCrjxRpg9O3SvoZ919/1bYUBERMLfvn3w7W/D2rXmZYGUFEhK6t5lAL8famuhocEMDddfDw8/DOnpfb/uEOvu+7cKCEVEJHz5/fD883DNNbBqFaSlQX4+JCd3vx7AajXf+PPzwWaD3/7WvGxQUtKnSx9IFAZERCQ8+Xzw2GPmV3095OVBfPz5P57FYu4o5ObCgQPw5S/DSy/13noHMIUBEREJP36/GQKefx4SEiA72/yE3xuio81g0dJiXi54+eXeedwBTGFARETCzy9/Cb/5jVkX0Be1ahaLGTBaW+Fb34J163r/OQYQhQEREQkvu3bB00+bpwP6smg9EAgaGszixPr6vnuuMKcwICIi4cPrNT+p19ZCZmbfP18gEOzeDT/6Ud8/X5hSGBARkfDx2muwcaMZBPqre2BMDCQmmqcM9u7tn+cMMwoDIiISHgwDfv9785/j4rr9Y41+P/977Bh3Hz6MY+9eZu7ezRsnT/bsudPSzMsFr7zSs58bJBQGREQkPGzdCtu2QWpqj37spM/Hs9XVHPB6GR0be37PbbFAbKx51DACawcUBkREJDy89ZZ53C8hoUc/lhkdzT9Gj+bNUaO4Jzv7/J8/PR2OHQO3+/wfY4BSGBARkfCwZcs/5wv0gM1qZUh0L8zdCzzGrl0X/lgDjMKAiIiEXlOTWbzXg1qBPvPBB6FeQb9TGBARkdD7+GNobLywdsO9IS4Odu40xyFHEIUBEREJvdpacxbBBWz3+w0D/7kH8Z5ddLQ5+ri5+cIeZ4DphYssIiIiF6i11Txa2MN6Ab9hUF9fT53Hg6eujqPR0RgXEggsFnMugtdr9h6IEAoDIiISejbbP9+Io6LOetc2vz8YAOrr6/EbBnGxsaSlprKvpgbjQpoVBQKJzXb+jzEAKQyIiEjopaWZW/Q+n9kR8AxtbW3UBQJAQwOGYRAfF0dmVhYpycnYbDb8fj8cP35hOwOtrZCcHPrahX6mMCAiIqE3apTZX6C5OfhG7Gtro66ujjqPh4aGBgwgIT6e7OxskpOTsZ0RGqxWK9FRURitree/juZmmD+/98YlDxAKAyIiEnqxsTBuHG0bNlAL1NXV0djQAEBCQgI5ubkkJycT00WB4cvHj1Pn97PXMDD8flbX11Pl8wFwQ3o6See49NDO5MkX+moGHIUBEREJqYqKCtxuN3GlpSyqruZYTAyJSUnkDh1KclIS0d04YfC748c52tpKa2srfsPAXVeHu64OgMtTUroXBlpbzXqBiy++0Jc04CgMiIhIvysrK8PtduNyudi5cycxMTFcO24cny4tZUxqKlEpKT16vDdGjQKgurqamuPHGTtmTM8XdeIE5OZCUVHPf3aAUxgQEZF+ceDAgWAA2Lt3L7GxscyfP58bb7yRhQsXkpiQAJ/9LKxdCz0MAwE2m422tjba2tqI6smlAcMwjxN+7nM9no0wGCgMiIhInzAMg48//hiXy4Xb7Wb//v0kJCSwYMECvvjFLzJv3jziz6zaX7oUNmww2xOfR0W/7dSRQK/X2/Gxz+bECfMUwXXX9fg5BwOFARER6TWGYbB79+5gACgtLSUpKYnFixdz1113MXfu3OAbdqeuugpefBFWroS8vB5X9ccEwkBra/fDgNdrho+vfx1GjuzR8w0WCgMiInJB/H4/O3bsYPny5ZSUlHD06FFSU1MpLi7mwQcfZNasWcR00jugU9HR8L3vwdVXQ3U19HAkcdSp44Ver7d7P2AY5tjiSZPg7rt79FyDicKAiIj0mN/v5/3338flclFSUsKxY8cYMmQIxcXFOJ1Opk+f3rNr9qcbNQq+8Q34znfg5EmzIVEP2Gy27oUBw4DKSrM+4amnIrJWIEBhQEREusXn87F582bcbjclJSWcOHGC7OxslixZgtPpZPLkyVh7q1nPsmVw5Aj87Gfm73sQCGJsNlrPFQYMAyoqzLqEH/8YZsw4/7UOAgoDIiLSJa/Xy3vvvYfb7WblypV4PB7y8/O56qqrcDgcTJgwofcCwOksFnj4YbNm4Gc/M9+4s7O7VUNgs9loqK/v+g6trVBVZe4I/OhHcOWVvbjwgUlhQERE2mlubmbdunW43W5Wr15NQ0MDhYWFXHfddTidTsaMGYPlQoYBdZfVCg89ZBb1/cd/QHk5pKefc5qgzWbD19ZGm99P1OnhwTDMyw4NDTBhgnlpYM6cvn0NA4TCgIiI0NjYyJo1a3C5XKxdu5bm5mZGjx7NTTfdhNPpZMSIEf0TAM5kscANN8C8efDoo+BymW/oSUnmUcBOdgoCMwtavV6i4uLM4Ue1teaJgcREuPNOuPde8zEEUBgQEYlYdXV1rFq1CpfLxYYNG/B6vUyYMIEvfelLOBwOhg0bFuol/pPdDs8/D6tWmUcPly+Ho0fNT/s2G8TFmScRAFtbG0ltbWZxYHS0GSiGDIHPf94MFhMnhvjFhB+FARGRCHLy5ElWrlyJy+Vi48aN+Hw+Jk+ezJ133klxcTF5eXmhXmLXrFazVXBRERw+DP/4B+zcCVu3msGguRlOXRqwWK1U5+ZScNVVMGUKfOpTPT6VEEksRjcGP3s8HlJTU6mtrSXlPFtEiohIaNTU1FBSUoLL5WLLli0ATJ06lSVLllBUVER2D8/yh6Xjx6G+3iwOtNn40je+wbDx43n00UdDvbKQ6u77t3YGREQGocrKyuAcgG3btmGxWJg1axYPPfQQRUVFZGRkhHqJvSsjw/w6JWfkSMrKykK4oIFFYUBEZJA4cuRIsA3wjh07iImJYc6cOTzyyCMsXryY1NTUUC+x39jtdrZu3RrqZQwYCgMiIgPYwYMHgzsAe/bswWazMX/+fJ588kkWLlxIUoRWzNvtdo4dO0ZTU1PPBhZFKIUBEZEBxDAMPvnkE1wuFy6Xi/379xMfH8/ChQu55ZZbmDdvHgkR3FY3wG63A+ZuyahRo0K8mvCnMCAiEuYMw+Cjjz4KXgI4fPgwSUlJLFq0iDvvvJO5c+cSGxsb6mWGlYKCAgBKS0sVBrpBYUBEJAwFJgEGBgGVl5eTmppKUVERDzzwQM8mAUag9PR0EhISKC0tDfVSBgSFARGRMOH3+/nggw+CAaCqqoqMjAwcDgcOh4MZM2ac/yTACGOxWLDb7TpR0E0KAyIiIeTz+diyZQsul4sVK1Zw/PhxsrOzcTqdOBwOpkyZ0jeDgCKA3W7XzkA3KQyIiPQzr9fLxo0bcbvdrFixAo/HQ15eHldeeSVOp7PvJgFGmIKCAnbs2BHqZQwICgMiIv2gpaUlOAlw1apVoZsEGEHsdjuVlZV4vV5sNluolxPWFAZERPpIYBKg2+1mzZo1NDc3M2rUKJYuXcqSJUtCNwkwQtjtdgzDoLy8nOHDh4d6OWFNYUBEpBfV1dWxevVqXC4X69evx+v1Mn78eL74xS/idDrDaxLgIHf68UKFgbNTGBARuUBdTQK84447cDgc4T0JcBDLzMwkNjZWRYTdoDAgInIeampqWLFiBS6Xi82bN2MYBtOmTePee++luLh4cEwCHOCsVisFBQU6XtgNCgMiIt1UVVUVnAPwwQcfYLFYmDlz5uCdBDgI6Hhh9ygMiIicRXl5ebAN8Icffkh0dHTETgIciOx2OyUlJaFeRthTGBAROcOhQ4eCAeCjjz7CZrMxb948nnjiCRYuXEhycnKolyjdZLfbKS8vx+fzER2tt7yu6N+MiEQ8wzDYv39/cBLgJ598Qnx8PAsWLGDZsmXMnz9fkwAHqIKCAvx+P0ePHg1OMpSOFAZEJCIFJgEGagAOHz5MYmIiixcv5qtf/SqXXHKJJgEOAoEAUFpaqjBwFgoDIhIxApMA3W43breb8vJyUlJSKCoq4v7772fWrFnqVDfI5OTkEBMToxMF56AwICKDWleTAIuLi3E6nUyfPl3Xkgcxq9VKfn6+ThScg/4EiMig4/P52Lp1K8uXL283CTAwCnjq1KkaBBRBdLzw3BQGRGRQ8Hq9bNq0KTgKODAJ8IorrsDpdDJx4kQFgAhlt9tZu3ZtqJcR1hQGRGTAamlpYf369bjdblauXElDQwPDhg3j//2//4fT6WTs2LEaBCQUFBRw5MgR/H6/AmEXFAZEZEBpbGxk7dq1wUmATU1NXHTRRSxduhSn08nIkSMVAKQdu92Oz+ejoqJCcyK6oDAgImGvvr6eVatW4Xa7WbduHV6vl3HjxnHLLbfgdDopLCwM9RIljAWOFJaVlSkMdEFhQETCUm1tbXAS4HvvvYfP52PSpEl89atfxeFwkJ+fH+olygCRm5uL1WqltLSU2bNnh3o5YUlhQETCxvHjx1mxYgXLly9vNwnw61//OsXFxeTk5IR6iTIARUdHk5eXp14DZ6EwICIhFZgE6Ha7ef/994OTAL/5zW9SVFTEkCFDQr1EGQR0vPDsFAZEpN+Vl5cH2wAHJgHOnj2bRx55hEWLFpGWlhbqJcogY7fb2bJlS6iXEbYUBkSkXxw+fDg4CCgwCfCSSy7RJEDpFwUFBfz1r3/V8cIuKAyISJ/obBJgXFycJgFKSNjtdlpaWqiuriY7OzvUywk7CgMi0msMw2DPnj3BSwCHDh0iMTGRRYsW8ZWvfIVLLrmEuLi4UC9TItDpxwsVBjpSGBCRC+L3+9m5c2cwAJw+CfDee+9l9uzZmgQoIZeXl4fFYqG0tJTp06eHejlhR2FARHrM7/ezbds2XC4Xbrc7OAmwqKgIp9PJjBkzNAlQworNZiM3N1cnCrqgP60i0i1tbW1s2bIlOAr4+PHjZGVl4XA4cDqdmgQoYU/HC7umMCAiXWptbW03CbC2tpahQ4dy+eWX43Q6ufjiixUAZMAoKChgx44doV5GWFIYEBnEDMPgpZdeYtu2bTidThwOxznfvFtaWtiwYQMul4tVq1ZRX1/PsGHDuPbaa3E6nYwbN06DgGRAstvtvP322xiGof+Hz6AwIDJIVVRU8K//+q+Ul5czffp0nnnmGe644w4eeOABsrOzO/yFaBgGTz31FH//+99pampi5MiR3HjjjTidTi666CL95SkDnt1up7GxkRMnTpCRkRHq5YQVhQGRQepHP/oRra2tbNiwgdzcXJ577jl++tOfEhUVxVNPPdVpGMjNzeWWW27B4XAwfPjw0C1epA8EjheWlpYqDJxBYUBkEPL7/Xz88cdMnDiR3NxcAL7whS9w9OhRfvKTn/DUU091uFxgsVi49dZbQ7FckX4RmHRZWlrKlClTQrya8KLKH5EB5MSJEzzzzDM8+eSTVFVVdXm/+vp6mpqa2vX4t9lsXH311dTX1/OPf/wDMHcDAnQZQAa7uLg4srOzdaKgEwoDIgOA3+/ntdde47LLLuPxxx/nySef7HIcq2EYpKSkEB8fT1VVFZWVlcHbCgsLmTVrFn/605+CjysSSQoKChQGOqEwIDIAWK1WmpubueKKK9i0aRNxcXGsX7++0zfzwPeKi4vZsWMHe/bsCd4WFxfHjBkz2L17NwBRUVH98wJEwoTdbu8ySEcyhQGRAeIzn/kM3/rWtxgxYgQOh4M33niDurq6DvcL1AJce+21+P1+3n333eBtcXFxHDx4kAkTJuD1evtt7SLhQjsDnVMYEBkgkpKSgj3+b7nlFtasWcOhQ4fa3ccwjGAdgN1u5+qrr+all14KXhY4dOgQO3bsYMqUKdhstnY1AyKRwG63U1dXh8fjCfVSworCgMgAEijyu+aaa4LHBk+/VGCxWNqdEvjGN77BpZdeyr333suiRYuYNm0aEydO5IYbbmj3eCKR4vTjhfJPCgMiA4zP5wPA4XDw+uuv09DQELytqamJ3/zmNzzzzDMApKWl8fTTT/Pqq69y+eWX88Ybb/DXv/6VrKyskKxdJNQKCgoAhYEzKQyIhAm/388HH3zAM888E3zD70zg0/ytt97K6tWrOXLkCAAnT54kJiaGl19+meeff56WlhbAPFI4a9YsHn74YebPn9/3L0QkjCUmJpKRkaEwcAY1HRIJocAkQLfbTUlJCTU1NWRlZXHFFVcwcuTITrfxAycA/uVf/oWlS5fyyCOPcOjQIdLS0nj11Vd54oknyMjIIDY2tr9fjsiAoCLCjhQGRPpZZ5MAc3Nz+fSnP92tSYA+n4/nn3+e5557Dp/Px+7du7nsssu44447SExMZMaMGf34akQGHo0y7khhQKQfeL1eNmzYwPLly4OTAO12O9deey0Oh4Px48d3u5jPMAxKS0tZsGABr7zyCoWFhX28epHBxW63s27dulAvI6woDIj0kaamJtatW4fL5WLNmjU0NjYGJwE6HA5GjRp1XtX8MTExfPe73+2DFYtEBrvdzokTJ6ivrycpKSnUywkLCgMivaihoYHVq1fjdrtZu3YtLS0tjBkzhmXLluFwOBgxYkSolygS8QLHC8vKyhg3blyIVxMeFAZELpDH42HlypW43W42bNhAa2srEydO5Pbbb8fhcASPMolIeDj9eKHCgElhQOQ8HD9+nBUrVuB2u9m0aRN+v58pU6Zw991343A4gmODRST8pKSkkJKSoiLC0ygMiHTTsWPHKCkpweVy8f777wMwY8YMHnjgAYqLi8nMzAzxCkWkuyZNmnTWUzuRxmJ0ozm5x+MhNTWV2tpaUlJS+mNdImHh6NGjuN1uXC4X27dvJyoqitmzZ+N0Olm8eDHp6emhXqKISJe6+/6tnQGRM5SWlgYDwK5du7DZbMydO5fHH3+chQsXKhCLyKCjMCAC7N+/PxgA9u3bR1xcHPPnz+emm25iwYIFJCQkhHqJIiJ9RmFAIpJhGOzbtw+Xy4XL5eLgwYMkJCSwcOFCvvzlLzNv3jzi4uJCvUwRkX6hMCARwzAMdu3aFQwAR44cITk5mcWLF3PPPfcwZ84cbDZbqJcpItLvFAZkUPP7/Wzfvj14CaCyspL09HSKiopwOp3MnDmT6Gj9MRCR9rxeL36/P2J2CPW3oAw6bW1tbN26NTgJsLq6mszMTBwOBw6Hg2nTpgUn/4mIdOY3v/kNNTU1PPjggxHx94XCgAwKra2tbN68OTgJ8OTJk+Tm5nLZZZfhdDp1plhE2vnVr37FggULGDVqFH6/H4vFgtVqDc4Lyc7O5plnnuH6669n5MiRIV5t31MYkAErMAnQ5XKxatUq6urqKCgo4JprrsHpdPZoEqCIRJYHH3yQH/7wh4wZM6bdBwWv10tpaSlVVVXs2LGD7du3KwyIhJumpibWr1/P8uXLg5MAR4wYwQ033IDD4WD06NEKACJyTpdccgkvvvgiZWVlbNu2jT179nDkyBE8Hg8Wi4Xs7GzGjx8fMceKFQYk7DU0NLBmzRpcLle7SYBf+MIXcDgcEZHaRaR3zZkzh8cee4wTJ05QUFDApz71KUaNGsWwYcPIyckhIyODuLi4iOkyqjAgYcnj8bBq1Srcbjfr16+ntbWVCRMmcNttt+FwOIIjSEVEzofdbmfo0KG8/vrrpKWlER0dTUxMTMTuLCoMSNg4ceJEcBLgxo0b8fv9TJ48mbvvvpvi4mKGDh0a6iWKyCBx8cUXA5CcnBwxlwLORmFAQiowCdDtdrN161YApk+fzv33309xcTFZWVkhXqGIDEaTJk3iySefJCkpKdRLCQuaWij9rqKiot0kQKvVyuzZs3E4HBQVFUXMNToRCa3jx49z+PBhJk2aNGh7CWhqoYSVMycBxsTEcMkll/DYY4+xaNEihUwR6Xf33nsvO3fu5C9/+QvDhg0L9XJCSmFA+syBAwdwuVy43W727t1LbGws8+fPZ+nSpSxYsIDExMRQL1FEItiiRYsYNWpUcCaJ3+/v0JzMMIyIKCrUZQLpNYFJgIEdgAMHDpCQkMCCBQtYsmQJl1xyCfHx8aFepojIWdXX13P8+HHS0tIG/HueLhNIvzAMg927dwcnAZaVlZGcnMyiRYu4++67mTt3riYBikhYq6+v5/e//z3vvvsue/fuxev1kpaWRn5+PsXFxXzlK18hJiYm1MvsUwoD0mN+v58PP/wweAmgoqKCtLQ0ioqK+OY3v8nMmTMH/R8cERkcysrKuOeee/joo4+YMmUK11xzDVlZWbS0tLB161b+8z//k8rKSr773e+Geql9SmFAuqWtrY33338ft9uN2+2murqaIUOGBCcBTp8+fdBW44rI4OT3+3nuuefYvn07P//5z5kyZQrp6entxpq/+eab3HjjjTz55JODunZAYUC65PP52LRpE263mxUrVnDixAlycnK47LLLcDgcTJ48WZMARWTAslqtPPfcc/zkJz9hyZIlnd5n1qxZREVFcfjwYQoLC/t5hf1HYUDa8Xq9vPfee8FJgB6Ph4KCAq666iqcTicTJkwY1OlYRCJLVFQUDQ0NHb7f2tpKdXU19913HzNmzBj0tU8KA0JzczPr1q3D5XKxevVqGhsbGT58OJ/97GdxOp2aBCgig9att97KD3/4QzZv3syVV15JcnIyx48fZ9euXaxcuZL9+/fz1FNPDfp26AoDEaqxsZE1a9awfPly1q1bR3NzM6NHj9YkQBGJKA888ABxcXG8+eabvPbaaxw9ehS/3092djYLFy7kF7/4BYsXLw71Mvuc+gxEEI/Hw+rVq3G5XGzYsAGv18uECRNwOp2aBCgiEa20tJSqqiqysrLIzs4mLi4u1EvqFeozIIA5CXDlypW4XC42btxIW1sbkydP5q677tIkQBGRU+x2e7sPRIZhBLsPRsJlUoWBQai6ujo4CXDLli0ATJs2jfvvv5+ioiKys7NDvEIRkfAWKSEgQGFgkAhMAnS73Wzbtg2r1cqsWbN46KGHKCoqIiMjI9RLFBGRMKUwMICVlZUF5wDs3LmTmJgY5s6dy6OPPsrixYtV3yEiIt2iMDDAHDx4MDgH4PRJgDfeeCMLFy7UJEAREemxwRUGfD7wesEwIDYWogf+yzMMg48//ji4A7B///7gJMAvfvGLzJs3T5MARUQu0N69e/nBD37A97//fbKyskK9nH43sN8tP/4Y1q2D3bvh/ffhwAHw+83brFaw22HaNJgwAebMMX8dAAKTAAMBoLS0lKSkJBYtWsRdd92lSYAiIr0sNjaWbdu2cfjwYYWBAaG1Fdxu+OMfYfVqaGw0vx8dbe4GBHrlt7XBnj2wc6f5+7g4MxD827/Bpz5l3jeM+P1+duzYEZwEePToUVJTUykqKuLBBx9k1qxZmgQoItJHhg4ditVqpbS0lBkzZoR6Of1uYIWBbdvgW98yf21rg+RkyMuDcx3/MAyor4eVK80AMW4cfO97MHdu/6y7C36/n/fffx+Xy0VJSQnHjh1jyJAhFBcX43Q6NQlQRKSf2Gw2cnNzKS0tDfVSQmJghIGWFvjZz8yvujrIzDQ/6XeXxWIGh+Rks6Zg1y5zh+CWW+C++6Afi+58Ph+bN2/G7XZTUlLCiRMnyM7OZsmSJTidTk0CFBEJkYKCAoWBsFVfD3fdBe+8Y27t5+efeyfgbGw2czfh5EkzXGzbBr/8JfThOfzAJEC3283KlSvxeDzk5+dz1VVX4XA4mDBhggKAiEiI2e12Pvzww1AvIyTCOww0NsKXvwwlJTBkCPRW1bzFAunpkJAAa9bAsmXw29+a3+slgUmAbreb1atX09DQQGFhIddddx1Op5MxY8ZEVHcrEZFwZ7fb+dvf/hZsQxxJwjcM+P3mFn5JSc8vC3RXbCxkZ8OmTXDHHfC7313QccTAJECXy8XatWtpbm5m1KhR3HTTTTidTkaMGBFx/4OJiAwUdrudpqYmjh8/zpAhQ0K9nH4VvmHglVfgzTchLa1vgkCAzWbuOqxcCb/6Fdx2W49+vK6ujtWrV7N8+fLgJMDx48fzpS99CYfDwbBhw/po4SIi0psCg4pKS0sVBsLCkSPw1FPmPycl9f3zxcebtQlPPw1FRTBmzFnvfvLkyXaTAH0+H5MnT+bOO++kuLiYvLy8vl+ziIj0qvz8fMAMA1OnTg3tYvpZeIaBH/0Ijh41C/36S2amGUK++12zfuAMNTU1wUmAmzdvBmDq1Knce++9FBcXaxKgiMgAFxsbS3Z2dkSeKAi/MHD0KLz1lnncr5sV9ruamniztpbNjY2Ue72kRkUxKT6eO7KzGdbdTn0WC6SmmgWFe/bA2LFUVlYGJwF+8MEHWCwWTQIUERnECgoKKCsrC/Uy+l34hYG//AVqa3u0K/B/NTVsa2piSXIyozMyqPH5eOn4cZYeOMD/DR/ORd3tNpiURNvhw2z/1rf4SXIyO3bsICYmhjlz5vDII4+wePFiUlNTz/OFiYhIuLPb7ezbty/Uy+h34RUGDMNsMxwd3e1dAYCbMjL4Xnw8MadV6l+aksLn9u/n/6qrefLUdaCutHi91Hk8eOrqiKuvJ+ntt8m97TZuePJJFi5cSFJ/1C2IiEjI2e12XC5XxB0vDK8wcOSIeZmgh2++kxMSOnxvmM3GyNhYDni9HW4zgJaWlmAAaGlpwWq1kpSUREpuLrmGwfe/+EW4+OLzfSUiIjIA2e126uvr8Xg8EbUTHF5hYPduaGoy2wZfIMMwOO7zMfLUJQIDsxFQIAB4vV6irFaSkpPJzsoiMSkJq8Vi9jc4etRci8KAiEhEOf14ocJAqHz0kfnrBTT+Cfi7x0OVz8ctqalUVlbiqaujtbWVqKgokpOTyc3JISEx0QwApwtcnti9+4LXICIiA0tBQQFghoGLI+gDYXiFgepqs27gAhjA7pMnebK0lOGGwfjqamqjo0lOSSElOZmExETOeRXIMMy1iIhIRElISCAjIyPijheGVxhobb3ghyj1eLjjk0+Itli4Nz6elKQkEhMSsNlsREdHd68oxGKB5uYLXouIiAw8drs94o4XhlcYuMDLA/VtbXz9yBGarFaeyc5mqGHQ6vVy7Ngx/KftOMRERxNjs2Gz2bDFxGCz2YK/j7JazZ2BmJgLfTUiIjIA2e12Dh06FOpl9KvwCgNJSec9ntjr93NvWRnlfj8P2WzMzMsL1gMYQJvPh9frxdvaav7q9dLS3ExdXR1tbW3Bx4mKiiLH52PbBx+w55e/pKCggIKCAux2O2lpaRF11EREJBLZ7XbWrFkT6mX0q/AKA2PGmJ/K/f4e9RnwGwYPHTnC9sZG/iM3l6FVVXhbWog7NeDIAkRHRxMdHU3HQ4jQ1tb2z5DQ0kJUTQ2fREXx5z//mZqamuD9EhISsNvtwXAQ+NVut5OZmYm1B2sWEZHwZLfbOXnyJHV1dST3wum2gSC8wsD48eZY4eZm6KR3QFeerqpiVX09i5KSaLRaWdXWxq4TJ0g49RhXnON4SFRUFPFRUcTHxYHXC34/t/7nf3LrnDk0NjZy5MgRSktLKSsrC3794x//oKKiAuPU5QebzRbcRTgzLOTm5hLdCyckRESk7wVOFJSVlTF+/PgQr6Z/hNc71MiRkJICHk+PwsCeU8V+q+rrWVVfT3NrK9HV1cE34HOFgXYaG80phuPGAeZuwOjRoxk9enSHu3q9Xo4ePRoMCqWlpZSWlrJmzRrKy8vx+XwAWK1W8vLy2u0kBEJDfn4+sd1tlywiIn3u9OOFCgOhEBMDV18Nzz1nXi7o5vX5XxYWtvv9wUOHiImODo6j7JGGBrj2WnNo0TnYbDYKCwspPOP5Afx+PxUVFcGQEPj1/fff5/XXX6elpSV43+zs7A5BIfBrYmJiz1+DiIict5SUFFJTUyPqREF4hQGA66+HF14w35TPcyaAzWaj+XyOBjY1mScaPve583re0wV2A/Ly8pg9e3a72wzDoKamJriTELj0sG/fPtxuN3V1dcH7pqent9tJOD00pKamqqBRRKQP2O32iOo1EH5hYNIkmDHDHCWcmHhepwtibTY8Hg8GnLvB0OmOH4eJE2HBgh4/Z09YLBYyMzPJzMxk2rRpHW73eDztgkLg1w0bNnD8+PHg/RITEzstaCwoKFBBo4jIBVAYCDWLBR58ELZuhZMnIT29xw9hi43F7/fj8/mI6W7hnscDNpv53CF+E01JSWHixIlMnDixw22NjY3tChkDoWHHjh1UVlZ2WtB45smH3NxcoqKi+vtliYgMGHa7nY0bN4Z6Gf0m/MIAwJw5cOut8NOfmrsDNluPftx26v7elpbuhQGfzwwDS5fCZZedz4r7TUJCAmPGjGHMmDEdbvN6vZSXl3fYUVi9ejVHjhwJ9lOIiopqV9B4emjIz88P/vsTEYlUBQUF1NTU0NjYGDyZNpiFZxgAuPdeWLECduyAoUOhB59kbTYbFouFFq/33AV4fj9UVsKIEfDtb59306NwYLPZGD58OMOHD+9wW1tbG5WVlR0uP2zZsoW//vWvwYJGi8Vy1oLGSPhDISJy+vHCzj58DTbhGwYSE+F//9f8tH7wYI8CgQWwxcTg9XrPfke/H8rLITfXfK6MjAtedrgK7Abk5eUxZ86cdrcZhkF1dXW7YsbS0lL27NnD8uXLqa+vD943IyOjy8sPKSkpKmgUkUEhMMpYYSAcXHQR/N//mZcMPvkEMjPNHgDdYIuNxXva8b0OWlrg2DHIy4Nnn4XJk3tnzQOQxWIhKyuLrKwspk+f3u42wzC6XdCYlJTUYSch8M+ZmZkKCiIyYKSlpZGYmBgxxwvDOwyA2fznj3+EBx6AtWuhvh6GDDlnkZ/t1ImCDgzDPDXQ3GyeWvjRj4INhqQji8VCamoqqampnc72DhQ0nhkUtm/fTmVlZfB+sbGxXe4o5OTkqKBRRMKKxWKJqBMF4R8GAAoLzUDw61/Dj39sbu3HxUFaWpeTDmNtNlpbW/EbhjmwqK0NamvNDoPJyfDQQ/CVr5jtj+W8naug8cxWzqWlpaxcuZLy8vJ2BY35+fmdhoW8vDwVNIpISCgMhKPoaPjyl8HphN/9Dl55xSz8MwzzDT0+3vz11I6BLSqK+LY22ioqsPr95mOkp5sNhW66CSZMCOGLiQw2m40RI0YwYsSIDre1tbVRUVHRoZXz5s2bee2114L1HhaLhZycnE5bOaugUUT6kt1uZ/v27aFeRr8YOGEgYORIeOwx87TB66/D6tXw/vtQU2NeQjj1xh8H2AyDpsREYhYuhPnz4ZprzEsMEnKB3YDOWkb7/X6qq6s7XH7YvXs377zzDg0NDcH7ZmRkdDlJMiUlpT9fkogMMgUFBVRWVtLS0jLoZ8gMvDAQkJJifsK/6SZzd+DoUfPUQXMzGAbW2FgefPhhim+6iS/ffnuoVys9YLVayc7OJjs7u9OCxtra2g6tnEtLS1m3bh0nTpwI3jc5ObnLVs5DhgxRQaOInFXgRMGRI0cYOXJkiFfTtwZuGDidxWKeCsjLa/fthLFjORQh13sihcViIS0tjbS0NCZNmtTh9oaGhk4LGj/44AOqqqqC94uLi+u0RqGgoIDc3Fy1chaRdscLFQYGsMLCQvbu3RvqZUg/SkxMZOzYsYwdO7bDbS0tLRw5cqRDK+eSkhLKy8vxn7rEFB0d3aFDY2BHYejQoSpoFIkQQ4YMIS4uLiKKCAd1GBg+fDjvvvsuhmFoS1iIjY1l5MiRnSZ8n8/XoaCxrKyMTZs28eqrr7YraMzNze20l0JBQQHx3eyDISLhL5KOFw7qMFBYWEhjYyPHjh0jOzs71MuRMBYdHR18Yz9ToKDxzJMPO3fu5O2336axsTF43yFDhnQ5STJUBY2NjY289NJLbNu2jaSkJK6++mpmzJih3g4i3aAwMAgEevQfOnRIYUDO2+kFjTNmzGh3m2EYnDx5skMx46FDh1izZg0nT54M3jclJaXLxksZGRl9tntVVVXF5s2baWlp4X/+5384cOAAv/jFL0hOTu6T5xMZTAoKCli+fHmol9HnBnUYyM/PJzo6moMHDzJr1qxQL0cGIYvFQnp6Ounp6UzupKV1fX19twoa4+PjOwSFwD/n5ORcUEGj3W7n4YcfpqCggBUrVjBu3LguL2cELqnt3LmTH//4x5SUlDB69GgeeughiouLz3sNIgOV3W6noqKC1tZWYmJiQr2cPjOow0BUVBQFBQUcOnQo1EuRCJWUlMS4ceMY10nL6+bm5g4jp0tLS3G5XBw9ejRY0BgTE3PWgsZz/QUV+HMA5hGpYcOGEd1F506LxcKRI0dYsmQJs2fP5oknnmDNmjV8/etf54UXXui0JbXIYGa32/H7/Rw9epRhw4aFejl9ZlCHATAvFRw8eDDUyxDpIC4u7qwFjUePHu1w+eG9997jL3/5S7Cg0Wq1kpubyyOPPMKMGTPOuoNQW1tLS0sLeWccwT3T9773PXJycvjjH/9IQkICV199NdOmTeOVV15hwoQJOnYpESVwvLC0tFRhYCArLCzknXfeCfUyRHokOjo6+On/TH6/n2PHjrXbUcjLy+vyTTqw9f/xxx8TExNz1vqZ6upq1q5dy/XXXx9s9ZySksINN9zAm2++yb//+7/3yusTGSiysrKw2WyDvogwIsJARUUFzc3NxMXFhXo5IhfMarWSk5NDTk4OM2fOPOf9/X4/UVFR7Ny5k4yMDNLS0jrcJxAY9u/fj8fjYeLEicHbfD4fcXFxwWJIv9+v3QGJGFarlfz8/EEfBgb9n+jhw4djGAaHDx8O9VJEQmrHjh0UFBR0OEXg9/uDEyQPHjxIYmIiQ06b4WEYBmVlZeTk5PTrekXCRSQcL4yIMACoiFAiUuDoI8DevXsZNWoUSUlJ7e5jtVqDBYUNDQ0kJia2++RfW1vL3r17uywe9Hg8rFu3jsOHD9Pa2to3L0QkhAoKCigrKwv1MvrUoL9MkJKSQnp6uooIJSIdOXKEyy67jKamJg4dOsTo0aN5+umnWbBgAfPnz+f1119n+/btfOlLXyI3N5fx48dz7NixdpMht2/fTnl5ObefGvh1ej8Ev9/P1q1beeCBB4B/FjSeOXLabreTn5+vS3UyINntdsrLy2lraxu0zboGfRgAs25AOwMSifLz8/njH//I9u3bOXr0KBs3buTZZ59l06ZNzJ07l5KSEl566SVuvfVWAObOnUtOTg6/+MUvmDRpEl6vl6997WtMmjSJxYsXA+3DgNVqZfHixbz55psdeil8+OGH/O1vf6OpqSl4/6ysrE4nSXZ2+UIkXNjtdnw+H5WVlec8jTNQRUwY0MAiiUQWi4UpU6YwZcqUTm//9re/zdKlS9v9Bffb3/6Wm2++mTFjxpCVlcW4ceN48sknu/xLMDCvITc3t0NzL8MwOHHiRIdeCp988gkrVqzA4/EE75uamtplK+f09HTNF5GQOf14ocLAAKaBRSKdy8zMJDMzs933Ro8ezdq1azl48CBHjx5l9OjRHe7TXRaLhYyMDDIyMjoNJB6PJ9hH4fRdhc2bN1NdXR28X0JCQpetnLOysnS6QfpUbm4uUVFRlJaWMmfOnFAvp09ERBjQwCKRnhs+fHiwALevpKSkMGHCBCZMmNDhtqamJo4cOdLh8sO7775LRUVFsEOjzWYjPz+/01bOQ4cO7bLbokh3RUVFDfrjhRHxp0QDi0QGnvj4eEaNGsWoUaM63Nba2tquQ2Pg8sPatWs5cuQIPp8PMGsahg4d2mVBY2xsbH+/LBmgCgoKFAYGOg0sEhlcYmJiGDZsWKftYf1+P5WVlR1aOW/bto0333yT5ubm4H2zs7M7vfxQUFDQ4QimRDa73c6mTZtCvYw+ExFhQAOLRCJHYDdg6NChzJ49u91thmFw/Pjx4E5CICh8/PHHHQoa09LSOgSEwJcKGiOP3W7n1VdfHbQdOCMiDIAGFomIWdA4ZMgQhgwZwtSpUzvcHihoPLNOYePGjdTU1ATvl5CQ0OXJBxU0Dk52ux2v18uxw4fJSU0FiwXi4syvQSBiwoAGFonIuZytoLGxsbFdQWPg6x//+AcVFRUYhgGYBY2n7yKcXq+Qm5urgsaBxDDgww9hwwYmbdjAs3v2kLpoEdhs5u1WK+Tnw4wZMGECzJsHnYwrHwgi5v/K4cOHa2CRiJy3hIQERo8ezejRozvc5vV6OxQ0lpWVsWbNGsrLy9sVNObl5XUoaCwoKFBBYzhpbIS334YXXoAtW6ClhWTDYGhLC62trcTFx5v38/vhk0/go4/M38fHwyWXwI03wmWX/TM0DAAREwYKCwuDA4vGjBkT6uWIyCBis9koLCyksLCww21+v5+Kiop2xYylpaW8//77vP7667S0tATvGyhoPPPkQ0FBAYmJif35kiLX6tXwne/Avn3m71NTYcgQLBYLdc3NWGJiOu+WaRhQXw9uN6xYARMnwve/D9On9+vyz1fEhIHTjxcqDIhIfwnsBuTl5XVa0FhTU9NhR2Hfvn243W7q6uqC901PT++ylXNaWpoKGi9UXR3853/C734Hzc2QldXhk73NZqPV6+385y0WSE42v1pazMsL118Pt90Gd99t7hqEsYgJAxpYJCLhxmKxBLtATps2rcPtHo+nw8mHsrIyNmzYwPHjx4P3S0xM7LKgMTMzUwWN51JVZb5pv/ceJCZCXp755n4Gm81GU2PjuR8vNtZ8jBMn4OmnYft2+NnPICWlDxbfOyImDIAGFonIwJKSksLEiROZOHFih9saGxs7beW8Y8cOKisrOy1oPLOVc6DNbkSrqYGbb4atW83dgLPUbdhsNmpPnsQAzrkPY7FARgY0NcHy5fDlL8Pzz0OY9q+IuDCggUUiMhgkJCQwZsyYTi97er1eysvLO+worF69miNHjtDW1gaYPVhOL2g8PTTk5+djG0AFcOfF64WvfMUMAtnZ5yz4s8XE4DcMfD4fMd09FRIfD5mZsHIl3Hcf/OIX5imEMBNRYUADi0QkEthsti5nS7S1tbXr0Bi4DLFlyxb++te/BgsaLRbLWQsaExIS+vlV9YHnnoO1a803624En0A4avV6ux8GwOxFkJ4Ob70FL78Mn/vc+a64z0RUGNDAIhGJdIHdgLy8vA4T+AzDoLq6ukMr5z179rB8+XLq6+uD983IyOiylXNqamr4f+DavRt+8hMzBHTzuHnMqTDgbW2lx1EoMdEsUnzqKZg/H06NRQ4XERUGAin54MGDCgMiImewWCxkZWWRlZXF9DOOxBmG0e2CxqSkpC5bOYdNQeN3vwu1tWbToG6yWizEREfj7epEwblkZ0N5OfzXf5lBJIxEVBgIDCw6dOhQhyM+IiLSNYvFQmpqKqmpqVx88cUdbg8UNJ4ZFLZv305VVVWwoDE2NrbLgsacnJz+KWjctQvWrzd7CPRgB8Pr9/NCWxsrKirw1tQwOjaWO7KzmdPdHhBWq1lA+Pe/wze/aZ44CBMRFQY0sEhEpG+cq6Cxs1bOK1eupLy8vF1BY35+fqdhIS8vr/cKGv/0J7PLYA92BQD+/ehR3vZ6uTImhmk5ObxZW8vXDh/mfwsLmdrdGoqUFHN34M9/NvsPhImICgOggUUiIv3NZrMxYsQIRowY0eG2trY2KioqOuwobN68mddeey24JW+xWMjJyem0lXOPChqbm8034ri4Hu0K7Gxq4h2Phy+lpuJsbmZMejqfSU3l+v37+Z+qKn7VSbFmp6xWiImBF1+Eu+7q0Rr6UsSFAQ0sEhEJH4HdgPxOPqX7/X6qq6s7tHLevXs377zzDg0NDcH7BgoaOzv5kJKS8s+Cxr17zVqBzloKn4Wrrg4rcG1aGidO7WbYoqK4Ji2Nnx47RmVrKzkxMd17sMREqKiAI0egoKBH6+grERcGNLBIRGRgsFqtZGdnk52d3WlBY21tbbuCxkBgWLduHSdOnAjeNzk5ORgMFldWstjjwZ+QQIzPR3R09LkbCAEfNTdTaLORHhvLCcxLH9Hx8Uw81WZ4T3Nz98NAXBx4POaJBoWB0NDAIhGRgc9isZCWlkZaWhqTJk3qcHtDQ0OnBY1Vq1ZRV1/PscOHgVMnBGw2bIGvmBhsNhsxNhsxMTHBoFDt85EZHR08Xtjq9UJ8PJmn+g1Un5pM2S2BHgW7d8Oll573v4PeFHFhQAOLREQGv8TERMaOHcvYsWPb33D33Rgvv0xKdjbe1la8Xi9er5dWr5c6j4fW1laMU3e1WCzEnAoHnqYm0mw2GhsbsVqtwVqG2FOXH5oNgx477ThmqEVcGNDAIhGRCNbSgsVqJTY2lthO5hAYhkFra2uHoGBta6O2oYH9n3xCm9/P0Nxc8+FOhYC4nhYCGobZDjlMRFwYAA0sEhGJWDEx5htxFywWS/CSQVt8PPV1dbS2tpJqGBwHEpOSSIiPJ/lUAWLg8kBmT9oTB5zPz/SR8FlJP9LAIhGRCHWORkO+tjbq6uqoq6ujoaEBwzCIj4/n4pQUXmtqYujw4SSe1hhpR1MTAGN7WpBusfT4RENfCoOekP1v+PDhHDp0KNgRS0REIkSgVuy0v/9bfT6OnzjBoUOH2Ld3LxVHj2L4/eTk5DB69GhGDB/ONbm5GBYLfzl5MvhzXr+fN2pruTg+vvsnCQD8fvP5z6xnCKGI3RnQwCIRkQg0fjxER+NtbKSuuRlPXR1NTU1YLBYSExPJHTqU5KQkos/Ywr84Pp4lycn8f1VVnGhroyAmhjdrayn3enmksLBna2huNo8XjhvXiy/swkRkGNDAIhGRyLN//37WbNrEktpa2qqqqI+JISkpify8PJKSk4k6xwClJ/Ly+PmxY7xVW0tdWxujYmP5b7ud6T0d59zYaF6uGDnyAl5N74rIMKCBRSIig59hGOzZswe3243b7ebgwYMkJCQwevRoph84QP7w4T2aoGizWrknJ4d7cnIuZFHmzsCyZSogDDUNLBIRGZz8fj87duzA5XJRUlJCeXk5KSkpLF68mHvuuYc5c+Zge+89WLoUWlrgVAfBftPQYD7n9df37/OeQ0SGAdDAIhGRwaKtrY2tW7fidrspKSmhurqaIUOGUFxcjMPhYPr06e1rAObPN4v3duwwxwj317Agw4CTJ2HxYpg4sX+es5siNgxoYJGIyMDl9XrZuHEjbreblStXUltbS25uLpdddhkOh4PJkyd3fQnAaoVvfhO++EWoqzPHCveHEyfMIUUPPtg/z9cDERsGNLBIRGRgaWpqYv369bjdblavXk1DQwPDhg3jX//1X3E4HIwbN+6f0wnPZckSc6v+d7+DhIS+v37v9UJTE9xzD8yc2bfPdR4iNgxoYJGISPirr69n9erVuN1u1q1bR0tLC2PGjOGmm27C6XQyYsSI7geAMz38MKxfDx9/bF4u6EExYY+0tUFVFUyeDF/7Wt88xwWK2DCggUUiIuHpxIkTrFq1CpfLxcaNG/H5fFx88cXcfvvtFBcXY7fbe+eJMjLgl7+Em26C8vK+CQQ+H1RUwEUXwbPPmrsQYShiw4AGFomIhI+qqipWrFiB2+1m69atAEydOpV7772XoqIici7kON/ZTJgAv/61WT9QVgaZmWZDoN7Q1AQ1NTB6NPzqV9DT5kT9KGLDAGhgkYhIKJWXlwePAG7fvp2oqChmz57Nww8/zOLFi8nIyOifhUyZAn/8o1nYt3Ej2GwwZMj5nzLw++HYMfNXhwN+8APord2MPhLRYWD48OHs2bMn1MsQEYkYBw4cCDYB2rNnDzabjUsuuYQnnniCBQsWkNJflf1nGj0aXn7Z3Mr/n/+BI0fMfgCpqd0vLmxtNY8OtrSYOwwPPmhegjhtsFG4iugwEDheaBjG+RegiIhIlwzDYO/evbhcrnZdABcsWMAtt9zCvHnzSAiX6+g2G9x5J1x6KbzwAvzlL2bhn98PsbHm5YPY2H/WFfj95ht/U5N5WsBigdxc+OxnzaZGYXxZ4EwRHwYaGxuprq4mKysr1MsRERkUAl0AAzsAp3cB/NrXvsbcuXOx2WyhXmbXxoyBxx+H++6D1183Txxs3Wpu/Tc2miEAzFAQG2teApgxAxYsgCuvNHsJDDAWoxtzfD0eD6mpqdTW1oZuC6cPNDc309jY2H/XpUREBqlAF8CSkhJKSko4duwYGRkZFBcX43Q6O3YBHGgMwzwVcPiwuRsA5k7B8OGQldV/XQx7qLvv3wP4v8yFi42NVcMhEZHz5PV62bRpEy6Xq10XwEsvvfTcXQAHGosFhg41vwahiA4DqhMQEemZ5uZm1q1b16EL4LXXXovD4WD8+PH6u3UAiugwICIi51ZfX8+aNWtwu92sXbuWlpYWRo8ezU033YTD4WDkyJEKAAOcwoCIiHRw8uRJVq5cidvtZuPGjbS2tjJx4sTe7wIoYUFh4Bzq6urw+/2kpqaGeikiIn3q2LFjwQLALVu2YBgG06ZN45577qG4uLjvugBKyCkMnMOvf/1rysrK+N73vkdMTEyolyMi0qvKy8uDRwBP7wL40EMPUVRUpNNWESLiw8Czzz7LggULGDNmTLD5UNRp3aKmTp3KL3/5S5YtW8bEiRNDuFIRkd5x4MABSkpKcLlc7boAPv744yxcuHBQHSGX7on4MPDII4/wyCOPMH78+HbfLy0tZc+ePaxYsYJdu3axdetWhQERGZACXQADOwAHDhwIdgG8+eabmT9/fvh0AZSQiPgwsGjRIn7/+99z4MABtm7dyt69e6msrKStrY2kpCSGDx/Opz71KfLz80O9VBGRbuuqC+CiRYu4++67w78LoPSriA8DCxcu5J577iEqKooRI0ZQXFzM6NGjKSgoICsri7S0NGJjY0kcgO0lRSSytLW18f777+N2u9t1ASwqKsLpdDJjxoyB3QVQ+kzE/18xYsQIUlJSePHFF8nMzCQ6Olp/WERkwPB6vWzevDnYBfDkyZPk5OSwZMkSHA4HU6ZMGTxdAKXPRPy73qRJk4iOjsZms6k1sYgMCIEugCUlJaxatSrYBfBf/uVf1AVQzkvEh4HCwkJ+/OMf6/iMiIS1hoYGVq9e3a4L4KhRo1i6dCkOh4OLLrpIAUDOW8SHAYDPfOYzbNmyhUmTJqmiVkTCRm1tLStXrsTlcgW7AE6YMIHbbruN4uJihg0bFuolyiChMAA89dRTvPbaa7z44ovMmDEj2G8AaPfPIiJ97dixY6xYsQK32x3sAjh16lS+9rWvUVxcTG5ubqiXKIOQwgBQVFREWloamZmZHW5TKBCRvlZeXh5sAvThhx9itVqZNWuWugBKv7EYhmGc604ej4fU1FRqa2sjpjOV3++ntLSUqqoqhgwZwsiRI0O9JBEZRA4ePBjsAfDRRx9hs9mYO3cuTqdTXQCl13T3/Vs7A6dpbW3l17/+NW+88QYfffQRbW1tpKamYrPZGD16ND/84Q/Jy8sL9TJFZAAyDIN9+/bhcrmCXQDj4+NZsGABy5YtUxdACSntDJxSW1vLHXfcwcaNG5kzZw6TJk0iNzcXq9VKRUUFL774IkOHDuXPf/4zsbGxoV6uiAwAfr+fnTt3BncAjhw5QnJyMosWLcLpdDJnzhz9fSJ9SjsDPfTyyy/z3nvv8d///d8UFRWRlJTU7vYbbriB6dOn8+GHHzJz5swQrVJEwt3pXQBXrFhBVVVVsAugw+Fg5syZamwmYUf/R57y29/+lqVLl/KZz3ym09tzc3PJzc3lk08+URgQkXZaW1vZtGlTMAAEugA6nU6Ki4uZOnWqugBKWFMYOCU7O5uKiooO329paaGiooLvfOc7REVFMWnSpBCsTkTCTXNzM+vXr8ftdrN69Wrq6+ux2+1cc801OJ1OdQGUAUVh4JRly5bx2GOPsWTJEpYtW0ZmZibHjh1j586dbNq0idraWh5++GEmTJgQ6qWKSIg0NDSwZs0aXC4X69ato7m5mVGjRvFv//Zv6gIoA5oKCE/x+/38/e9/5/nnn2fnzp0cOnQIq9XKsGHDWLRoETfeeCPFxcWhXqaI9LNAF0C32817770X7ALocDhwOBzqAihhrbvv3woDZ6ivr6eyspLs7GySk5NDvRwRCYHq6mpKSkooKSlh8+bNwS6AxcXFOBwOdQGUAUOnCc5TUlJSu5MEfr8fwzCwWq3a/hMZxAJdAN1uN9u3b8dqtTJz5kweeughFi9ezJAhQ0K9RJE+ozBwDqoAFhm8Dh06FGwCdHoXwMcee4xFixYN+p1QkQCFARGJGIEugIEmQPv37yc+Pp758+fzhS98gQULFqgLoEQkhQERGdQCXQADg4BO7wJ45513MnfuXHUBlIinMHCGtrY2LBaLLg+IDGB+v5/3338fl8vVoQtgcXExM2fOJCYmJtTLFAkbCgNnKC0t5U9/+hP33HMPNpst1MsRkW46vQvgypUrOXHiBNnZ2cEjgOoCKNI1hYEzeDweXnrpJa655hrGjBkT6uWIyFk0NzezYcMG3G43q1ator6+noKCAq666iqcTicTJkzQKSCRblAYOMPw4cMBs8pYYUAk/AS6ALrdbtauXUtzczMXXXQRN954Iw6Hg1GjRikAiPSQwsAZUlJSSE9P5+DBg6FeioicEugCWFJSwoYNG4JdAL/0pS+pC6BIL1AY6ERhYSGHDh0K9TJEIlpNTU2wCVCgC+CUKVO4++67KS4uZujQoaFeosigoTDQieHDh/PRRx+FehkiEae8vJwVK1bgcrnYvn07FouFWbNm8c1vfpOioiJ1ARTpIwoDnSgsLOSdd97BMAxdexTppr/97W9s3LiRxYsXs3jx4m5X7ge6AJaUlLB79+5gF8BHH32UxYsXqwugSD9QGOhEYWEhjY2NHDt2jOzs7FAvRySsVVdXc/3117N7926mT5/O008/ze23384DDzxAdnZ2h1BtGAb19fW88MILHboAfv7zn1cXQJEQUBjoROBEwcGDBxUGRM7hpz/9KTU1NWzYsIHCwkKeffZZfv7zn2OxWPjBD37QIQxYLBZiY2N59dVXmTNnjroAioQBhYFO5OfnEx0dzaFDh5g9e3aolyMS1nbv3s3YsWMpLCwE4JZbbuHYsWP813/9Fz/4wQ86vVxgs9l46623iI7WX0Ei4UDtuDoRFRWF3W7XiQKJWCdPnuSnP/0pjz/+OBUVFV3er6Ghgfr6ejIzMzEMA4Do6GiuuuoqmpubeeuttwCCt51OQUAkfCgMdKGwsFC9BiTi+P1+3nzzTS677DIef/xxHn/8cQ4fPtzpfQ3DIDExkYSEBGpqatqFhsLCQubMmcPLL78cfFwRCV8KA11QrwGJRFarlebmZj796U+zadMmUlNTWbt2badv5oHvFRUVsXPnTvbu3Ru8zWazMXPmzOAR3aioqP55ASJyXhQGujB8+HCOHj1Kc3NzqJci0q8uv/xyvv3tb1NYWMhll13Gm2++icfj6XC/QC3ANddcA8Dy5cuDt8XFxVFaWsrYsWP1Z0hkAFAY6EKgGKqrLVKRwSoxMTE4sfPmm29m/fr1HS6ZGYYR/MrPz+fqq6/m5Zdf5i9/+QsAR48eZevWrUyaNIm4uLhOawZEJHwoDHTh9IFFIpEmcBTw8ssvB2D9+vXtLhVYLBasVmvwfg888AAOh4O77rqLSy+9lGnTpjFy5Eg+//nPt3s8EQlPCgNd0MAiiXQ+nw8Ap9PJG2+8QX19ffC25uZm/vCHP/Czn/0MgIyMDJ5++mleeeUV5s6dy69//WvefvttcnNzQ7J2EekZne05CxURymBlGAb79u2jurqauXPndtoLIPBp/tZbb2XZsmWUl5eTkpKCx+MhMTGRP/zhDxw+fJhbb72VuLg44uLimDdvHvPmzevvlyMiF0hh4Cw0sEgGE8Mw2LlzJ263G7fbTVlZGSNHjgwe/ztT4ATAVVddRUtLC48++ihlZWUkJSXx6quv8thjj5GamkpcXFx/vgwR6QMKA2ehgUUy0Pn9fj744INgAKiqqiI9PZ2ioiK+8Y1vMGvWrC5/1ufz8atf/YrnnnuO1tZWPvzwQy699FLuuOMOEhMTz/qzIjKwKAychQYWyUDU2trK5s2bcbvdrFixghMnTpCdnU1xcTEOh4OpU6d269y/YRgcPnyYefPm8dJLLzFixIh+WL2IhILCwFloYJEMFC0tLWzYsAGXy8Xq1aupq6sjPz+fq666iuLiYiZOnNjtkcIBMTExfPe73+2jFYtIOFEYOAsNLJJw1tjYyJo1a3C73axdu5ampiZGjhzJDTfcgMPhYPTo0bq8JSLdojBwFhpYJOHG4/GwcuVKSkpK2LBhA16vl/Hjx3PLLbfgcDiCu1kiIj2hMHAOGlgkoVZTU8OKFStwu91s3rwZv9/P5MmTueuuuygqKiIvLy/USxSRAU5h4BwCJwpE+lNFRUXwBMC2bduwWCzMnDmTBx98kKKiIjIzM0O9RBEZRBQGzuH0gUU6Ty196fDhw8EAsGvXLmJiYpgzZw6PPPIIixYtIi0tLdRLFJFBSmHgHE4fWDRmzJgQr0YGE8Mw+PjjjykpKcHlcvHJJ58Eu/gtXbqUBQsWkJiYGOplikgEUBg4h9MHFikMyIUyDINdu3bhcrkoKSmhtLSUpKQkFi1axFe+8hUuueQS7UCJSL9TGDgHDSySC9VZF8C0tDSKiop48MEHmTVrFjExMaFepohEMIWBbtDAIukpn8/Xrgvg8ePHycrKori4GKfT2e0ugCIi/UFhoBs0sEi6I9AF0O12s2rVKurq6sjLy+PKK6/E4XCcVxdAEZH+oDDQDRpYJF0JdAEsKSlhzZo1wS6A119/PU6nU10ARWRAUBjoBg0sktN5PB5WrVqF2+0OdgEcN26cugCKyIClMNANGlgkNTU1rFy5EpfLxebNm2lra2Py5MnceeedFBcXqwugiAxoCgPdoIFFkSnQBbCkpIQPPvgAi8XCjBkzeOCBBygqKiIrKyvUSxQR6RUKA92ggUWRQ10ARSQSKQx0kwYWDU6GYfDJJ58EA8DHH38c7AL4b//2byxYsICkpKRQL1NEpE8pDHSTBhYNHoZhsHv3blwuF263m9LSUhITE1m0aBG33367ugCKSMRRGOgmDSwa2AJdAEtKSnC73VRWVpKamhrsAjhz5kxsNluolykiEhIKA92kgUUDz9m6ADocDqZNm6YugCIiKAx0mwYWDQxer5cNGzbgcrk6dAEsLi7m4osvVhdAEZEzKAx0kwYWha/GxkbWrl2L2+1m7dq1NDY2MmLECK6//nocDgdjxoxRF0ARkbNQGOgBDSwKHx6Ph9WrV+NyuYJdAMeOHcvNN99McXExI0aMCPUSRUQGDIWBHtDAotA6fvw4K1aswO12s2nTpmAXwDvuuAOHw6EugCIi50lhoAc0sKj/VVZWBnsAnN4F8P7776e4uFhdAEVEeoHCQA9oYFH/OHz4MCUlJbhcLnbt2kV0dLS6AIqI9CGFgR7QwKK+0VkXwNjYWObPn68ugCIi/UBhoAc0sKj3BLoABgLA4cOHSUxMZOHChdx2223MmzdPzZ1ERPqJwkAPBAYW6Xjh+fH7/Wzbti0YAE7vAnj//fcza9YsdQEUEQkBhYEe0vHCnvH5fGzZsgWXyxXsApiZmYnD4aC4uJjp06erC6CISIgpDPSQBhadW6ALoNvtZtWqVXg8HvLy8rjiiitwOBzqAigiEmYUBnpIA4s6F+gCWFJSwpo1a2hsbGT48OFcd911OJ1OdQEUEQljCgM9pIFF/xToAuh2u1m/fn2wC+CyZctwOBzqAigiMkAoDPRQpA8s6qoL4Fe/+lUcDgf5+fmhXqKIiPSQwkAPReLAosrKSkpKSoJdAAGmT5/O/fffT1FRkXouiIgMcAoD5yESThSUlpYGuwDu3LmT6OhoZs+ezbe//W0WLVpEenp6qJcoIiK9RGGgJ1paYO9eLq+rg40boaoKmpogKgpSUmD0aBg/HiZMgKFDYQAVzBmGwf79+3G5XJSUlLBv3z5iY2OZN28en/vc51i4cKG6AIqIDFIKA92xfz+88gq8+CLU1HBFbS0NjY0Yx479s0Le74fAcbn4eJg2DZYuhU9/2vx9GOqsC2BCQgKLFi3iy1/+MpdccgnxYbp2ERHpPQoDZ3P4MHzve7B8OTQ0QGwsJCXhi4ujqqyM1JwcYqLP+Ffo85m7BWvXwrp1kJcHd94JX/iCuYMQYoEugIEagIqKClJTU1m8eDH33Xcfs2fPVhdAEZEIozDQGb/f3AX4/vfNSwEpKZCfH9z2t3m9AHhbWjqGgehoSE42v1pbobISvvMdeOcdM1iMHNnfrybYBdDtdlNSUhLsAlhcXIzD4VAXQBGRCKcwcKbGRrjvPnjjDfPNPy/vn9v/p9hsNiwWCy1eL4mJiV0/VkwM5OSYOwUlJXD11fBf/2VeOuhjgS6AJSUlrFy5Eo/Hw9ChQ7n88stxOp3qAigiIkEKA6drbITbb4d334X0dOjijd6CGQi8LS3de9z4eDNUVFbC3XfDj35kBoNe1tjYyLp163C73cEugIWFhVx33XU4HA7Gjh2rLoAiItKBwkCAzwdf/7oZBIYMOWfRn81mw3vqckG3WK2Qm2sGgvvvh6QkcDgubM2YXQDXrFmDy+UKdgEcM2YMy5Yto7i4mJEhuCwhIiIDi8JAwG9+A2++CRkZ3ar+t9lseDyenj2HxWJeNigvh29+E956C86jYU+gC2BJSQkbN26kra2NSZMm8dWvfpXi4mIKCgp6/JgiIhK5FAYA9u0zt+6joyEhoVs/EhsbS2trK37DwNqTrXeLxdwhKC2FJ56AZ57pVj+Cqqqq4BHAQBfAadOmqQugiIhcMIUBw4BHH4Xjx83r+t0UOH7nbWnp+fTCqChITYXXX4fPfKbLgsKysrJgANixY0ewC+C3vvUtFi9erC6AIiLSKxQGtmwx+wGkp3c4NXA2sYEw4PWe3yjj5GTweOC55+BTnwKLBcMwOHDgAC6XC7fb3a4L4BNPPMHChQtJTk7u+XOJiIichcLASy+ZbYYzM7v9I/tbWvjfY8fY1NJC/eHDJNtsjIyN5fMZGSzqyZt1airGli3s/+tfefvIEVwuV7AL4MKFC9UFUERE+kVkh4GaGrOfQEJCj+YIHG1tpdHvZ0l8PNnR0SSmp+Ouq+O+sjK+lZvLv55j+94Amhob8dTXE3vsGCVf/Sp/Hj+eoqIidQEUEZF+F9lhYMsWc6u+h8V385OSmJ+URPnRozQ3NzMyI4Mb0tO56cABXjh+vNMwYBgGjY2NeOrqqKurw+fzER0dTU58PNfn5nLLu++qC6CIiIREZIeBjz4yfz2zpXA3xZ46XmgAVouFnJgYdjY1BW/3GwYNDQ3UeTzU1dfT1tZGTEwMKSkppKSkEB8fj8Xjgbo6OHnS7G8gIiLSzyI7DOzYYZ4mOE9tMTGcbGvjYGMj65ubWVtfz5LkZDx1dXg8Hurr6/H7/dhsNtLT00lOTiYuLo52FyTi4syTDLt3w4IFF/ySREREeiqyw8C+feb8gPP0C4+Hl1taiNm/HyswOyqKa+vqKKurIy4ujiFDhpCSnIwtNpYuKxJiYszuh6Wl570OERGRCxHZYaC5uUfHCc/0+awsxpw8yfG2NtYDbRYLaVlZFKaldb8A0GIxv7o750BERKSXRfbYugsc2jMiNpbPjh/P54YN41cTJxKTnMyTDQ3EnM9ugwYIiYhIiER2GEhIAL//gh4iKiqKjPR0YqKjcSYns6u5mcM9GWBkGObX+TQuEhER6QWRHQbGjYPW1l57uJZTxYj1PQkYXq9ZNzBiRK+tQ0REpCciOwxMnGj+2sMTBcd9vg7f8xkGb9XWEmuxMCI2tvsP1txsTkkcN65HaxAREektkV1AOGGCWUDo8/XoVMF/VFTQ0NbGtIQEsmNiqPH5+HttLQe9Xu7NziahJ0WJTU0wfjykpJzHCxAREblwkR0Gpk83G/3U1vZoNsFlKSm8dvIkr5w4QW1bG4lRUYyLi+Nr2dk9m01gGGYQufTS81i8iIhI74jsMJCcDJ/9LPz0p+Ybczcr+i9LSeGy3vgkX1cHiYlw3XUX/lgiIiLnKbJrBsAMAwkJ5htzfzIMcy5CURGMHNm/zy0iInIahYFx4+Dyy8035ra2/nvekyfNEHLbbf33nCIiIp1QGAB49FHIz4eqqv55vtZWaGiAm2+GOXP65zlFRES6oDAAkJMDjzwCUVFmMWFf8vuhstI8QXDffX37XCIiIt2gMBBwzTVwyy3mJ/a+qh/w++HoUTN8/OQnkJTUN88jIiLSA5F9muB0Fot5uaC5GX73O/PIX1pa780M8PnMHYHsbHj2WZg8uXceV0RE5AJpZ+B0UVHw1FPwta+Zn+LLyy+8XbFhmJceKirMUwO/+Q3Mnt076xUREekFCgNnslrhoYfM3YGxY81P89XV5if7njAM85JDIFAsWwZvvglTp/bJskVERM6XLhN0ZcECeOMN+PnP4YUXzJMGhmFe54+PN9sXn3kJwe83LzM0NZlfcXHmLsA994DDEZrXISIicg4Wwzj3lB6Px0Nqaiq1tbWkRGIP/bo6eOst+OMfYdcu8w2/tdXcRTi9c6FhQGysOWfg05+Gz30Opk3rvboDERGRHuju+7fCQE/V1sLu3eZXRQW0tJi1BomJMGqU2cRo5EiI1qaLiIiEVnffv/WO1VOpqTB3rvklIiIyCKiAUEREJMIpDIiIiEQ4hQEREZEIpzAgIiIS4RQGREREIpzCgIiISIRTGBAREYlwCgMiIiIRTmFAREQkwikMiIiIRDiFARERkQinMCAiIhLhujWoKDDY0OPx9OliREREpPcE3rfPNaC4W2Ggrq4OALvdfoHLEhERkf5WV1dHampql7dbjHPFBcDv91NeXk5ycjIWi6VXFygiIiJ9wzAM6urqyMvLw2rtujKgW2FAREREBi8VEIqIiEQ4hQEREZEIpzAgIiIS4RQGREREIpzCgIiISIRTGBAREYlwCgMiIiIR7v8HYTLAdg7WZQ8AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -192,10 +192,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:45.185408Z", - "iopub.status.busy": "2024-02-09T16:52:45.185011Z", - "iopub.status.idle": "2024-02-09T16:52:45.189661Z", - "shell.execute_reply": "2024-02-09T16:52:45.188996Z" + "iopub.execute_input": "2024-02-14T16:07:38.905138Z", + "iopub.status.busy": "2024-02-14T16:07:38.904926Z", + "iopub.status.idle": "2024-02-14T16:07:38.909508Z", + "shell.execute_reply": "2024-02-14T16:07:38.908832Z" } }, "outputs": [ @@ -236,10 +236,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:45.192228Z", - "iopub.status.busy": "2024-02-09T16:52:45.191823Z", - "iopub.status.idle": "2024-02-09T16:52:45.335844Z", - "shell.execute_reply": "2024-02-09T16:52:45.335265Z" + "iopub.execute_input": "2024-02-14T16:07:38.911823Z", + "iopub.status.busy": "2024-02-14T16:07:38.911619Z", + "iopub.status.idle": "2024-02-14T16:07:39.086339Z", + "shell.execute_reply": "2024-02-14T16:07:39.085607Z" } }, "outputs": [ @@ -269,7 +269,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABh+klEQVR4nO3dd3yT5frH8U+SNt27tFjassteMpVdaFCOchQ3MhT30SMeKEP2kCHrCIIgIjKcqCiun6SADOEgCOJA9iptKXTvNknz/P6IraCMFtI+SXO9Xy9e59Dx5IpQ8s39XNd9axRFURBCCCGEy9KqXYAQQggh1CVhQAghhHBxEgaEEEIIFydhQAghhHBxEgaEEEIIFydhQAghhHBxEgaEEEIIF+dWkS+yWq2kpKTg5+eHRqOp6pqEEEIIYQeKopCXl0dERARa7dXf/1coDKSkpBAVFWW34oQQQghRfc6dO0dkZORVP1+hMODn51d+MX9/f/tUJoQQQogqlZubS1RUVPnr+NVUKAyU3Rrw9/eXMCCEEEI4mevd4pcGQiGEEMLFSRgQQgghXJyEASGEEMLFSRgQQgghXJyEASGEEMLFSRgQQgghXJyEASGEEMLFSRgQQgghXJyEASGEEMLFSRgQQgghXJyEASGEEMLFVehsAiGEevItFlJMJoqtVjSAt05HlIcH+mscRyqEEJUhYUAIB1NUWooxK4u9ubkcyMvjZHExJqsVK6DBtpznpdPRzNubtr6+dA8IoHtgILrrHEQihBBXI2FACAeRWFzM+osX+fDiRVJMJhRAB3hqtfhotWg1GhTAqiiUWK3syc1ld24uK1JSaOTtzaNhYdxXqxZB7u4qPxMhhLORMCCEykoVhTWpqSw4d44Msxm9RkOom9s1bwN4X/L/i61WjhUWMunMGVaeP8+0+vUxBAVd98hSIYQoI2FACBWdLS5m3MmT7MjJQQdE6PVoK/ki7qnVcotej0VRSCwp4emjR3mgVi0m1atHgJv8iAshrk86kIRQyaGCAh46dIit2dkE6nSE3UAQuJSbRkOEXo+HRsO7Fy4w9PBhLppMdqxYCFFTSRgQQgVHCgoYdvgwZ4qLidDr8dLp7HZtfzc3wtzd+SE3l8ePHCHTbLbbtYUQNZOEASGqWZbZzFNHj5JUUkKEXl8lUwB6rZYwd3f25+Xx4vHjlCqK3R9DCFFzSBgQoprNTkzkeFERtW/ytsD16LVaQtzc+C47m3cvXKiyxxFCOD8JA0JUo82ZmXx08SL+Oh1u1dDt76XToQPmJSZyqqioyh9PCOGcJAwIUU1KFYWZiYmYrVb87NgjcD2h7u6km838Nymp2h5TCOFcZO5IiGqyIzubE4WFBLu7V2oPAKvZTPqnn5KzaxelBQV4REcTdv/9+LRsWaHv12o0+Op0bMrMJKWkhAgPjxt9CkKIGkpWBoSoJh9evIhFUfCs5JkC51esIOPbb/G//XbCBw9Go9WSOH8+hUePVvga/joduRYLn6alVbZsIYQLkDAgRDVIN5nYmp2NTyVvDxSdPEnuDz8Q9uCDhD/yCEGxsUS//DLuoaFc/OijCl9Hq9HgptHwcVoaikwWCCH+QsKAENXg98JCCktL8ankqkDevn2g0RDYu3f5x7Tu7gT26EHRiROYMzIqfC0frZaUkhLSZN8BIcRfSBgQohocLizECpWeICg+cwb9Lbeg8/K67ONeDRvaPn/2bIWv5anVUmS1criwsFI1CCFqPgkDQlSDwwUFAJU+PMiSk4NbYODfPu4WEGD7fHZ2ha/lptFgBY5IGBBC/IWEASGqQbrZzI3sKmA1mdBcctiQ1WoFQKPXA6BU4uwBjUaDFsixWG6gEiFETSajhUJUA5Oi3FAY0Or1KBYLFouFU6dPU1JSQkBAAF75+SiKUh4KKkoBzNJAKIT4C1kZEKIa6DUabuQl2C0gAEtWFklJSZSUlKDX61GsVi6cPElJSQmZZjM5OTnlKwYV4V4NOx8KIZyLhAEhqkGYXo/1Bt6Re9StS8G5cxRlZxMSHIxWo6Fu3brUMptxc3NDEx5OSkoKx44dIykpidzc3Ks+jqIoKECQmywICiEuJ2FAiGrQzNsbDVR+xr9JE0rNZnxPnMDHxweLxYLFZCJ/9278YmJo0LYtjRo3JiwsDLPFQnJyMseOHSM5OZm8vLzLHs+sKOiApt7edn1uQgjnJ28RhKgGzby90Wk0mBUFfQWX6QsLC8n09sanQwfyv/oKTVERFkXh7IcfYkpLo+4TTwDg7uZGcHAwwcHBmMxmcnNzycvNJSkpCa1Wi5+fH/7+/lg9PfHUamkmYUAI8RcSBoSoBs19fPDW6Si0WtFXYOMhs8VCUnIy3l5eRI4cSfonn5CzaxeWjAxK69cnauRIvJs2/dv36d3dCQ0JITQkBJPJRG5uLrm5ueTk5GAJCKBOaSknDhwgqGNHdNV4WJIQwrFplAqsW+bm5hIQEEBOTg7+/v7VUZcQNc4Lx47xSVoadfT6a+43oCgKZ86epdRioX79+pe9aB89epTQ0FBCQkIq9dhFxcUkFRVRf+dO3L75hsDAQGJjYzEYDNx6661oK7kzohDCOVT09VtWBoSoJg+HhfFFRgbFVite13hXfj41lZLiYurVq/e3d+96vR5TJfYWKFPs5kZtf382TZhA1qBBGI1GEhIS2LBhAyEhIfTp04d+/frRqlUrCQZCuCAJA0JUk9sDAmjq7c2vBQVEaLVXXB3IysoiJzubiDp18PT0/NvnbyQMWBWFgtJSHg0PJ9zDg/CmTWnatCn//ve/OXToEEajkc2bN7N+/XrCwsKIi4vDYDDQvHnzSu+YKIRwTnKbQIhq9H12NkOOHEEHBP5lxK+wsJCziYkEBwcTHhZ2xe9PS0sjOzubxo0bV/gxU00mQtzd+apVK6KuEDDAtrPhzz//TEJCAps3byYzM5OIiIjyYBATEyPBQAgnVNHXbwkDQlSzyadPsyIlhXB3d9z/WJI3WyycPnUKT09PoqOjr/q9OTk5pKSk0KRpU7QVeHEuKC0lt7SUBQ0b8nB4eIXqs1qt7N+/n4SEBLZs2UJOTg7R0dEYDAYMBgMNGjSo2BMVQqhOwoAQDirXYuHe337jUEEBt+j1aIEzZ85QWlr6t4bBvyoqKuLMmTM0aNAADw+Paz5OidVKmtnMP0JCeKtJkwqFh7+yWCzs27cPo9HId999R35+Pg0aNCgPBtcKLkII9UkYEMKBnS4qYtDhw5wuKoKMDPLz8qhXrx6e13mBLy0t5dixY0RGRuLn53fVryu2Wkk3m+kaEMA7TZvib4ddB00mE3v27CEhIYHt27dTWFhITEwM/fr1Iy4ujoiIiJt+DCGEfUkYEMLBnSgs5K6dOzlpMnGLjw9hFfzZOnrsGKEhIVccL1QUhZzSUgqsVnoEBLA8JoYgd3d7l05JSQm7du0iISGBHTt2UFJSQosWLTAYDMTFxRF2lZ4HIUT1kjAghIP78ccfeXLsWDz/9S+SbrkFgFru7uius5x/+vRpPD09ueWP7yljtlq5aLHgpdUyNDyc0dHR+FTDxkKFhYV8//33GI1Gdu/ejclkok2bNhgMBvr27VvpPRGEEPYjYUAIB5aSksKQIUNo2rQpry1axGeZmcw6e5YLZjM6bIcJeVxl3j85ORmLxULdunVRFIUiq5Ws0lI0QIyXFzMbNKBrQEC1Pp8yBQUFbN++HaPRyP/+9z+sViu33nor/fr1IzY2lsDAQFXqEsJVSRgQwkEVFxczfPhw8vPzeffdd8t/pi6aTGxIS+PdCxc4U1yMFUBR8NRq8dBqKVsvyMzOJqeoiMCwMFAU9FotrXx8GBwezt2hodWyGlARubm5fPfddxiNRvbt2wdAp06dMBgM9OrVS/4tEaIaSBgQwgEpisKkSZPYtm0b77zzzhX3CzBbrWzPzmZfXh4/5+fzW0EBhVYrZT+oxYWF5KSkcH/btrQNCKB7QAAd/Pwceh+ArKwstm7ditFo5MCBA+h0Orp06YLBYKBnz574+PioXaIQNZKEASEc0Hvvvcd///tfZs+eTVxcXIW+x2y1ctFspsRqRQOcPnqU0U89xQfvvUdMTEzVFlwF0tLS2LJlC0ajkV9++QW9Xk/Xrl2Ji4uje/fueHl5qV2iEDWGnE0ghIPZu3cvixYtYtiwYRUOAgDuWi11Lhk5DKxbF42ikJSU5JRhoFatWjz88MM8/PDDpKamsnnzZoxGI+PHj8fT05Pu3bsTFxdH165dr7uXghDCPmRlQIhqkJKSwuDBg2nRogWLFi26qcOAFEWhd+/ePPbYYzz22GP2K1JlycnJJCQkYDQaOXbsGN7e3vTq1Yu4uDi6dOmCexWMSApR08nKgBAOoqioiPj4ePz9/Zk5c+ZNnwqo0WiIjo7m3LlzdqrQMdSpU6c84Jw9e7b8ZMVvvvkGPz8/evfuTVxcHB07dsTNDpsoCSH+JD9RQlQhRVGYMWMG586dY/Xq1XZbWYuMjKxxYeBSdevW5amnnuKpp57i5MmT5cHgiy++ICAggD59+hAXF0f79u3lyGUh7EDCgBBVaN26dRiNRl599VUaNmxot+tGR0dz4MABu13PkTVs2JDnnnuOZ599lmPHjpUHgw0bNhASEkKfPn0wGAy0bt1agoEQN0jCgBBVZM+ePSxZsoThw4fTp08fu147KiqK9PR0ioqKXKb7XqPR0KRJE5o0acILL7zAoUOHMBqNbN68mfXr1xMWFkbfvn0xGAy0aNHCoUcthXA00kAoRBVISkpi6NChtGzZktdee83u71h/+eUXhg8fzvvvv++UEwX2ZLVa+eWXX8qDQWZmJhEREcTFxWEwGIiJiZFgIFyW7DMghEoKCwsZPnw4JSUlrF279pqnC96o7Oxs+vbty9y5c4mNjbX79Z2V1Wpl//79JCQksGXLFnJycoiOji4PBva8VSOEM5BpAiFUoCgK06ZNIyUlhdWrV1dJEAAICAjA19eXxMTEKrm+s9JqtXTs2JGOHTsyZswY9u3bR0JCAuvXr+ftt9+mQYMG5cGgbt26apcrhMOQMCCEHa1Zs4YtW7Ywb948GjRoUGWPUzZeKGHg6tzc3Ljtttu47bbbGDduHHv27CEhIYF169bx5ptvEhMTU37kcp06ddQuVwhVSRgQwk52797N0qVLeeKJJ+jdu3eVP15UVBRJSUlV/jg1gV6vp0ePHvTo0YOSkhJ27dpFQkICb731FkuWLKF58+blwSA8PFztcoWodtIzIIQdnDt3jqFDh9K2bVsWLFhQLSNuy5cv5/PPP+fbb7+t8seqqYqKiti5cydGo5Hdu3djMplo3bo1BoOBvn37EhoaekPXtVqtmM1m2U5ZqE4aCIWoJoWFhTz22GNYLBbWrl2Lr69vtTzuN998w+TJk9mxYwfe3t7V8pg1WUFBAdu3b8doNLJnzx5KS0u59dZbMRgMxMbGEhQUVOFrHT16lNdee43U1FRiY2N54okn5M9IqEIaCIWoBoqiMHXqVFJTU1mzZk21BQGw7UIIOO2BRY7Gx8eH/v37079/f3Jzc9m2bVv5hlGvvvoqHTt2xGAw0Lt37+u+KcrOziY8PBwPDw9GjBiBm5sbTz/9NDqdrpqejRCVI9t1CXET3nnnHbZu3cqMGTOoX79+tT52dHQ0QI3ellgt/v7+DBgwgCVLlrBp0ybGjRuHxWLhlVdewWAw8PHHH3OtRdXOnTszdepUevXqRVBQEF26dJEgIByarAwIcYO+//57li1bxtNPP03Pnj2r/fEDAgLw8/OTMFDFgoKCGDhwIAMHDiQ9PZ0tW7bQrl07rFbrVV/gTSYTer2ed955hw4dOlR7UBSismRlQIgbkJiYyMSJE+nevTtPPvmkKjVoNBqioqJkvLAahYaG8tBDD9GoUaNrvtPX6/UAbNq0iXvvvfe6txWOHDnC66+/zsMPP8z7779/zVUHIaqChAEhKqmgoIBRo0YRGhrKjBkzVD0cJyoqSlYGHExpaSkAn376Ke7u7nTt2vWaf0d++OEH7rjjDtatW4e3tzfjx4/nmWeeobCwsLpKFkJuEwhRGVarlSlTpnDx4kXWrl2Lj4+PqvVERUWxf/9+VWsQV7Zy5Up69uxZ3ttxKUVR0Gg0pKWlMXnyZBo1asTGjRvx8fHhxx9/pGfPnjz88MOy1bSoNrIyIEQlrFq1im3btjFjxgyH2M42Ojqa9PR0eRfpIBRFQafToSgKW7ZsueotAqvVCsBHH31EWloaL774YnmwbNy4MS1btuTgwYPVWbpwcbIyIEQF7dixg+XLl/Pss8/So0cPtcsBbCsDIOOFjsBsNvPqq6/i6+uLoigEBATQrVu3v52YaLVay28bfPbZZ7Ro0YLOnTuXfz4vLw+tVkt6ejrw5yqCEFVJVgaEqICzZ88yadIkevXqxfDhw9Uup1xZGJC+AfVptVr8/PyYNWsWo0aNIiMjg08++aS8wbOoqKj86zQaDcnJyVy4cIH27dtftgVyeno6Bw8exGAwqPI8hGuSMCDEdeTn5zNy5EjCwsKYPn26qg2Df1U2XigTBerT6XSMGDGCixcvlofHJUuW8MQTT2CxWFi1ahWDBw/m5MmTgC1g6vX6y4KAxWJh69at6PV6evXqBSCrAqJaOM6/akI4IKvVyuTJk8nIyGDBggUOt6Vs2XihrAw4lqioKKZNm8b58+f54IMPcHNz48yZMxw6dIhbbrkFgObNm5OYmHjZiOKJEydYv349DzzwAPBnb4EQVU16BoS4hpUrV7Jz505ee+21K3aFOwIJA46t7LCjefPmkZ6ejre3N4qi4OXlRd++ffnyyy/p06cPBQUFjB07lpKSEv7zn/8Al68KlJaWlp9S6QjNq6JmkTAgxFVs376dFStW8K9//YuuXbuqXc5VRUdH8+OPP6pdhqiAsmCg0Wjw8PAgPj6ewYMH06hRIxo2bEheXh5vvfUWLVq0KP+6MjqdjrVr17Jx40ZiYmKIi4vDYDBQp04dVZ6LqFnk1EIhruD06dMMGzaMLl268Oqrrzr0fVs5vdD57d27l4sXL9K5c2dq1ap11a8rKSlh9+7dJCQksGPHDoqLi2nevDlxcXHExcVRu3btaqxaOAM5wliIG5Sfn8/QoUNxc3Nj9erVDv8C++uvv/L444/z/vvvy3ihCykqKmLnzp0kJCSwa9cuTCYTrVu3xmAw0Ldv3/JVCOHa5AhjIW6A1Wpl4sSJZGVlsXbtWocPAnD56YUSBlyHl5cXBoMBg8FAQUEB27dvJyEhgddee40FCxbQrl07DAYDsbGxBAcHq12ucHASBoS4xJtvvsmuXbtYtGhR+Qy/o/P395fxQhfn4+ND//796d+/P7m5uWzbtg2j0cjcuXOZO3cuHTt2xGAw0Lt3b1ndFVckYUCIP2zdupW3336bF154gdtvv13tcipMxgvFpfz9/RkwYAADBgwgKyuL7777DqPRyCuvvMKsWbPo0qULBoOBnj174uvrq3a5wkFIGBACOHXqFFOnTqVv374MGzZM7XIqTcKAuJKgoCAGDhzIwIEDSU9PZ8uWLRiNRqZMmYJer+e2227DYDDQvXt3p7glJqqONBAKl5ebm8uwYcPw8PBg1apVTvmP4ptvvsmGDRvYtGmT2qUIJ3DhwgU2b96M0Wjk0KFDeHh40L17dwwGA127dsXDw0PtEoWdSAOhEBVQ1jCYk5NTfp68M4qKiiIjI4PCwkKnfQ6i+oSHh/Poo4/y6KOPkpKSQkJCAkajkTFjxuDt7U2PHj0wGAx06dIFvV6vdrmiGkgYEC5t+fLl7Nmzh8WLFzv15i1yeqG4UREREQwbNoxhw4aRmJiI0WjEaDTy7bff4uvrS69evTAYDHTq1Ak3N3nJqKnkT1a4rC1btrBq1SpefPFFunTponY5N6VsvDAxMVHCgLhh0dHRPPnkkzz55JOcOnWqPBh89dVXBAQEEBsbS1xcHB06dHCoA7vEzZMwIFzSyZMnmTp1KgaDgSFDhqhdzk0LCAjA399fmgiF3TRo0IBnn32WZ555huPHj5cHg88++4zg4GD69OlDXFwcbdu2lWBQA0gYEC4nNzeXkSNHEhkZyaRJkxx6q+HKiIyMlDAg7E6j0RATE0NMTAzPP/88v//+O0ajkYSEBD7++GPCwsLo27cvcXFxtGzZssb8PLkaCQPCpVitVsaPH09eXh7Lli3Dy8tL7ZLsJjo6WjYeElVKo9HQokULWrRowYgRI/j1118xGo1s2rSJ999/n1tuuaX8nISmTZtKMHAiEgaES1m6dCl79+5lyZIlREREqF2OXUVFRbFv3z61yxAuQqvV0qZNG9q0acOoUaM4cOAARqORL774grVr1xIVFVUeDBo1aiTBwMFJGBAuIyEhgTVr1vDSSy/RqVMntcuxOxkvFGrRarV06NCBDh06MHbsWPbt24fRaOTjjz9m1apV1K9fv/zI5Xr16qldrrgC2XRIuIRjx44xfPhwevXqxYwZM2rku5TffvuNxx57TE4vFA7DbDazZ88eEhIS2LZtG4WFhTRu3Lg8GERGRqpd4vWlpcGPP8Lhw/Dbb3D8OBQVgUYD3t7QpAm0bAlNm0LHjhAUpHbFl5EjjIX4Q05ODkOGDMHX15dVq1bh6empdklVIicnhz59+jBnzhz69u2rdjlCXMZkMrFr1y4SEhLYsWMHxcXFNG/evPxWQu3atdUu8U+KAvv2wfr18NVXkJtr+xiAXg9l0xNWK5SU2IKBRmMLAvfeCw8+CK1a2T6mMgkDQgClpaW8+OKLHDlyhHXr1tW4PoG/io2NZfDgwQwfPlztUoS4qqKiIr7//nsSEhL4/vvvMZlMtG7dmri4OPr27UutWrXUK+74cZg4Efbssb3Q+/iAvz/odNf+PosFcnJsqwZeXtC7N0ybBiqffiphQAhg0aJFvPfeeyxdupSOHTuqXU6VGzZsGA0bNmTy5MlqlyJEhRQUFLB9+3YSEhL43//+R2lpKe3atcNgMBAbG0twcHD1FGKxwOrVsHAhZGba3uV7e1f+3b2iQEEBZGdDeDiMGwcPPfTnakI1kzAgXN6mTZuYMGECI0eOZNCgQWqXUy0mTpxIamoqK1euVLsUISotNzeXbdu2kZCQwA8//ABAhw4dyoNBlb3+FBbCf/4DX34Jbm4QGnrzL95WK1y8aPv/jzwCs2aBu/vN11pJEgaESzt27BiPP/44ffr0Ydq0aTWyYfBKVqxYwSeffILRaFS7FCFuSnZ2Nlu3bsVoNHLgwAE0Gg2dO3fGYDDQq1cvfH197fNARUXw7LOwaZNtNcDHxz7XLZOXZ+s5eOAB26pDNZ/vIKcWCpeVnZ3NqFGjqF+/PhMmTHCZIAC2XQgzMzNlvFA4vcDAQAYOHMjAgQPJyMhgy5YtGI1Gpk6diru7O7fddhv9+vWje/fuN/533WqF+HgwGiEkxHav3978/Gy3Gj7+GAICYMYM+z+GHUgYEDVKaWkpL7/8MsXFxbz11lsudy572YFF586do0mTJipXI4R9hISE8OCDD/Lggw9y8eJFNm/ejNFoZMKECXh4eNCtWzcMBgNdu3at3LTQJ5/Axo22F+mq3I3U1xdKS2HtWujRA+Liqu6xbpCEAVGjLF68mP3797Ns2TLHGlWqJhIGRE0XFhbGoEGDGDRoECkpKSQkJGA0Ghk7dixeXl706NEDg8HAbbfdhl6vv/qFkpNt9/HB9mJd1fz94fx5mDIF2reH6mqMrCAJA6LG+Oabb3jvvfcYPXo07du3V7scVfj7++Pv7y9nFAiXEBERwbBhwxg2bBiJiYnlwWDTpk34+vrSq1cvDAYDnTp1wu2v9+pnz4bUVKiucWONBsLC4NQpWLwYpk6tnsetIGkgFDXCkSNHGD58OAaDgSlTprhUn8BfDRs2jAYNGjBlyhS1SxFCFadOnSo/cjkxMRF/f39iY2MxGAy0b98eXVIS9Olje4EOCKjwdQutVtZlZPBbURGHiovJLS1lyi23cHdgYMWLy8iwjSzu3FktqwPSQChcRlZWFvHx8TRq1Ijx48e7dBAA2xkFcpSxcGUNGjTg2Wef5ZlnnuH48ePlweDzzz8nODiYcXo93bOzcYuOpjL/WmRbLLyVnk5td3cae3iwv7Cw8sUFBtpWJDZuhMcfr/z3VxF1dkEQwk4sFgvjxo3DZDIxb968a98jdBFylLEQNhqNhpiYGF544QU2btzI2rVruatfPyK//5703FyOnzxJ6oULFBYVcd0lciDUzY1NjRvzVaNGjAgLu7GidDrbHgYffPDnFscOQFYGhFNbtGgRBw8eZPny5YSHh6tdjkOIioqS8UIh/kKj0dC8eXOaa7Uor79OcUgImpIScnNzyczMxN3dvbznxtPT84orBnqtlhB77CTo62vrHUhLs/UROAAJA8Jpff3113zwwQeMGTOGdu3aqV2Ow4j6Yy90mSgQ4goOH0ZTUoLXLbfgpdUSXrs2hYWF5Obmkp2dTUZGBnp3d/wDAvD398fDw6NStxIqxNMT0tNtJyE6SBiQ2wTCKf3+++/MnDmTAQMG8MADD6hdjkMpGy+UWwVCXMHhw7bGwT/e4WsAH29vbqldm5iYGKKjo/H28SErM5NTp05x6uRJ0tLSKCkpsV8Nbm62WwSHD9vvmjdJVgaE08nMzCQ+Pp7GjRszbtw4l28Y/KuypU5pIhTiClJTbRsAXYEG8PXxwdfHB2vt2hQUFJCbm0tGZiZp6el4eHgQ8MfP103RaGxh4MKFm7uOHUkYEE6lrGHQYrFIw+A1yESBEFdRXFyhQ4i0Gg1+vr74+fpiVRQK8vPJyc0lPT2d86mpKPXq3Xwt9lxtuEkSBoRTWbhwIb/88gtvvvkmYQ5yr80RyUSBEFeh1Va6i1+r0eDn54efnx+pFy6QkZ5OscVy87VU86FF1yI9A8JpfPnll6xfv57Ro0fTpk0btctxaLIyIMRV3MQSf84fkwe1b7kFr5s990SjsW0+5CAkDAincOjQIWbPns0999zDwIED1S7H4ZWNFxYUFKhdihCOpVGjP+/ZV0JxcTHnU1IICAgg+GZ3DrRabb8aNbq569iR46xRCHEVGRkZjB49miZNmjBmzBhpGKyAsomCpKQkGS8U4lLNmtk2/rFYwN29Qt9iKS3lXFISeg8Pdnp6UpCeTtoftwl25udz8Y///1BQEL463fUvWFICHh62WhyEhAHh0MxmM2PHjqW0tJS5c+dKw2AFle01kJiYKGFAiEs1b247rriwsELnEihAcnIyVquVunXrMuLsWc6bzeWf35qXx9a8PADu9PevWBgoKgIfH2jc+Eafhd1JGBAObeHChfz222+sWLGCWrVqqV2O05DxQiGuIiQEunSBzZsrFAYuXrhAYUEB0XXrond358ubXdpXFFsQuececKA3N9IzIBzWxo0b+fjjjxk7diytW7dWuxynI02EQlzFoEG2qYLrjPbl5OSQkZlJeHg4PvZq9isqst0ieOgh+1zPTiQMCIf066+/MmfOHAYOHMi9996rdjlOScYLhbiKPn2gbl3IzLzqlxQVF5Ny/jyBAQEE2fOo4awsaNkSOna03zXtQMKAcDjp6emMGTOGZs2aMXr0aLXLcVqyMiDEVej1MGKEbargChM3FouFpHPn8PTwoPYtt9jvbILc3D8f2x4HHtmRY1UjXJ7ZbGbMmDEAzJ07F/cKdvuKv5PxQiGu4YEHwGCwvVO3Wss/rCgKScnJKIpCZFQUWntNL1kstjDwwAMQF2efa9qRhAHhUObNm8fhw4eZN28eoaGhapfj1MrGC2V1QIgr0Gph+nSoXdt2XsEf+w5cuHCBosJCIiMjcbfXDoFWq+0cgvr1Yfx424qEg5EwIBzGhg0b2LBhA+PGjaNly5Zql+P0Lj3KWAhxBZGRsGgR+PlBairZ2dlkZmURXrs23vZqGLRa4fx5CA2FpUvBnv0HdiRhQDiEX375hblz5/LAAw/wz3/+U+1yagQZLxSiAnr2hNdfp8TDA0tiIkH+/gQFBdnn2mYzpKRAWBi89Rbceqt9rlsFJAwI1aWlpTF69GhatmzJyJEj1S6nRpGJAiGuL6N9e8aHh5MVGEhtqxVNbm6ltyu+jKLYehEuXLBtcrR2rW1vAwcmYUCoymQyMWbMGHQ6nTQMVgGZKBDi2sqaln/z9ydo1y40w4aByWR7R1/ZUGC1Qk4OJCfbvu/55+GLL8AJDlaTHQiFahRFYe7cuRw9epSVK1fe/OEf4m+ioqL44Ycf1C5DCIe1YMECDh06xIoVKwht3BjmzoX+/eHtt2HXLtsLu7s7eHrafun1fzYAKootOBQVQXGxbWLA1xfuvhueego6dVL3yVWChAGhmg0bNvD5558zZcoUmjdvrnY5NVJ0dHT5eKGPj4/a5QjhUD777DM++eQTJk6cePkup7162X4dOwaffALffQdnz0J2tq0P4NIwoNfbQkKrVrbNjO6/H+rVq/4nc5MkDAhVHDx4kHnz5vHggw9y9913q11OjXXpREHTpk1VrkYIx/HLL7/w6quvct9993HPPfdc+YtiYmyjgOPH224ZHDkCiYm2VQCt1ratcP360KSJ7eAhJyZhQFS7ixcvMmbMGFq3bi0Ng1Xs0tMLJQwIYZOWlsaYMWNo0aIF8fHxFfsmf3/bsr8TLf1XhjQQimplMpkYPXo0bm5uzJkzBzd7beohrqhsvDApKUntUoRwCGVNy1qtVpqWLyH/EotqoygKc+bM4fjx49IwWI1kvFAIG0VRePXVVzl69ChvvfUWISEhapfkMGRlQFSbjz/+mC+++IIJEyZIw2A1kjAghM2nn37Kxo0bGTduHC1atFC7HIciYUBUiwMHDrBgwQIeeeQR/vGPf6hdjkuJjIyU2wTC5f3000/MmzePhx56iAEDBqhdjsORMCCqXFFREZMmTaJt27aMGDFC7XJczqXjhUK4oosXLzJ27FjatGnDf/7zH7XLcUjSMyCqnIeHB4sXLyYkJEQaBlVw6emFMlEgXI3JZCI+Ph53d3dpWr4GWRkQVU6r1dKgQQMCAwPVLsUlRUZGAkjfgHA5iqIwa9YsTpw4wfz586Vp+RokDIhqoXHA87tdhb+/PwEBAXJGgXA569ev56uvvmLixIk0a9ZM7XIcmoQBYVdWq1XtEsQVyIFFwtXs37+fBQsW8Oijj9K/f3+1y3F4cvNE3JTjx49z/vx5goKCiImJwcPDA6vVilYrOdORyHihcCXnz59n7NixdOjQgRdffFHtcpyC/Istbti0adN44IEH6NOnD4MHD6Z79+7s3bu3PAgoN3MeuLCrqKgoGS8ULqG4uJj4+Hi8vb2ZNWsWOp1O7ZKcgoQBcUO+/fZb5s6dy8yZM/n555+ZPHkydevW5bbbbmPx4sWArU9AAoFjiIqKkvFCUeMpisLMmTM5c+YM8+fPl6blSpDbBOKG/PTTT9x5553lGwg1b96cHj160LZtW+Lj40lNTWXWrFnSOOggysYLExMTpZFK1Fjvv/8+//d//8esWbOIiYlRuxynIisD4oZYLBZ27dp12cdq1arFiBEjmD9/Pp999hlbtmxRqTrxV2XjhdJEKGqqvXv3smjRIoYOHYrBYFC7HKcjYUDckEcffZRatWoxZcoUMjMzyz/u6+vL4MGD0el0fPnllypWKC4l44WiJktJSWHcuHF06tSJF154Qe1ynJKEAXFDIiMj6d+/P59//jkrV6687EUmODiYO++8k8LCQkpLS1WsUlxKJgpETVRUVMSoUaPw9/dn1qxZMsl0g6RnQFSaoijo9XrmzJmDxWJh6dKlnDp1igEDBtC/f39Onz7NF198wcMPPyydvA5E9hoQNY2iKEyfPp2kpCRWr16Nv7+/2iU5LQkDotI0Gg2lpaXodDrmz59Py5Yteeedd9iyZQtDhw4lMjKSOnXqMG3aNLVLFZeIiorif//7n9plCGE3a9euJSEhgblz59KwYUO1y3FqEgbEDdHpdOWbCz322GP06tWL1NRUfvrpJ1q2bEnnzp3VLlH8RXR0NFlZWeTn5+Pr66t2OULclN27d7NkyRKGDx9ObGys2uU4PQkD4prOnTtHnTp1rngfTqvVlgeCevXqUa9ePbp06aJClaIioqKiANufqYwXCmd27tw5JkyYQNeuXXn22WfVLqdGkE4LcVVTpkzhvvvu4/vvv8dsNv/t84qioNVqOXXqFEeOHFGhQlEZMl4oaoLCwkJGjRpFUFAQM2bMkIZBO5H/iuKKEhISeOONNzh//jwPPfQQH3/8Mfn5+Zd9jUajoaSkhDlz5nD33XdLIHBwMl4onJ2iKEydOpXU1FQWLFiAn5+f2iXVGBIGxN+UlJSwZcsW7rvvPo4fP84999zD0KFDWbBgARcuXLjsaz08PLjrrrt45JFHaNq0qUoVi4qS8ULhzN555x22bt3KjBkzqF+/vtrl1CjSMyD+Rq/Xc9ddd5GTk4OnpyfLli2jTZs2/Otf/+Lo0aNMnTq1fKvPr7/+mtjYWAYMGKBy1aIiZLxQOKudO3eybNkynn76aXr27Kl2OTWOhAHxNxqNhm7dupX/3mq18uyzz9KuXTvuuusujh8/zuLFi9m7dy8zZszgxx9/lO50JyHjhcIZnT17lokTJ9KjRw+efPJJtcupkSQMiOvSaDRYrVY6d+7MyZMnueOOO+jXrx/5+fksX76cevXqqV2iqCAZLxTOpqCggFGjRlGrVi2mT58uDYNVRP6riuvSaDRotVpKS0vx9/fns88+Iz8/n4kTJ/L000+rXZ6ohEvHC4VwdFarlUmTJpGWlsbChQvx8fFRu6QaS8KAqDCdTkdeXh7//Oc/adu2LdOnT1e7JFFJEgaEM1m5ciU7d+5k5syZ5cdwi6ohYUBckaIoV/3cgAED5L6zk/Lz8yMwMFAmCoTD27ZtGytWrOC55567rIdJVA0JA+JvkpOTOXr0KFar9W+f8/Pz4+WXX8bDw0OFyoQ9yESBcHSnTp1i8uTJxMbG8vjjj6tdjkuQBkJxmcLCQv7zn/8A8O6776LX6//2NRqNprrLEnYkYUA4sry8POLj47nllluYOnWq/HtTTSQMiHKX7u61Zs2aKwYB4fyio6PlNo9wSFarlQkTJpCVlcW6devw9vZWuySXIWFAlCvb3WvBggWyu1cNFhUVJeOFwiEtX76cPXv2sGjRovKzNET1kJ4BAcD3338vu3u5iLKJAmkiFI5ky5YtrFq1ihdeeIHbbrtN7XJcjoQBQWJiIhMnTqR79+6yu5cLKAsDSUlJKlcihM2JEyeYOnUqBoOBIUOGqF2OS5Iw4OLKdvcKCQmR40BdhIwXCkeSm5vLqFGjiIyMZNKkSdIwqBLpGXBhVquVKVOmcPHiRdauXSu7e7kQOb1QOAKr1cr48ePJy8tj2bJleHl5qV2Sy5Iw4MJWrVrFtm3bWLhwIXXr1lW7HFGNIiMj5TaBUN2SJUvYu3cvS5YsISIiQu1yXJqsCbuoHTt2sHz5cp555hl69OihdjmimsnKgFCb0Whk7dq1vPTSS3Tq1EntclyehAEXdPbsWSZNmkSvXr144okn1C5HqCA6Oprs7Gzy8vLULkW4oGPHjjFt2jTuvPNOHnnkEbXLEUgYcDn5+fmMHDmSsLAwOQ7UhbVo0YKnn376iltOC1GVsrOziY+Pp379+kycOFEaBh2E9Ay4EKvVyuTJk8nIyGDt2rWyu5cLq1OnDsOHD5cwKKpVaWkpL7/8MkVFRaxYsULOOHEgEgZcSNlxoP/973/lOFCBm5v8+IvqtWjRIvbv38+yZcuoXbu22uWIS8jbAhexfft2OQ5UCKGab775hvfff59Ro0bRvn17tcsRfyFhwAWcPn2aSZMmyXGgQghVHD58mFdeeYW7776bBx98UO1yxBVoFEVRrvdFubm5BAQEkJOTg7+/f3XUJewkPz+foUOH4ubmxurVq6VPQFRYSUkJVqtVNoIRNyUzM5MhQ4YQEhLCypUr5TTUalbR129ZGajBrFYrEydOJCsriwULFkgQEJWyZs0aFi5cSGlpqdqlCCdlsVgYN24cZrOZ+fPnSxBwYBIGarA333yTXbt2MXPmzPLDaYQo8/bbb3Ps2DFKS0uxWCyUlpZy6UJhREQEH374IWfOnFGvSOHUFi5cyM8//8zcuXMJCwtTuxxxDRIGaqitW7fy9ttv8/zzz3P77berXY5wQGPHjmXbtm3odDrc3NzQ6XRoNBoKCws5fPgwiYmJHDp0iIMHD6pdqnBCX3zxBevXr2fMmDG0bdtW7XLEdchsUQ106tQppk6dSt++fRk2bJja5QgHddttt/HRRx+RnJzMTz/9xLFjx0hOTqagoACdTkft2rVp3bo1fn5+apcqnMxvv/3G7Nmzuffeexk4cKDa5YgKkDBQw5QdBxoREcHkyZNldy9xVbfffjsTJkwgNzeXqKgo7r77bho2bEjdunUJDw8nODgYDw8PAgMD1S5VOJGMjAxGjx5Ns2bNGD16tPwb5CQkDNQgZQ2DOTk5ssOguK6oqCjCwsLYuHEjgYGBuLu74+7urnZZwomZzWbGjBmDoii8+uqr0jDoRCQM1CDLly9nz549LF68mMjISLXLEQ6uRYsWaDQafH19JTgKu5g/fz6///47K1asoFatWmqXIypBGghriC1btrBq1SpeeOEFunTponY5wgm0bNmSWbNm4evrq3YpogbYsGEDn376KWPHjqVVq1ZqlyMqScJADXDy5EmmTp2KwWBgyJAhapcjnIS7uzv//Oc/+fnnn7FYLGqXI5zYL7/8wty5c7n//vu555571C5H3AAJA04uNzeXkSNHEhkZyaRJk6RZR1TK6NGjefzxx0lMTASgAhuSCnGZtLQ0Ro8eTcuWLRk1apTa5YgbJD0DTsxqtTJ+/Hjy8vJYtmyZbBsrKq1nz57Uq1ev/O+Ooih/C5RX+pgQACaTidGjR6PT6Zg7d640oDoxCQNObOnSpezdu5clS5YQERGhdjnCCQ0dOvSy32u1tsXC7OxsMjMzCQoKIigoSI3ShINTFIU5c+Zw7NgxVq5cSXBwsNoliZsgYcBJJSQksGbNGl566SU6deqkdjnCyRUUFLBu3TqMRiNHjx7FZDIRFBREWFgY3bt3Z8SIEXh6eqpdpnAgn3zyCV988QVTpkyhefPmapcjbpKEASd07Ngxpk2bxh133MGjjz6qdjnCyZ0/f54XX3yRQ4cO0bZtW+677z7CwsIwm838+uuvLFu2jAsXLrBw4UK1SxUO4qeffmL+/Pk8/PDD3H333WqXI+xAjjB2Mjk5OQwZMgRfX19WrVol79bETVEUhdmzZ/POO++wbNky2rZtS1BQEDqdrvxrtm7dyoABA0hLS5O+FMGFCxcYMmQI9evXZ+nSpbi5yXtKRyZHGNdApaWljB8/noKCAubPny9BQNw0jUbDW2+9xeTJk+nbty+hoaGXBQGANm3a4OnpKacXCkpKSoiPj0ev1zNnzhwJAjWI/Ek6kSVLlrBv3z6WLl0qDYPCbjw8PMjLy/vbx00mE+np6cTHx9OyZUs5sMjFKYrCrFmzOHnyJKtWrZLG0hpGwoCT2LRpE+vWrWPkyJF07NhR7XJEDTJ8+HDeeOMNDh48yD333IO/vz8ZGRkcPnyYHTt2kJiYyLRp02SLaxf30Ucf8fXXXzNjxgyaNm2qdjnCziQMOIFjx44xffp0+vfvzyOPPKJ2OaKG+fe//42npycbNmzgueee4/z581itVsLDw+nevTuvv/46vXv3VrtMoaIff/yRhQsXMnjwYO688061yxFVQBoIHVx2djZDhgwhICCAt99+Gw8PD7VLEjVUSkoKFy9epFatWoSFhckGMgKwTZsMGTKEmJgYXn/99b/1lAjHVtHXb1kZcGClpaW8/PLLFBcX89Zbb0kQEFUqIiLisl4URVHKdx+UHQhdU3FxMfHx8Xh7ezN79mwJAjWYhAEHtnjxYvbv38+yZcuoXbu22uUIFyMhwLUpisIrr7zC2bNnWbVqFQEBAWqXJKqQhAEH9c033/Dee+8RHx9P+/bt1S5HCOFi3nvvPb799ltmz55NTEyM2uWIKib7DDigI0eO8Morr3DXXXfx0EMPqV2OEMLF/PDDDyxevJhhw4YRFxendjmiGkgYcDBZWVnEx8fTqFEjxo8fL8u0QohqlZyczMsvv0znzp15/vnn1S5HVBMJAw7EYrEwbtw4TCYT8+bNQ6/Xq12ScCFms5n09HS1yxAqKioqYtSoUfj7+zNz5szyUyxFzSc9Aw5k0aJFHDx4kGXLlhEeHq52OcLFzJo1i9OnT7N69Wq1SxEqUBSFadOmkZyczOrVq2WM3MVI7HMQX3/9NR988AGjRo3i1ltvVbsc4YKioqI4d+6c2mUIlaxZs4bNmzczbdo0GjZsqHY5oppJGHAAv//+OzNnzmTAgAE88MADapcjXFRkZCQ5OTnk5uaqXYqoZrt372bp0qU88cQTxMbGql2OUIGEAZVlZmYSHx9P48aNGTdunDQMCtVER0cDyOqAi0lMTGTChAl069aNZ555Ru1yhEokDKiorGHQYrFIw6BQXVRUFCBhwJUUFhYSHx9PUFAQM2bMkIZBFyYNhCpauHAhP//8M2+++SZhYWFqlyNcnI+PD8HBwSQmJqpdiqgGVquVKVOmkJqaypo1a/D19VW7JKEiCQMq+fLLL1m/fj0vv/wybdu2VbscIQDb6kBSUpLaZYhq8M477/Ddd9+xcOFC6tevr3Y5QmWyJqSCQ4cOMXv2bO655x4GDhyodjlClIuKipKVARewY8cOli9fztNPP02PHj3ULkc4AAkD1SwjI4PRo0fTpEkTxowZIw2DwqFER0dLGKjhzp49y6RJk+jRowdPPvmk2uUIByFhoBqZzWbGjh1LaWkpc+fOlYZB4XAiIyPJzc2V8cIaqqCggJEjRxIWFsb06dOlYVCUk78J1WjhwoX89ttvzJs3j1q1aqldjhB/I+OFNZeiKLi7uxMTE8OCBQvw8fFRuyThQCQMVJONGzfy8ccfM2bMGFq3bq12OUJcUdl4odwqqHk0Gg1ubm7Mnj27PPQJUUbCQDX49ddfmTNnDgMHDpSGQeHQysYLZWWgZpLbAuJq5G9GFUtPT2fMmDE0a9aM0aNHq12OENclZxQI4XokDFQhs9nMmDFjAJg7dy7u7u4qVyTE9UVHR0sYqAGsVqvaJQgnIpsOVaF58+Zx+PBhVqxYQWhoqNrlCFEhUVFRbN++Xe0yRCWdOHGC1NRUAgMDadSoEZ6enlitVrk1ICpE/pZUkQ0bNrBhwwbGjRtHq1at1C5HiAqLioqS8UInM3PmTO6//35iY2MZNGgQ3bt3Z8+ePeVBQFEUlSsUjk7CQBX45ZdfmDt3Lvfffz///Oc/1S5HiEqRA4ucy5YtW5g5cybTp0/n4MGDTJkyhfr163P77bezaNEiwDZJIIFAXIvcJrCztLQ0Ro8eTcuWLRk1apTa5QhRaWVjZ4mJibRo0ULlasT1HDhwAIPBwIABAwBo3rw5PXr0oF27dowZM4bz588zZ84c2e1UXJOEATsymUyMGTMGnU4nDYPCaXl7e8t4oROxWCz873//Q1GU8hf8WrVq8eKLL+Ln58fSpUvp06cPcXFxKlcqHJncJrATRVGYO3cuR48eZd68eQQHB6tdkhA3TMYLnccjjzxC7dq1mTRpEhkZGeUf9/Hx4dFHH0Wv1/Pll1+qWKFwBhIG7GTDhg18/vnnjBs3TpZWhdOTA4ucR0REBP/4xz/48ssvWbly5WV/bkFBQdxxxx0UFBRgsVhUrFI4OgkDdnDw4EHmzZvHgw8+WH7fTghnJisDzkFRFPR6PbNmzcJgMPDGG28we/ZsvvnmG8B2QuGXX35JeHg4bm5yV1hcnfztuEkXL14sP29g5MiRapcjhF1cOl7o7++vdjniKjQaDaWlpeh0OubNm0fLli1ZtWoVmzdvZtiwYURGRhIaGsqsWbPULlU4OAkDN8FkMjF69Gjc3NyYM2eOJG9RY1w6UdCyZUuVqxHXotPpyjcXGjZsGD179iQlJYWffvqJli1b0rlzZ7VLFE5AXr1ukKIozJkzh+PHj7Ny5UppGBQ1yqV7DUgYcAyJiYlERkZecUdBrVZbHgjq1atHvXr1uP3221WoUjgr6Rm4QR9//DFffPEFEyZMoHnz5mqXI4RdyXihY5k6dSr33nsvO3fuxGw2/+3ziqKg1Wo5ffo0R44cUaFC4ewkDNyAAwcOsGDBAh555BH+8Y9/qF2OEFVCDixyDFu2bOGNN94gLS2Nhx56iI8++oj8/PzLvkaj0VBSUsKrr77K3XffzeHDh1WqVjgrCQOVdOHCBcaNG0fbtm0ZMWKE2uUIUWWioqJkvFBlJSUlJCQkcO+993Ls2DEGDhzIsGHDmD9/PhcuXLjsaz08POjfvz8PP/wwzZo1U6li4aykZ6ASSkpKGD16NHq9XhoGRY0npxeqT6/Xc/fdd5OdnY2npydvvPEGbdq04bnnnuPo0aNMnTqVJk2aAPDNN98QGxsr483ihsirWQUpisLs2bM5ceIEq1atIigoSO2ShKhSMl6oPo1GQ9euXct/b7VaeeaZZ2jbti133XUXx48f5/XXX+fHH39k2rRp7N27F19fXxUrFs5KwkAFrV+/nq+++ooZM2bQtGlTtcsRosrJeKHjKdtXoHPnzpw6dYp+/frRr18/8vPzeeONN2jQoIHaJQonJT0DFbB//34WLFjAoEGDuPPOO9UuR4hqUTZeKH0DjkOj0aDT6SgtLcXPz4/PP/+c/Px8xo8fz7PPPqt2ecKJSRi4jtTUVMaOHUv79u2lYVC4lLLxwqSkJLVLEX+h0+nIy8vjnnvuoXXr1rzyyitqlyScnISBaygpKSE+Ph4vLy9mz56NTqdTuyQhqpUcWKSuoqIiwNYr8FcajYa77rqLPXv2VHdZogaSMHAViqIwc+ZMTp8+zYIFCwgMDFS7JCGqnew1oB6z2czzzz/PzJkz0Wg0f/u8r68vL7/8Mp6enipUJ2oaCQNX8cEHH/DNN98wefJkYmJi1C5HCFVERkZKGFDJvHnzOHz4MAMGDLhiGACu+nEhKkvCwBXs27eP1157jSFDhtCvXz+1yxFCNdHR0eTm5pKTk6N2KS5lw4YNbNiwgXHjxtGqVSu1yxEuQMLAX6SkpDBu3Dg6dOjACy+8oHY5Qqjq0gOLRPX4+eefmTt3Lg888AD//Oc/1S5HuAgJA5coLi4mPj4eHx8faRgUAhkvrG4XL15kzJgxtGrVipEjR6pdjnAhsunQHxRF4ZVXXiExMZF33nmHgIAAtUsSQnXe3t6EhITIeGE1MJlMjB49Gp1Ox6uvvoq7u7vaJQkXUnPCQGEhnDsHxcWgKODhAVFRUMGtOd977z2+/fZbZs+eTePGjau4WCGchxxYVPUURWHOnDkcP36clStXEhwcrHZJwsU4bxgwmWDrVti9Gw4cgBMnbEGgbB5Xo7EFgoYNoW1buO02MBjgCmM4e/fuZfHixQwbNoy4uLjqfR5COLjo6GhOnDihdhk12scff8wXX3zBtGnTaN68udrlCBfkfGHg4kVYvx4++ADOnLG9+Ot0thd5Hx/Q/tEGYbXaAsOvv8LBg7BmDURGwsMPw0MPQZ06wJ8Ng507d+b5559X7WkJ4agiIyPZtm2b2mXUWAcOHGDBggU88sgj/OMf/1C7HOGinCcMKAp89hm88gqcPw9ubhAcbHv3fzVeXlB2799kgtRUmDcP3nkHxo6l6N57GTVqFH5+fsycOROtVvophfirS8cLpZfGvi5cuMDYsWNp166dbHcuVOUcYSAtDSZOhG++sYWC2rVtqwGVoddDWJhtxSAtDWXsWI7MmUOJtzcL3n9fjmgV4iouPb1QZt7tp2y7cw8PD2bPno2bm3P8cyxqJsd/K3zuHAwaBBs32m4D3EgQuJRWC+HhZAPRR4+yqqiIRlfY91sIYRMZGQnIXgP2pCgKs2bN4tSpUyxYsICgoCC1SxIuzrHDwPnzMHSo7b5/eHiFJwOuJ7+ggNTsbKzh4QSmpdke49Qpu1xbiJqmbLxQwoD9fPjhh3z99ddMmjSJJk2aqF2OEA4cBkwmeO45OHzYFgTsNHNrMplITk7Gx9eX0Nq14ZZbbI2ITz0FeXl2eQwhaho5sMh+9u3bx3//+18GDx7MHXfcoXY5QgCOHAaWL4cffoBatewWBEqtVs4lJaHT6ahTpw4asN1yCA+HQ4dg4UK7PI4QNY3sNWAfl253/u9//1vtcoQo55hh4NdfYelS26TAtaYFKkEBzqekYDabiYqMRHfp5IC7u+0WxJo1tn0LhBCXiYqK4ty5cyiKonYpTku2OxeOzDHDwLx5kJMDISF2u2RGRga5eXlERETgcaWAERAARUUwc6ZtYkEIUS4qKoq8vDxyc3PVLsUpKYrCjBkzSExMZMGCBTKiKRyO482yHDsG338P/v62XQQr4FRJCW+mpXG4uJgMiwVPrZYGHh4MCQ6mh58f+fn5XLx4kdDQUPz9/K58EY0GgoLgt99g3z7o1MmOT0oI5ybjhTfn3XffZdOmTbLduXBYjrcy8MkntnMGrvaifQXnzWYKrVbuCgggPjycJ0NDARiZlMT6tDSSk5Px9fWlVq1a176QlxeUlNh2OBRClJPxwhv3ww8/8Prrr/PYY4/JdufCYTnWykBpKXz6qa1PoIKrAgBdfX3p+pexw4eCgnj09GlWnT/PEh+fPxsGr0WjAW9v+PprmDrVbqOMQjg7GS+8McnJybz88st06dKFf/3rX2qXI8RVOdbKwJkzkJlpe0G+SRqNBp+SEvKs1r83DF6Ljw8UFMDRozddgxA1SXR0tEwUVEJhYSGjRo0iICCAV155RbY7Fw7Nsf52Hj5sO3nwCicLVkSR1Uq2xUKSycSKs2f5obiY2wMCrtwweDV6PZjNtlqEEOXKJgrE9SmKwrRp00hJSWHBggWy3blweI51m+DoUdtS/Q2O3Pz3wgU2ZGdjLS3FbDbTy8eHSX80PlVY2e0JWRkQ4jJRUVF89913KIqCphK38VzR6tWr2bJlC3PnzqVBgwZqlyPEdTlWGMjJualvHxQcTA8vL35LSmKfhwce3t5YbmRMUFEgO/umahGipomOjiYvL4+cnBwCAwPVLsdh7d69mzfeeIMnn3yS2NhYtcsRokIc6zaBxWI7VfAG1fPwoJO3N7dbrUzw8iKrsJAXExMrv1GKRmObKhBClIuKigJkouBaEhMTGT9+PN26dePpp59WuxwhKsyxwoCbW6WmCK54CXd36tarh7ubG21MJg7m5LDr9Gkys7KwWCwVu4ii2G3nQyFqChkvvLbCwkLi4+MJCQlhxowZ0jAonIpj3SYIDr7pMKDVaAjw9yfA358QLy/cU1MpBi6kpnIhNRVvHx8C/P3x8/O7+nagGo2tFiFEOW9vb0JDQyUMXIHVamXy5Mmkpqaydu1afGUsWTgZxwoDTZrY3pWXllaqiTDTYiHY7fKnYlEU/i8vD283N26vVw+9oti2U83JIeX8eTSpqfj8EQx8/fz+HD0su6XQtKm9npUQNYYcWHRlq1atYtu2bSxcuJB69eqpXY4QleZYYaBZM9sugMXFtnn/CpqVmkpBaSntvL0Jc3cnw2Lh/3JyOGMy8Z+wMLz/eKEPCgwkKDAQs8VCXm4uubm5JKekoNFo8PP1xd/fH193d7Tu7rZahBCXiYqK4sSJE2qX4VB27NjB8uXLeeaZZ+jRo4fa5QhxQxwrDERH244sPn++UmHA4O/P59nZfJKVRU5pKT46HU09PXkxLIweV9jW2N3NjeDgYIKDgzGbzeTm5pKTm0tScjKBpaXo/Pw4duECnU0m9Hq9PZ+hEE4tKiqKrVu3ynjhH86cOcPEiRPp1asXTzzxhNrlCHHDHCsMaLXw4IO2UwutVtvvK8Dg74/hBjf1cHd3JyQkhJCQEEwlJVgSE9lUqxYzJ0zA19eXXr16YTAY6NSpE25ujvWfS4jqFh0dTX5+vowXAvn5+YwaNYratWszffp0aRgUTs3xXt3uvx+WLYO8PNuxwtVIbzajDwri3g8+oI2fHwkJCWzatImvvvqKgIAA+vTpQ1xcHO3bt5cffOGSysYLExMTXToMWK1WJk2aREZGBmvXrsXbDluoC6EmxwsDdetCnz6wcaPt5MLqetEt22ioWzdo3ZoGGg3PPPMMTz/9NMeOHcNoNGI0GtmwYQMhISH07dsXg8FAq1atJBgIl1E2XpiUlETr1q1VrkY9K1as4Pvvv2fRokXlxzsL4cwcLwwAjB4NO3dCejqEhVXPY2Zm2sLHxImXjTdqNBqaNGlCkyZNeOGFFzh06BBGo5GEhAQ++ugjwsPDiYuLw2Aw0KxZM7mPKmq0svFCV54o2Lp1KytXruT555/n9ttvV7scIezCMcNAo0YQH297YS4qsk0YVKWSEtsEw+jR0LbtVb9Mo9HQsmVLWrZsyUsvvcTBgwdJSEjg66+/5t1336VOnTr069ePuLg4GjVqJMFA1EjR0dEuu9fAqVOnmDp1Kn369OGxxx5Tuxwh7EajVGCv3tzcXAICAsjJyam+07csFhg6FLZuta0OVFVXv8UCqanQoQN88skNnZhYWlrK/v372bRpE9999x25ubnUr1+fuLg4+vXrR926daugcCHUMX36dE6cOMHatWvVLqVa5ebmMmzYMDw8PFi1apX0CQinUNHXb8cNA2Bbuh86FH780TZyaO8tgs1muHDBtqfA++/DLbfY4ZJmfvjhB4xGI9u2baOwsJCYmBgMBgMGg4GIiAg7FC6EelavXs3q1av57rvvXGb1y2q18tJLL/Hbb7+xbt066tSpo3ZJQlRIRV+/HfM2QZngYFi9Gp56Cv73P9s9fX//m96yGLBNK+TkQOvWsGqVXYIA2EYVu3XrRrdu3SgpKWH37t0YjUbeeustlixZQosWLTAYDMTFxRFWXf0QQthRVFSUy40XLlu2jD179rB48WIJAqJGcvw2+NBQWLMGnnjC9k4+JcX2vzfKYrFtalRUZNvT4IMP4I8OaXvz8PCgd+/ezJ49m4SEBGbNmkVoaChLliyhf//+PPXUU6xfv57MzMwqeXwhqsKl44WuICEhgXfeeYd///vfdOnSRe1yhKgSjn2b4K+2bYNJk+DkSdvvAwNtzYUVWSkoKrKNDlqtEBUFU6fCnXfaZ5WhkvLz89m2bRtGo5EffvgBRVHo0KEDBoOB2NhYdf8bC3EdRUVFdO/enenTp9O/f3+1y6lSx48f5/HHH6dnz5688sorLnNbRNQcNaNn4Ery8uDLL+G99+C338Bksn3cw8P2S6u1vcBbrX9OCYDteOQmTeDRR+GeeyAoSLWncKmcnBy2bt2K0Whk//79aDQaunTpgsFgoGfPnnL6mXBId9xxB/fccw/PPvus2qVUmZycHIYMGYKvry+rVq3C8waai4VQW80NA2WsVti3D3bvhl9/hYMHbT0AimL7pdXaegxat7b96tTJtqGQA28QlJGRwZYtW9i0aRM///wzer2e22+/HYPBQPfu3fGq6hFLISro6aefJjQ0lFmzZqldSpUoLS3lxRdf5MiRI6xbt04af4XTqhkNhNei1ULnzrZfYAsH6el/rgR4eNgmEBz4xf+vQkJCePDBB3nwwQe5cOECCQkJGI1Gxo8fj6enJz169MBgMHD77bfLAUpCVZGRkTX69MIlS5awb98+li5dKkFAuATnDQN/pdVW326F1SA8PJzBgwczePBgkpKSyoNBfHw8Pj4+lx2g5O7urna5wsVER0fX2NMLv/32W9atW8fIkSPp2LGj2uUIUS1qThiowSIjI3n88cd5/PHHOX36dPkBSl9//TX+/v7ExsZiMBjo0KGDnJMgqkXZ6YXZ2dkEOUj/jT0cPXq0vDHykUceUbscIaqN8/YMuDhFUTh+/Hj5AUopKSkEBwfTt29f4uLiaNOmjQQDUWWOHTvGoEGDWLVqVY05sCgrK4shQ4YQFBTEypUr8bD3JmdCqKDm9wy4OI1GQ0xMDDExMTz//PP8/vvv5QcorV+/nrCwMPr27Uu/fv1o3rx5jVvKFeoq22vg3LlzNSIMWCwWXn75ZUpKSpg/f74EAeFyJAzUABqNhhYtWtCiRQtGjBjBL7/8gtFo5Ntvv+X9998nIiKifDvkxo0bSzAQN83Ly4tatWrVmAOLFi1axE8//cSyZcsIDw9Xuxwhqp2EgRpGq9XStm1b2rZty6hRo9i/fz8JCQls2LCB1atXU7du3fKTFevXr692ucKJRUVF1YhdCL/++ms++OADxowZw6233qp2OUKoQnoGXITZbGbv3r0YjUa+++47CgsLady4MXFxcRgMBiKraEtmUXPNmDGDY8eOsW7dOrVLuWG///47Tz75JHfccQeTJk2SVTNR49T8TYfEDTOZTOUHKO3YsYPi4mKaN29efoCSLJOKinD20wszMzMZPHgwtWrV4q233pK9O0SNJA2E4qr0ej29evWiV69eFBUVsXPnThISEnjjjTd47bXXaNOmDf369aNPnz6EhISoXa5wUM48Xmg2mxk7diwWi4V58+ZJEBAuT8KAi/Py8ipvLiwoKGD79u1s2rSJBQsWMH/+fNq3b09cXByxsbEuc1ytqJhLJwqcLQz897//5ddff+XNN9+Uo8SFwBmOMBbVxsfHh/79+7No0aLybZA1Gg1z5syhX79+vPjii3z11Vfk5+erXapwAGV9Js42UbBx40bWr1/PmDFjaNOmjdrlCOEQZGVAXFFAQAD33HMP99xzD5mZmWzZsgWj0cjUqVNxd3e/7AAlb2/vG3oMq9WK2WyWmW4nVTZe6EwTBb/++itz5sxh4MCBDBw4UO1yhHAY0kAoKuXixYts3ryZTZs2cejQITw8POjRowdxcXF07dq1Ui/sx48f57XXXuP8+fPExsbyxBNPyMmMTsaZTi9MT09n8ODBREREsHz5cukTEC5BGghFlQgLC2PQoEEMGjSI5OTk8gOUxowZg7e3d/kBSp07d77uAUpZWVmEhobi7u7Oiy++CMBzzz2HTqerjqci7CAqKopjx46pXcZ1mUwmxowZg0ajYe7cuRIEhPgL6RkQN6xOnTo89thjvP/++3z66acMGTKE33//nZdeeol+/fqxY8cOrrXw1KlTJ6ZNm0afPn0ICAigS5cuEgScTHR0NImJidf8c3YE8+fP5/Dhw8ybN4/Q0FC1yxHC4cjKgLCLunXr8tRTT/Hkk09y4sQJEhISaNy48TW/x2QyodfrWbNmDe3bt6dRo0bVVK2wl6ioKAoKChx6vHDDhg1s2LCByZMn07JlS7XLEcIhSRgQdqXRaGjcuPF1gwBQvlT79ddfM3/+/Ov2o5w4cYItW7awe/duBgwYwH333WeXmsWNc/Txwp9//pm5c+fy4IMPMmDAALXLEcJhyW0CoYrS0lLANual0+no1q3bNY9c3r9/P3fccQdvvvkmpaWljBgxgmeeeYaioqLqKllcgSOPF168eJHRo0fTunVrRo4cqXY5Qjg0WRkQqnrzzTfp0aMH9erV+9vnFEVBo9GQnp7OxIkTiYyMZOPGjQQEBLB371769OnDQw89RGxsbPUXLgDHHS80mUyMHj0aNzc35syZg5ub/FMnxLXIyoCodoqilDcKbtmyhXvvvfeKtwisVisAn376Kampqbz00ksEBAQA0LRpU5o1a8bPP/9cfYWLK4qKinKolQFFUZgzZw7Hjx9n/vz5BAcHq12SEA5P4rKoVmazmblz5+Lr6wuAn58f3bt3/9tBN1artfy2wSeffELz5s3p0qVL+edzc3Nxc3PjwoULwJ+rCKL6Odp44ccff8wXX3zBtGnTaN68udrlCOEUZGVAVCutVouvry+vvPIK//nPf8jMzOSzzz4jKSkJoLwHQKvVotFoOH/+POfPn6dDhw7Url27/DoZGRkcPHiQuLg4VZ6H+JMjjRceOHCABQsWMGjQIP7xj3+oXY4QTkPCgKhWOp2OESNGkJaWxpkzZ5gwYQKvvfYajz/+OBaLhdWrVzN06FBOnToFwKlTp9Dr9Zcdq2yxWNi2bRs6nY4+ffoAyKqAisrGC7OyslStIzU1lbFjx9KuXTtGjBihai1COBsJA0I10dHRzJgxgwsXLvDee+/h5ubGiRMn+Pnnn8tXAZo3b05iYuJlO8adPHmSDz/8kPvvvx/4s7dAqKNsvLBsdUcNJSUlxMfH4+npyezZs2XzKiEqScKAcAhlx8guWLCAhIQEvL29URSlfIvjL7/8kqysLJKTkxk/fjyFhYXl42KXrgqUlpZy7tw5CgsLVXkerqgsDKg1UaAoCjNnzuT06dPMnz/fIfc7EMLRSQOhcDhlwUCj0eDh4cGYMWN49NFHady4MfXr1ycrK4sVK1bQqlWr8q8ro9PpmDVrFr/88gvdunWjX79+lT5ASVSOp6cnYWFhqk0UfPDBB3zzzTfMnDmTJk2aqFKDEM5OwoBweJ06deL48ePs3LmT9PR0brvttsuaCf9q0qRJ5Scrlh2g1LNnT+Li4ujSpYscUlMFIiMjVQkDe/fu5bXXXmPIkCH069ev2h9fiJpCjjAWNVpiYiJGoxGj0cipU6fw8/Ojd+/eGAwGOnbsKPeW7eSVV17hyJEjvPvuu9X2mCkpKQwZMoSmTZuyePFi+bMU4goq+votYUC4jJMnT5YHg3PnzhEYGEifPn0wGAy0a9fumtshi2tbs2YNq1atYtu2bdUy2VFcXMzw4cMpKChg3bp18u+SEFdR0ddvuU0gXEbDhg157rnnePbZZzly5AgJCQkYjUY+/fRTQkND6du3LwaDgVatWsmoYiVdOl5Y1Tv+KYrC9OnTSUxMZPXq1RIEhLADCQPC5Wg0Gpo1a0azZs144YUX+O233zAajWzevJkPP/yQ2rVrYzAYMBgMNGnSRIJBBURHRwO28cKqDgPr1q3DaDQyZ84cOfZaCDuRMCBcmlarpXXr1uUn2/30008YjUa++OIL1q5dS1RUVHkwaNiwodrlOqyy0wsTExNp3bp1lT3Onj17WLJkCY8//jh9+/atsscRwtVIz4AQV2CxWNi3bx8JCQls3bqV/Px8GjRoUB4Myt4Jiz/179+fu+66i3/9619Vcv2kpCSGDh1Ky5Ytee2116THQ4gKkAZCIezEZDKxZ88eEhIS2L59O4WFhTRt2hSDwUDfvn2JiIhQu0SH8PTTTxMaGsqsWbPsfu3CwkIef/xxTCYTa9euxc/Pz+6PIURNJA2EQtiJXq+nR48e9OjRg+LiYnbt2oXRaGT58uUsXryYVq1alQeDWrVqqV2uaqKjozly5Ijdr6soCtOmTeP8+fOsXr1agoAQVUDCgBCV4OnpSZ8+fejTpw+FhYXs2LEDo9HIokWLWLhwIe3atcNgMNCnTx+X2xY3Ojoao9Fo9+OkV69ezZYtW5g3bx4NGjSw23WFEH+SMCDEDfL29uaOO+7gjjvuIDc3l23btpGQkMDcuXOZO3cuHTt2pF+/fvTq1cslbq9FRkZSWFho1/HCXbt28cYbb/DUU0/Ru3dvu1xTCPF30jMghJ1lZWXx3XffsWnTJg4cOIBOp+O2224jLi6OXr164e3trXaJVeLEiRM8/PDDvP3227Rp0+amr5eYmMjQoUO59dZbmT9/vjQMCnEDpIFQCAeQlpbGli1bMBqN/PLLL+j1erp164bBYKBbt254enqqXaLdFBcX061bN6ZOncpdd911U9cqKCjgsccew2q1smbNGnx9fe1UpRCuRRoIhXAAtWrV4uGHH+bhhx/m/PnzJCQkkJCQwLhx4/Dy8qJHjx7069evRhygVHZ64c0eZWy1WpkyZQoXL15k7dq1EgSEqAYSBoSoJrfccgtDhw5l6NChJCYmlp+suGnTJnx9fenduzdxcXF06tQJNzfn/NGMioq66dML3377bbZv387ChQupW7eunSoTQlyL3CYQQmWnTp0qP0ApMTGRgICA8gOUbr31Vqe4V55vsXC4sJA5H37IkcJCutxxByVWK+5aLcFubjT19qaZtzfNfXwIdne/6nV27NjByJEjefbZZ3nyySer8RkIUTNJz4AQTkZRFI4dO8amTZtISEjg/PnzhISEXHaAkiMFA0VR+Ck/n48vXmRjRgZ5paXkFRRQWFRESHAwGo0GRVFQAA2g02jw0umIDQzkobAwegYGortkBPHMmTMMHTqUzp078+qrrzrUcxXCWUkYEMKJKYrCb7/9Vt5jkJaWRnh4OHFxcRgMBpo1a6bqAUo/5eUx4+xZDuTlUWy14q3V4qPTUVJQQHJSEo1jYnDT6S57PmZFodBqpaC0FDeNhkbe3oyLjsYQFERBQQFDhw7Fzc2N1atX19iJCyGqm4QBIWoIq9XKwYMHMRqNbNmyhaysLCIjIy87QKm6gkFxaSlLU1JYnpxMXmkpQW5ueGu15Y9fUlLCqVOnqFevHl5eXle/jtVKpsWCu0bDwNBQCles4NiPP5YfDiWEsA8JA0LUQKWlpfz4448YjUa2bt1KXl4e9evXLw8GVdlwl1pSwlNHj/Jjfj6eGg3Bbm5/CyGKonDkyBEiIiIICAi47jVzLRZS8/KwJiezrFEjhnTrVlXlC+GSJAwIUcOZzebyA5S2bdtGYWEhMTEx5cHAngcopZSUMOTwYQ4VFFDL3R2Pa9zPP37iBIEBARU6pyEvL49zycm4165Ng8BAVjVpQjs5e0AIu5EwIIQLKSkpKT9AaefOnZSUlNCiRQv69etH3759CQsLu+FrZ5nNDDp8mJ/y8gh3d8f9Oo19Z8+exc3NjTp16ly35jNnzuDr68stERGcN5uJ0Ov5oHlzYqRnQAi7kDAghIsqLCxk586dGI1Gdu/ejcVioW3btuUHKFXm3ABFURh98iTvXrhAmLs7+gp0+J9PTaW4qIj69etf9WtKrVZOnz6NVqOhXv36aDUarIpCislEF39/1rdoUaHHEkJcm4QBIQR5eXls374do9HInj17AOjQoQMGg4HY2Njr/jwbMzN56uhRPDQa/Cu4EVJGRgbp6ek0adLkql+TeO5ceWBwv2TfgbLGwgl16/L8dVYWhBDXJ2FACHGZ7Oxstm7dSkJCAj/++CNarZYuXbrQr18/evbsiY+Pz2Vfn2exYPjlF84WFxNRia2S8/LySLrCeGGZi2lpZGRkEB0V9bfHBEg3m/HQavmyVSu5XSDETZIwIIS4qvT09PIDlH7++Wf0ej1du3YlLi6O7t274+XlxfsXLhB/8iS13N1xr8To4rXGC3Nzc0lOTiY8PPyqtysURSHZZOLZiAimXuNWgxDi+iQMCCEqJDU1lc2bN2M0Gvn999/x9PSke48efGcwcNbdnToeHhW+VtGpU2Tv3MmFvXtxLyhAHxiIV8OGhD3wANagIM6cOYOfnx91rjPpkG424+fmxvft2hHgpOc0COEIJAwIISotKSkJo9HIhwcPsr13b3RmM4GenvgHBODj48P11geSFi+m6PhxSho0wK9BA3yAzIQErMXFaB5/HH1EBPXq1bvuJkkWReGi2cy8hg15NDzcbs9PCFcjYUAIccOWJCUx/dQpPAsLycvJwWQyodPp8PP3x9/fH5+r3MsvPH4cr/r1SUxOLh8vNKWmcjg+Hm2zZjQdM+ayhsFrSTaZuD80lNdjYuz51IRwKRV9/Zb1NyHE3/xWUIBWpyMsNJSw0FCKS0rIzc0lNyeH7KwsdG5u+P8RDLwv6QvwbtwYAL2HB8VFRQBkabUoISF4FhRUOAgA6DUaDuTnoyiKqucwCOEKJAwIIS5TdhrhpbsMenp44FmrFmG1alFUXExuTg65eXlkZWbi5u6Ov78/Af7+eHp6AqB3dyc3J4ecnBwy0tPRm814BAZWqg5PjYYLJhNpZjNhlZhmEEJUnoQBIcRl8ktLybRY8LjKu3EvT0+8PD0JDw+nsKiI3NxccnJyyMzIwF2vx9/fH51Wi8ViIeX8eTxPnKAkPx//zp0rVYdeqyW7tJRzJSUSBoSoYhIGhBCXKbZaURQFXQWW5r29vPD28qJ2eDgFhYXltxHMFgsmkwmf4mLMX32FV6NGBHTvXqk6tNhWKUqs1ht8JkKIipIwIIS4TFkEuG5n8V/4eHvj4+1N7dq1KSgooDQ3l4vz56Px9qbOv/+N5ga3F5ZuASGqnmz+LYS4jJdOh+aPswJuhEajwUurJeONN1CKioiOj8c9KKjS17ECWo0GTzmjQIgqJz9lQojL+Oh01Nbrb3h53mo2k7RwIabUVCJHjsQjMvKGrlNiteKh1VL/j6ZEIUTVkTAghPibW319Md3AyoBitZK8ZAmFJ04Q+e9/l48a3ogiq5UoDw8CKzGOKIS4MdIzIIT4mxZ/7DZY2Rn/i++/T/5PP+Hbrh2l+fnk7Np12ecDunat8LXMikJ7X98Kf70Q4sZJGBBC/E23gAA8dTryrVb8rnDy4NUUnz0LQP5PP5H/009/+3xFw4DJakWr0dA1IKDCjy2EuHESBoQQf9Pcx4cufn5sy8mpVBioO2GCXR4/22Khjl7PHVc52VAIYV/SMyCEuKJB4eFooNrn/K2KgklReCQ8HM9KBBEhxI2TMCCEuCJDcDAtfXxIN5upwHlmdnPRbKa2Xs/DYWHV9phCuDoJA0KIK/LQapndoAE+Oh1ZFku1PGZBaSkAL9etS4SHR7U8phBCwoAQ4hra+/nxdEQERYpCURXfLjBbrWRZLBiCg3mgVq0qfSwhxOUkDAghrunFOnWICwoiw2ymuIoCgUVRuGA208LHh9kNGqCVI4uFqFYSBoQQ1+Sp07G0cWN6BwaSbjaXL+XbS4nVSqrJRFNvb1Y1bUq4nFAoRLWTMCCEuC4/NzdWNm3KPaGh5JWWkmoy3fDZBWUURSHdbCbdYqGTvz/vN29OXdl6WAhVSBgQQlSIj07HGzEx/LdRI2rp9aSYTGRZLJUOBYqikGuxkGwy4aHV8nJ0NJ+0aCENg0KoSDYdEkJUmFaj4YGwMLoGBLDw3Dm+zMjgvNmMDvDRavHUanHTaP62hbFFUSi2Wim0WjFZrfjodNwZEsKoyEhaypbDQqhOo1RggDg3N5eAgABycnLw9/evjrqEEE7gosnEhrQ0Prp4kXMlJRRZrZT9g6IAl0YCT62WEHd37gsN5YGwMBp6ealQsRCupaKv37IyIIS4YWF6Pc/WqcMzERGkmc0cLizkcEEBmRYLJqsVd60WP52Opt7eNPX2JtLDQyYFhHBAEgaEEDdNo9EQptcTptfTMzBQ7XKEEJUkDYRCCCGEi5MwIIQQQrg4CQNCCCGEi5MwIIQQQrg4CQNCCCGEi5MwIIQQQrg4CQNCCCGEi5MwIIQQQrg4CQNCCCGEi5MwIIQQQrg4CQNCCCGEi5MwIIQQQri4Ch1UVHbKcW5ubpUWI4QQQgj7KXvdLnsdv5oKhYG8vDwAoqKibrIsIYQQQlS3vLw8AgICrvp5jXK9uABYrVZSUlLw8/NDI2eRCyGEEE5BURTy8vKIiIhAq716Z0CFwoAQQgghai5pIBRCCCFcnIQBIYQQwsVJGBBCCCFcnIQBIYQQwsVJGBBCCCFcnIQBIYQQwsVJGBBCCCFc3P8Dt0KI6xKCrg4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXUklEQVR4nO3deXib5Zkv/u+r3ZYlebdjW3ESYmcj+0oW25JCWmiBYQ6F0tAGKIWylbK1QAscoD1MO205HU6XKdD+2ukCDFMohC4QSXHiLGQlIYnJHlved0u2rPV9f38oUuPYTqTEtiTr+7kuX4FIlh4FYn31vPdz34IkSRKIiIgoZcnivQAiIiKKL4YBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcQwDREREKU4RzZ1EUURTUxN0Oh0EQRjrNREREdEokCQJLpcLRUVFkMlG/vwfVRhoamqC0WgctcURERHR+HE4HCgpKRnx9qjCgE6nizyYXq8fnZURERHRmHI6nTAajZH38ZFEFQbClwb0ej3DABERUZK52CV+FhASERGlOIYBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcQwDREREKY5hgIiIKMUxDBAREaU4hgEiIqIUxzBARESU4qKaTUBERJSwRBFobARcLiAQAJRKICcHyMsDLtKTn0IYBoiIKPnU1gL/+Adw8CDw8cdATw8QDAKSFAoASiVQUAAsWgQsWAB87nNAYWGcF524BEmSpIvdyel0wmAwoLe3l1MLiYgoPgIB4O9/B/74R2DnTmBgIPT7Gk3oSy4PBQFJAvx+wOMBfL7QffR64NprgVtvBZYti99rGGfRvn8zDBARUeI7fhz4zneAbdtClwX0eiAjI7rLAKII9PYC/f2h0HDzzcCTTwJZWWO/7jiL9v2bBYRERJS4RBF47TXghhuALVuAzEyguBjQ6aKvB5DJQm/8xcWASgX87nehywZ2+5guPZkwDBARUWIKBIBnnw199fUBRUVAWtqlP54ghHYUCguB06eBr30NeOON0VtvEmMYICKixCOKoRDw2mtAejqQnx/6hD8aFIpQsPB6Q5cL3nxzdB43iTEMEBFR4vnVr4Df/jZUFzAWtWqCEAoYfj/w1FPA9u2j/xxJhGGAiIgSy5EjwEsvhU4HjGXRejgQ9PeHihP7+sbuuRIcwwARESUOny/0Sb23F8jNHfvnCweC2lrgxz8e++dLUAwDRESUON55B9i1KxQExqt7oFIJaLWhUwbHjo3PcyYYhgEiIkoMkgT8/vehf9Zoov42tyjiP9vb8WB9PczHjmFJbS3e6+mJ7bkzM0OXC956K7bvmyAYBoiIKDHs2wccOAAYDDF9W08ggFc6OnDa50OZWn1pzy0IgFodOmqYgrUDDANERJQY3n8/dNwvPT2mb8tVKPCPsjJsnD4dD+XnX/rzZ2UB7e2AzXbpj5GkGAaIiCgx7N37z/kCMVDJZMhRjMLcvfBjHDly+Y+VZBgGiIgo/gYGQsV7MdQKjJmPP473CsYdwwAREcXfiROA23157YZHg0YDHD4cGoecQhgGiIgo/np7Q7MILmO7X5QkiBcfxHthCkVo9LHHc3mPk2RG4SILERHRZfL7Q0cLY6wXECUJfX19cDmdcLpcaFYoIF1OIBCE0FwEny/UeyBFMAwQEVH8qVT/fCOWyy9416AoRgJAX18fREmCRq1GpsGA452dkC6nWVE4kKhUl/4YSYhhgIiI4i8zM7RFHwiEOgKeJxgMwhUOAP39kCQJaRoNcvPyoNfpoFKpIIoi0NV1eTsDfj+g08W/dmGcMQwQEVH8TZ8e6i/g8UTeiAPBIFwuF1xOJ/r7+yEBSE9LQ35+PnQ6HVTnhQaZTAaFXA7J77/0dXg8wKpVozcuOUkwDBARUfyp1cDMmQju3IleAC6XC+7+fgBAeno6CgoLodPpoByhwPDNri64RBHHJAmSKGJrXx/aAgEAwC1ZWci4yKWHQebNu9xXk3QYBoiIKK5aWlpgs9mgcThQ0dGBdqUS2owMFE6aBF1GBhRRnDD4r64uNPv98Pv9ECUJNpcLNpcLAHCNXh9dGPD7Q/UCV155uS8p6TAMEBHRuGtoaIDNZoPVasXhw4ehVCpx48yZ+KzDgXKDAXK9PqbHe2/6dABAR0cHOru6MKO8PPZFdXcDhYVAVVXs35vkGAaIiGhcnD59OhIAjh07BrVajVWrVuHWW2/FmjVroE1PB77wBWDbNiDGMBCmUqkQDAYRDAYhj+XSgCSFjhN+8Ysxz0aYCBgGiIhoTEiShBMnTsBqtcJms+HUqVNIT0/H6tWr8dWvfhUrV65E2vlV++vXAzt3htoTX0JFv+rskUCfzzf0sS+kuzt0iuCmm2J+zomAYYCIiEaNJEmora2NBACHw4GMjAxUVlbigQcewIoVKyJv2MO67jrg9deB6mqgqCjmqn5lOAz4/dGHAZ8vFD6++U1g2rSYnm+iYBggIqLLIooiDh06hE2bNsFut6O5uRkGgwEmkwmPP/44li5dCuUwvQOGpVAA3/8+cP31QEcHEONIYvnZ44U+ny+6b5Ck0NjiuXOBBx+M6bkmEoYBIiKKmSiK2L9/P6xWK+x2O9rb25GTkwOTyQSLxYJFixbFds3+XNOnA9/6FvDd7wI9PaGGRDFQqVTRhQFJAlpbQ/UJL76YkrUCYQwDREQUlUAggD179sBms8Fut6O7uxv5+flYu3YtLBYL5s2bB9loNevZsAFobAR+/vPQv8cQCJQqFfwXCwOSBLS0hOoSfvITYPHiS1/rBMAwQEREI/L5fPjoo49gs9lQXV0Np9OJ4uJiXHfddTCbzZg9e/boBYBzCQLw5JOhmoGf/zz0xp2fH1UNgUqlQn9f38h38PuBtrbQjsCPfwx87nOjuPDkxDBARESDeDwebN++HTabDVu3bkV/fz9KS0tx0003wWKxoLy8HMLlDAOKlkwGPPFEqKjv//wfoKkJyMq66DRBlUqFQDCIoChCfm54kKTQZYf+fmD27NClgeXLx/Y1JAmGASIigtvtRk1NDaxWK7Zt2waPx4OysjLcdtttsFgsmDp16vgEgPMJAnDLLcDKlcAzzwBWa+gNPSMjdBRwmJ2C8MwCv88HuUYTGn7U2xs6MaDVAvffDzz8cOgxCADDABFRynK5XNiyZQusVit27twJn8+H2bNn46677oLZbMbkyZPjvcR/MhqB114DtmwJHT3ctAlobg592lepAI0mdBIBgCoYREYwGCoOVChCgSInB/jyl0PBYs6cOL+YxMMwQESUQnp6elBdXQ2r1Ypdu3YhEAhg3rx5uP/++2EymVBUVBTvJY5MJgu1Cq6qAurrgX/8Azh8GNi3LxQMPB7g7KUBQSZDR2EhSq67Dpg/H/jMZ2I+lZBKBCmKwc9OpxMGgwG9vb3QX2KLSCIiio/Ozk7Y7XZYrVbs3bsXALBgwQKsXbsWVVVVyI/xLH9C6uoC+vpCxYEqFe761rcwedYsPPPMM/FeWVxF+/7NnQEiogmotbU1MgfgwIEDEAQBS5cuxRNPPIGqqipkZ2fHe4mjKzs79HVWwbRpaGhoiOOCkgvDABHRBNHY2BhpA3zo0CEolUosX74cTz/9NCorK2EwGOK9xHFjNBqxb9++eC8jaTAMEBElsTNnzkR2AI4ePQqVSoVVq1bhhRdewJo1a5CRohXzRqMR7e3tGBgYiG1gUYpiGCAiSiKSJOHkyZOwWq2wWq04deoU0tLSsGbNGtxxxx1YuXIl0lO4rW6Y0WgEENotmT59epxXk/gYBoiIEpwkSfj0008jlwDq6+uRkZGBiooK3H///VixYgXUanW8l5lQSkpKAAAOh4NhIAoMA0RECSg8CTA8CKipqQkGgwFVVVV47LHHYpsEmIKysrKQnp4Oh8MR76UkBYYBIqIEIYoiPv7440gAaGtrQ3Z2NsxmM8xmMxYvXnzpkwBTjCAIMBqNPFEQJYYBIqI4CgQC2Lt3L6xWKzZv3oyuri7k5+fDYrHAbDZj/vz5YzMIKAUYjUbuDESJYYCIaJz5fD7s2rULNpsNmzdvhtPpRFFRET73uc/BYrGM3STAFFNSUoJDhw7FexlJgWGAiGgceL3eyCTALVu2xG8SYAoxGo1obW2Fz+eDSqWK93ISGsMAEdEYCU8CtNlsqKmpgcfjwfTp07F+/XqsXbs2fpMAU4TRaIQkSWhqasKUKVPivZyExjBARDSKXC4Xtm7dCqvVih07dsDn82HWrFn46le/CovFkliTACe4c48XMgxcGMMAEdFlGmkS4H333Qez2ZzYkwAnsNzcXKjVahYRRoFhgIjoEnR2dmLz5s2wWq3Ys2cPJEnCwoUL8fDDD8NkMk2MSYBJTiaToaSkhMcLo8AwQEQUpba2tsgcgI8//hiCIGDJkiUTdxLgBMDjhdFhGCAiuoCmpqZIG+BPPvkECoUiZScBJiOj0Qi73R7vZSQ8hgEiovPU1dVFAsCnn34KlUqFlStX4vnnn8eaNWug0+nivUSKktFoRFNTEwKBABQKvuWNhH8yRJTyJEnCqVOnIpMAT548ibS0NKxevRobNmzAqlWrOAkwSZWUlEAURTQ3N0cmGdJQDANElJLCkwDDNQD19fXQarWorKzEvffei6uuuoqTACeAcABwOBwMAxfAMEBEKSM8CdBms8Fms6GpqQl6vR5VVVV49NFHsXTpUnaqm2AKCgqgVCp5ouAiGAaIaEIbaRKgyWSCxWLBokWLeC15ApPJZCguLuaJgovg3wAimnACgQD27duHTZs2DZoEGB4FvGDBAg4CSiE8XnhxDANENCH4fD7s3r07Mgo4PAnw2muvhcViwZw5cxgAUpTRaMS2bdvivYyExjBAREnL6/Vix44dsNlsqK6uRn9/PyZPnoz/9b/+FywWC2bMmMFBQISSkhI0NjZCFEUGwhEwDBBRUnG73di2bVtkEuDAwACuuOIKrF+/HhaLBdOmTWMAoEGMRiMCgQBaWlo4J2IEDANElPD6+vqwZcsW2Gw2bN++HT6fDzNnzsQdd9wBi8WC0tLSeC+RElj4SGFDQwPDwAgYBogoIfX29kYmAX700UcIBAKYO3cu7r33XpjNZhQXF8d7iZQkCgsLIZPJ4HA4sGzZsngvJyExDBBRwujq6sLmzZuxadOmQZMAv/nNb8JkMqGgoCDeS6QkpFAoUFRUxF4DF8AwQERxFZ4EaLPZsH///sgkwG9/+9uoqqpCTk5OvJdIEwCPF14YwwARjbumpqZIG+DwJMBly5bh6aefRkVFBTIzM+O9RJpgjEYj9u7dG+9lJCyGASIaF/X19ZFBQOFJgFdddRUnAdK4KCkpwV/+8hceLxwBwwARjYnhJgFqNBpOAqS4MBqN8Hq96OjoQH5+fryXk3AYBoho1EiShKNHj0YuAdTV1UGr1aKiogJf//rXcdVVV0Gj0cR7mZSCzj1eyDAwFMMAEV0WURRx+PDhSAA4dxLgww8/jGXLlnESIMVdUVERBEGAw+HAokWL4r2chMMwQEQxE0URBw4cgNVqhc1mi0wCrKqqgsViweLFizkJkBKKSqVCYWEhTxSMgH9biSgqwWAQe/fujYwC7urqQl5eHsxmMywWCycBUsLj8cKRMQwQ0Yj8fv+gSYC9vb2YNGkSrrnmGlgsFlx55ZUMAJQ0SkpKcOjQoXgvIyExDBBNYJIk4Y033sCBAwdgsVhgNpsv+ubt9Xqxc+dOWK1WbNmyBX19fZg8eTJuvPFGWCwWzJw5k4OAKCkZjUb8/e9/hyRJ/H/4PAwDRBNUS0sL/vVf/xVNTU1YtGgRXn75Zdx333147LHHkJ+fP+QHoiRJePHFF/G3v/0NAwMDmDZtGm699VZYLBZcccUV/OFJSc9oNMLtdqO7uxvZ2dnxXk5CYRggmqB+/OMfw+/3Y+fOnSgsLMSrr76Kn/3sZ5DL5XjxxReHDQOFhYW44447YDabMWXKlPgtnmgMhI8XOhwOhoHzMAwQTUCiKOLEiROYM2cOCgsLAQBf+cpX0NzcjJ/+9Kd48cUXh1wuEAQBd955ZzyWSzQuwpMuHQ4H5s+fH+fVJBZW/hAlke7ubrz88st44YUX0NbWNuL9+vr6MDAwMKjHv0qlwvXXX4++vj784x//ABDaDQjjZQCa6DQaDfLz83miYBgMA0RJQBRFvPPOO1i3bh2ee+45vPDCCyOOY5UkCXq9HmlpaWhra0Nra2vkttLSUixduhT//d//HXlcolRSUlLCMDAMhgGiJCCTyeDxeHDttddi9+7d0Gg02LFjx7Bv5uHfM5lMOHToEI4ePRq5TaPRYPHixaitrQUAyOXy8XkBRAnCaDSOGKRTGcMAUZL4/Oc/j6eeegpTp06F2WzGe++9B5fLNeR+4VqAG2+8EaIo4sMPP4zcptFocObMGcyePRs+n2/c1k6UKLgzMDyGAaIkkZGREenxf8cdd6CmpgZ1dXWD7iNJUqQOwGg04vrrr8cbb7wRuSxQV1eHQ4cOYf78+VCpVINqBohSgdFohMvlgtPpjPdSEgrDAFESCRf53XDDDZFjg+deKhAEYdApgW9961u4+uqr8fDDD6OiogILFy7EnDlzcMsttwx6PKJUce7xQvonhgGiJBMIBAAAZrMZ7777Lvr7+yO3DQwM4Le//S1efvllAEBmZiZeeuklvP3227jmmmvw3nvv4S9/+Qvy8vLisnaieCspKQHAMHA+hgGiBCGKIj7++GO8/PLLkTf84YQ/zd95553YunUrGhsbAQA9PT1QKpV488038dprr8Hr9QIIHSlcunQpnnzySaxatWrsXwhRAtNqtcjOzmYYOA+bDhHFUXgSoM1mg91uR2dnJ/Ly8nDttddi2rRpw27jh08A/Mu//AvWr1+Pp59+GnV1dcjMzMTbb7+N559/HtnZ2VCr1eP9coiSAosIh2IYIBpnw00CLCwsxGc/+9moJgEGAgG89tprePXVVxEIBFBbW4t169bhvvvug1arxeLFi8fx1RAlH44yHophgGgc+Hw+7Ny5E5s2bYpMAjQajbjxxhthNpsxa9asqIv5JEmCw+HA6tWr8dZbb6G0tHSMV080sRiNRmzfvj3ey0goDANEY2RgYADbt2+H1WpFTU0N3G53ZBKg2WzG9OnTL6maX6lU4nvf+94YrJgoNRiNRnR3d6Ovrw8ZGRnxXk5CYBggGkX9/f3YunUrbDYbtm3bBq/Xi/LycmzYsAFmsxlTp06N9xKJUl74eGFDQwNmzpwZ59UkBoYBosvkdDpRXV0Nm82GnTt3wu/3Y86cObjnnntgNpsjR5mIKDGce7yQYSCEYYDoEnR1dWHz5s2w2WzYvXs3RFHE/Pnz8eCDD8JsNkfGBhNR4tHr9dDr9SwiPAfDAFGU2tvbYbfbYbVasX//fgDA4sWL8dhjj8FkMiE3NzfOKySiaM2dO/eCp3ZSjSBF0Zzc6XTCYDCgt7cXer1+PNZFlBCam5ths9lgtVpx8OBByOVyLFu2DBaLBZWVlcjKyor3EomIRhTt+zd3BojO43A4IgHgyJEjUKlUWLFiBZ577jmsWbOGgZiIJhyGASIAp06digSA48ePQ6PRYNWqVbjtttuwevVqpKenx3uJRERjhmGAUpIkSTh+/DisViusVivOnDmD9PR0rFmzBl/72tewcuVKaDSaeC+TiGhcMAxQypAkCUeOHIkEgMbGRuh0OlRWVuKhhx7C8uXLoVKp4r1MIqJxxzBAE5ooijh48GDkEkBrayuysrJQVVUFi8WCJUuWQKHgXwMiGszn80EUxZTZIeRPQZpwgsEg9u3bF5kE2NHRgdzcXJjNZpjNZixcuDAy+Y+IaDi//e1v0dnZiccffzwlfl4wDNCE4Pf7sWfPnsgkwJ6eHhQWFmLdunWwWCw8U0xEg/z617/G6tWrMX36dIiiCEEQIJPJIvNC8vPz8fLLL+Pmm2/GtGnT4rzasccwQEkrPAnQarViy5YtcLlcKCkpwQ033ACLxRLTJEAiSi2PP/44fvjDH6K8vHzQBwWfzweHw4G2tjYcOnQIBw8eZBggSjQDAwPYsWMHNm3aFJkEOHXqVNxyyy0wm80oKytjACCii7rqqqvw+uuvo6GhAQcOHMDRo0fR2NgIp9MJQRCQn5+PWbNmpcyxYoYBSnj9/f2oqamB1WodNAnwK1/5Csxmc0qkdiIaXcuXL8ezzz6L7u5ulJSU4DOf+QymT5+OyZMno6CgANnZ2dBoNCnTZZRhgBKS0+nEli1bYLPZsGPHDvj9fsyePRt33303zGZzZAQpEdGlMBqNmDRpEt59911kZmZCoVBAqVSm7M4iwwAljO7u7sgkwF27dkEURcybNw8PPvggTCYTJk2aFO8lEtEEceWVVwIAdDpdylwKuBCGAYqr8CRAm82Gffv2AQAWLVqERx99FCaTCXl5eXFeIRFNRHPnzsULL7yAjIyMeC8lIXBqIY27lpaWQZMAZTIZli1bBrPZjKqqqpS5RkdE8dXV1YX6+nrMnTt3wvYS4NRCSijnTwJUKpW46qqr8Oyzz6KiooIhk4jG3cMPP4zDhw/jz3/+MyZPnhzv5cQVwwCNmdOnT8NqtcJms+HYsWNQq9VYtWoV1q9fj9WrV0Or1cZ7iUSUwioqKjB9+vTITBJRFIc0J5MkKSWKCnmZgEZNeBJgeAfg9OnTSE9Px+rVq7F27VpcddVVSEtLi/cyiYguqK+vD11dXcjMzEz69zxeJqBxIUkSamtrI5MAGxoaoNPpUFFRgQcffBArVqzgJEAiSmh9fX34/e9/jw8//BDHjh2Dz+dDZmYmiouLYTKZ8PWvfx1KpTLeyxxTDAMUM1EU8cknn0QuAbS0tCAzMxNVVVX49re/jSVLlkz4vzhENDE0NDTgoYcewqeffor58+fjhhtuQF5eHrxeL/bt24d///d/R2trK773ve/Fe6ljimGAohIMBrF//37YbDbYbDZ0dHQgJycnMglw0aJFE7Yal4gmJlEU8eqrr+LgwYP4xS9+gfnz5yMrK2vQWPONGzfi1ltvxQsvvDChawcYBmhEgUAAu3fvhs1mw+bNm9Hd3Y2CggKsW7cOZrMZ8+bN4yRAIkpaMpkMr776Kn76059i7dq1w95n6dKlkMvlqK+vR2lp6TivcPwwDNAgPp8PH330UWQSoNPpRElJCa677jpYLBbMnj17QqdjIkotcrkc/f39Q37f7/ejo6MDjzzyCBYvXjzha58YBggejwfbt2+H1WrF1q1b4Xa7MWXKFHzhC1+AxWLhJEAimrDuvPNO/PCHP8SePXvwuc99DjqdDl1dXThy5Aiqq6tx6tQpvPjiixO+HTrDQIpyu92oqanBpk2bsH37dng8HpSVlXESIBGllMceewwajQYbN27EO++8g+bmZoiiiPz8fKxZswa//OUvUVlZGe9ljjn2GUghTqcTW7duhdVqxc6dO+Hz+TB79mxYLBZOAiSilOZwONDW1oa8vDzk5+dDo9HEe0mjgn0GCEBoEmB1dTWsVit27dqFYDCIefPm4YEHHuAkQCKis4xG46APRJIkRboPpsJlUoaBCaijoyMyCXDv3r0AgIULF+LRRx9FVVUV8vPz47xCIqLEliohIIxhYIIITwK02Ww4cOAAZDIZli5diieeeAJVVVXIzs6O9xKJiChBMQwksYaGhsgcgMOHD0OpVGLFihV45plnUFlZyfoOIiKKCsNAkjlz5kxkDsC5kwBvvfVWrFmzhpMAiYgoZhMqDAREET5JggRALQhQTIDueJIk4cSJE5EdgFOnTkUmAX71q1/FypUrOQmQiOgyHTt2DD/4wQ/wb//2b8jLy4v3csZdUoeBE243tjudqO3vx/6+Ppz2eCCevU0GwKhWY2FGBmZrtViu12N2knxqDk8CDAcAh8OBjIwMVFRU4IEHHuAkQCKiUaZWq3HgwAHU19czDCQDvyjC1tODP7W2YmtvL9zBIABAIQhQy2QI7wUEARx1u3HY7QYkCRq5HMt1OnypoACfyc6GOsF2DURRxKFDhyKTAJubm2EwGFBVVYXHH38cS5cu5SRAIqIxMmnSJMhkMjgcDixevDjeyxl3SRUGDvT14alTp3Cgrw9BADqZDEUq1UWPf0iShD5RRHVvL7b29mJmejq+P3UqVhgM47PwEYiiiP3798NqtcJut6O9vR05OTkwmUywWCycBEhENE5UKhUKCwvhcDjivZS4SIow4BVF/LyxET9vaoIrEECuUglNDJ/sBUGATi6HTi6HTxRxpL8fX6qtxR2FhXjEaIR2HN9wA4EA9uzZA5vNBrvdju7ubuTn52Pt2rWwWCycBEhEFCclJSUMA4mqLxDAA8eP44PubqgFAcVR7ARciOrsbkJPMIifNzXhQF8ffjVjBrLHcAs+PAnQZrOhuroaTqcTxcXFuO6662A2mzF79mwGACKiODMajfjkk0/ivYy4SOgw4A4G8bWjR2Hv6UGOQoG0UfoELwgCshQKpIsianp7saG2Fr+bNQtZoxgIwpMAbTYbtm7div7+fpSWluKmm26CxWJBeXl5SnW3IiJKdEajEX/9618jbYhTScKGAVGS8MiJE7D39MR8WSBaapkM+UoldrtcuO/YMfzXrFmXdRwxPAnQarVi27Zt8Hg8mD59Om677TZYLBZMnTo15f4HIyJKFkajEQMDA+jq6kJOTk68lzOuEjYMvNXejo2dnchUKMYkCISpZDLkKJWo7u3Fr1tacHdRUUzf73K5sHXrVmzatCkyCXDWrFm46667YDabMXny5DFaORERjabwoCKHw8EwkAgavV68WF8PAMgYh+K+NJkMfYKAlxoaUJWZifL09Avev6enZ9AkwEAggHnz5uH++++HyWRCUYyBgoiI4q+4uBhAKAwsWLAgvosZZwkZBn7scKDZ60XRODbWyVUo0Ojz4Xt1dfjdrFlDbu/s7IxMAtyzZw8AYMGCBXj44YdhMpk4CZCIKMmp1Wrk5+en5ImChAsDzV4v3u/shFYuhyzK6+sDp06ht6YG7tpa+NrbIc/IQNoVVyD/C1+AqrAwqscQBAEGuRw1vb046nZjRno6WltbI5MAP/74YwiCwEmAREQTWElJCRoaGuK9jHGXcGHgzx0d6A0EYtoV6Ny4EQPHj0O3bBmyjUYEenvR9eGHOP3005jy7LNQl5RE9TgZcjnqPR489cEH0L3zDg4dOgSlUonly5fj6aefRmVlJQxxblRERERjx2g04vjx4/FexrhLqDAgSRL+1NoKhSBEvSsAANnXXIO0++6DoPjny9EvX45TTz2FjvfeQ/G9917w+30+H5wuF1xOJ/rkcvzd48HdBQV44ZZbsGbNGmRkZFzyayIiouRhNBphtVpT7nhhQoWBRq8XzT5fzEWD6WVlQ35PVVgIdXExfE1Nw36P1+uNBACv1wuZTIaMjAwU6vWQ1Gp89frrcSVDABFRSjEajejr64PT6UypneCECgO1bjcGRBG6UWj+I0kSAk4n1GerQ4FQI6BwAPD5fJDJ5dBlZCAvPx8ZWi0EQYAoSWj2+VDrdjMMEBGlmHOPFzIMxMmnbjeA0ATCy+Xcvh2B7m4YPv95tLa1weV0wu/3Qy6XQ6fToaCwENr09CHbQDJBAAQBtWfXQkREqaPkbI2Zw+HAlVdeGefVjJ+ECgMdfj+kUXicnpMn4Xj1VUj5+egoKoKitxd6nQ46vR7ai/QQAEK7Ch1+/yishIiIkkl6ejqys7NT7nhhQoUBvyQB0uXFAWdzM06++CIEQUDazTcjQ69HulYLlUoFhUIRVVGIAMATDF7WOoiIKDkZjcaUO16YUGHgci8PBN1uNP74x5D5fMh/9FFIOTnw+f1ob2+HJIr/fB6lEiqlEiqVCkqVKvLPKpUKMpkMEgAlpwgSEaUko9GIurq6eC9jXCVUGMiQyy/5KIfo96PhJz+B2NEB1fr1KJo3b9BjBYJB+Hw++H0++M5+ebxeuFwuBM/ZBZDL5QhkZuLj48fxq82bUVJSgpKSEhiNRmRmZqbUURMiolRkNBpRU1MT72WMq4QKA+VpaZAQmlgYS58BSRTR+P/+H9wnTqDwvvvQptPB6/NBo1ZH7qOQy6FISwPS0oZ8f1AUIyHB6/OhUxAgb2rC/1RXo7OzM3K/9PR0GI3GSDgI/2o0GpGbmwsZdxOIiJKe0WhET08PXC4XdDpdvJczLhIqDMzSaqEWBHhEEekx9Bpo++Mf0bd/PzIWLoTM60Xw1Cl0NzQg/WyxoGHVqgt+v1wmg1yjgUajgU8UIQaD+PcHHsDyp56C2+1GY2MjHA4HGhoaIl//+Mc/0NLSAulsjYNKpYrsIpwfFgoLC6FQJNQfNRERjSB8oqChoQGzhplVMxEl1DvUNI0GeoUCzkAgpjDgOXttp2//fvTt3w+/x4MOhSLyBnyxMHAutygiTSbDzLNBIj09HWVlZSgbprGRz+dDc3NzJCg4HA44HA7U1NSgqakJgUAAACCTyVBUVDRoJyEcGoqLi6E+ZweDiIji69zjhQwDcaCUyXB9Tg5ebW6OqRVk6Xe+M+jf6+rqoFAqUXwJo4T7g0HcmJcHQxSf5FUqFUpLS1FaWjrkNlEU0dLSEgkJ4V/379+Pd999F16vN3Lf/Pz8IUEh/KtWq435NRAR0aXT6/UwGAwpdaIgocIAANycn48/tLaiXxRjbkscplKp4PF4Yv6+AVGEQibDF0dhHHF4N6CoqAjLli0bdJskSejs7IzsJIQvPRw/fhw2mw0ulyty36ysrEE7CeeGBoPBwIJGIqIxYDQaU6rXQMKFgblaLRbrdKjp7YVWJrukNzuVWg2n0xnz93X5/Zij1WL1GLegFAQBubm5yM3NxcKFC4fc7nQ6BwWF8K87d+5EV1dX5H5arXbYgsaSkhIWNBIRXQaGgTgTBAGPT56MfUeOoCcYRNYlFN6pVSqIoohAIBB14Z4zEIBKJsPjkyfHdJJhLOj1esyZMwdz5swZcpvb7R5UyBgODYcOHUJra+uwBY3nn3woLCyE/BJ3XYiIUoHRaMSuXbvivYxxk3BhAACW6/W4s7AQP2tqglYUoYrxE65KpQIAeH2+qMJAQJLgDAaxvqAA67KyLmnN4yU9PR3l5eUoLy8fcpvP50NTU9OQHYWtW7eisbEx0k9BLpcPKmg8NzQUFxdH/vyIiFJVSUkJOjs74Xa7IyfTJrKEDAMA8LDRiM09PTjU349JKhXkMXxaV6lUEAQBPq/3orMIRElCq8+HqWlp+E5paVJfg1epVJgyZQqmTJky5LZgMIjW1tYhlx/27t2Lv/zlL5GCRkEQLljQmAp/KYiIzj1eONyHr4kmYcOAVi7Hf86YgfVHjuCMxxNzIFCqVPD5fBe8jyhJaPL5UKhS4T/Ly5E9CqOTE1V4N6CoqAjLly8fdJskSejo6BhUzOhwOHD06FFs2rQJfX19kftmZ2ePePlBr9cndZgiIgoLjzJmGEgAV6Sl4f+bORN3Hj2KkwMDyFUqkRblJQO1SjXo+N75vKKIdr8fRWo1XpkxA/MyMkZr2UlHEATk5eUhLy8PixYtGnSbJElRFzRmZGQM2UkI/3Nubi6DAhEljczMTGi12pQ5XpjQYQAAZmq1+NPs2Xjs5Els6+1FnyAgR6G4aJGfSqUa9kSBJEnoCgTgkSQs1unw4yuuwEye5R+RIAgwGAwwGAzDzvYOFzSeHxQOHjyI1tbWyP3UavWIOwoFBQUsaCSihCIIQkqdKEj4MAAApRoN/jRrFn7T0oKfNDSgyeeDRiZDpkIx4qRDlVoNv98faV4UlCT0BgJwiyJ0CgWeKC7G14uKoObxu8tysYLG81s5OxwOVFdXo6mpaVBBY3Fx8bBhoaioiAWNRBQXDAMJSCGT4WtFRbBkZeG/WlrwVkcHWs++2atlMqTJZFALQmTHQK5UIqhSocXjgXj2DT9LqcQXCwpwW0EBZnM3YMypVCpMnToVU6dOHXJbMBhES0vLkFbOe/bswTvvvBOp9xAEAQUFBcO2cmZBIxGNJaPRiIMHD8Z7GeMiacJA2LS0NDw7dSoeNhrxbkcHtvb2Yn9fHzr9fvQFgxDDd5TLISkU0Pr9WFNUhFUGA27IzUXOBC4STCbh3YDi4uIht4miiI6OjiGXH2pra/HBBx+gv78/ct/s7OwRJ0nq9frxfElENMGUlJSgtbUVXq93ws+QSbowEKZXKHBbYSFuKyyEJElo9vlwxuOBRxQhAVALAp78yU9w22c/i3vM5ngvl2Igk8mQn5+P/Pz8YQsae3t7h7Rydjgc2L59O7q7uyP31el0I7ZyzsnJYUEjEV1Q+ERBY2Mjpk2bFufVjK2kDQPnEgQBRWo1is5LbjOysuA4O9GQJgZBEJCZmYnMzEzMnTt3yO39/f3DFjR+/PHHaGtri9xPo9EMW6NQUlKCwsJCtnImokHHCxkGklhpaSmOHTsW72XQONJqtZgxYwZmzJgx5Dav14vGxsYhrZztdjuampogiqGLTAqFYkiHxvCOwqRJk1jQSJQicnJyoNFoUqKIcEKHgSlTpuDDDz+MaRwyTVxqtRrTpk0bNuEHAoEhBY0NDQ3YvXs33n777UEFjYWFhcP2UigpKUFaWtp4vywiGiOpdLxwQoeB0tJSuN1utLe3I38UxhLTxKVQKCJv7OcLFzSef/Lh8OHD+Pvf/w632x25b05OzoiTJONV0Oh2u/HGG2/gwIEDyMjIwPXXX4/FixeztwNRFBgGJoBwj/66ujqGAbpk5xY0Ll68eNBtkiShp6dnSDFjXV0dampq0NPTE7mvXq8fsfFSdnb2mO1etbW1Yc+ePfB6vfiP//gPnD59Gr/85S+h0+nG5PmIJpKSkhJs2rQp3ssYcxM6DBQXF0OhUODMmTNYunRpvJdDE5AgCMjKykJWVhbmzZs35Pa+vr6oChrT0tKGBIXwPxcUFFxWQaPRaMSTTz6JkpISbN68GTNnzhzxckb4ktrhw4fxk5/8BHa7HWVlZXjiiSdgMpkueQ1EycpoNKKlpQV+vx/KCXw0fUKHAblcjpKSEtTxRAHFSUZGBmbOnImZM2cOuc3j8QwZOe1wOGC1WtHc3BwpaFQqlRcsaLzYD6jw3wMgdERq8uTJI472FgQBjY2NWLt2LZYtW4bnn38eNTU1+OY3v4k//OEPw7akJprIjEYjRFFEc3MzJk+eHO/ljJkJHQaA0KWCM2fOxHsZRENoNJoLFjQ2NzcPufzw0Ucf4c9//nOkoFEmk6GwsBBPP/00Fi9efMEdhN7eXni9XhQVFV1wXd///vdRUFCAP/3pT0hPT8f111+PhQsX4q233sLs2bN57JJSSvh4ocPhYBhIZqWlpfjggw/ivQyimCgUisin//OJooj29vZBOwpFRUUjvkmHt/5PnDgBpVJ5wfqZjo4ObNu2DTfffHOk1bNer8ctt9yCjRs34n//7/89Kq+PKFnk5eVBpVJN+CLClAgDLS0t8Hg80Gg08V4O0WWTyWQoKChAQUEBlixZctH7i6IIuVyOw4cPIzs7G5mZmUPuEw4Mp06dgtPpxJw5cyK3BQIBaDSaSDGkKIrcHaCUIZPJUFxcPOHDwIT/Gz1lyhRIkoT6+vp4L4Uorg4dOoSSkpIhpwhEUYxMkDxz5gy0Wi1ycnIit0uShIaGBhQUFIzreokSRSocL0yJMACARYSUksJHHwHg2LFjmD59OjIyMgbdRyaTRQoK+/v7odVqB33y7+3txbFjx0YsHnQ6ndi+fTvq6+vh9/vH5oUQxVFJSQkaGhrivYwxNeEvE+j1emRlZbGIkFJSY2Mj1q1bh4GBAdTV1aGsrAwvvfQSVq9ejVWrVuHdd9/FwYMHcdddd6GwsBCzZs1Ce3v7oMmQBw8eRFNTE+655x4AGNQPQRRF7Nu3D4899hiAfxY0nj9y2mg0ori4mJfqKCkZjUY0NTUhGAxO2GZdEz4MAKG6Ae4MUCoqLi7Gn/70Jxw8eBDNzc3YtWsXXnnlFezevRsrVqyA3W7HG2+8gTvvvBMAsGLFChQUFOCXv/wl5s6dC5/Ph2984xuYO3cuKisrAQwOAzKZDJWVldi4ceOQXgqffPIJ/vrXv2JgYCBy/7y8vGEnSQ53+YIoURiNRgQCAbS2tl70NE6ySpkwwIFFlIoEQcD8+fMxf/78YW//zne+g/Xr1w/6Afe73/0Ot99+O8rLy5GXl4eZM2fihRdeGPGHYHheQ2Fh4ZDmXpIkobu7e0gvhZMnT2Lz5s1wOp2R+xoMhhFbOWdlZXG+CMXNuccLGQaSGAcWEQ0vNzcXubm5g36vrKwM27Ztw5kzZ9Dc3IyysrIh94mWIAjIzs5Gdnb2sIHE6XRG+iicu6uwZ88edHR0RO6Xnp4+YivnvLw8nm6gMVVYWAi5XA6Hw4Hly5fHezljIiXCAAcWEcVuypQpkQLcsaLX6zF79mzMnj17yG0DAwNobGwccvnhww8/REtLS6RDo0qlQnFx8bCtnCdNmjRit0WiaMnl8gl/vDAl/pZwYBFR8klLS8P06dMxffr0Ibf5/f5BHRrDlx+2bduGxsZGBAIBAKGahkmTJo1Y0KhWq8f7ZVGSKikpYRhIdhxYRDSxKJVKTJ48edj2sKIoorW1dUgr5wMHDmDjxo3weDyR++bn5w97+aGkpGTIEUxKbUajEbt37473MsZMSoQBDiwiSh3h3YBJkyZh2bJlg26TJAldXV2RnYRwUDhx4sSQgsbMzMwhASH8xYLG1GM0GvH2229P2A6cKREGAA4sIqJQQWNOTg5ycnKwYMGCIbeHCxrPr1PYtWsXOjs7I/dLT08f8eQDCxonJqPRCJ/Ph/rWVhhycyEA0Mhk0EyQvgMpEwY4sIiILuZCBY1ut3tQQWP46x//+AdaWlogSRKAUEHjubsI59YrFBYWsqAxiUiShE/6+7HT6cTOtDQcve8+VBw7BtXZXWaZIKBYrcbijAzM1mqxUq/HTK02zqu+NCnzf+WUKVM4sIiILll6ejrKyspQVlY25DafzzekoLGhoQE1NTVoamoaVNBYVFQ0pKCxpKSEBY0JxB0M4u9dXfhDayv2ulzwShIkSYI3Kwv+QABpZ/87iZKEk243Pj3bsTNNLsdVej1uzc/HuuxsqJJohyhlwkBpaWlkYFF5eXm8l0NEE4hKpUJpaSlKS0uH3CaKIlpaWgYVMzocDuzfvx/vvvsuvF5v5L7hgsbzTz6UlJRAm6SfOJPN1p4efPf0aRw/2znTIJcjRyaDIAjweL1Qer3QGQxDvk+SJPSJImzd3djc04M5Wi3+bdo0LEqSzpopEwbOPV7IMEBE4yW8G1BUVDRsQWNnZ+eQHYXjx4/DZrPB5XJF7puVlTViK+fMzEwWNF4mVyCAf3c48F+trfCIIvIUiiGf7FUqFXwjDOMSBAE6uRw6uRxeUcQnfX24+fBh3F1UhAeLi5GW4LUFKRMGOLCIiBKNIAiRLpALFy4ccrvT6Rxy8qGhoQE7d+5EV1dX5H5arXbEgsbc3FwWNF5Em8+Hu48exUdOJ7RyOYqUymHDlUqlgvucWRsjUctkKFKp0B0I4CWHAwf7+vDz8nLoE7heJHFXNgY4sIiIkoler8ecOXMwZ86cIbe53e5hWzkfOnQIra2twxY0nt/KOdxmN5V1+v24/dNPsc/lQp5SCfUFgpNKpUJPb29UjysIArKVSgyIIjZ1d+NrR4/itRkzkJGggSAxVzVGOLCIiCaK9PR0lJeXD3vZ0+fzoampaciOwtatW9HY2IhgMAgg1IPl3ILGc0NDcXExVCrVeL+sceUTRXz96FHsc7mQr1RetOBPqVJBEkUEAoGoT4WkyWTIVSpR3dODR06exC/LyyFLwEs6KRUGOLCIiFKBSqUacbZEMBgc1KExfBli7969+Mtf/hIpaBQE4YIFjenp6eP8qkbfq83N2OZ0IjeKIAAgEo58fn9MR0Q1MhmyFAq839mJN9va8MWCgkte81hJqTDAgUVElOrCuwFFRUVDJvBJkoSOjo4hrZyPHj2KTZs2oa+vL3Lf7OzsEVs5GwyGhP/AVdvfj582NEAlCNBEWVOhUioBAH6fD0hLi+n5tHI5XMEgXqyvxyqDAcYEO+KeUmEgnJLPnDnDMEBEdB5BEJCXl4e8vDwsWrRo0G2SJEVd0JiRkTFiK+dEKWj8Xl0degMBFMdwKUQQBCiUSvh8vkt6znylEk0+H37kcOCnw/SriKeUCgPhgUV1dXVDjvgQEdHIBEGAwWCAwWDAlVdeOeT2cEHj+UHh4MGDaGtrixQ0qtXqEQsaCwoKxqWg8Uh/P3Y4nTAoFDHtYIh+P4IffICWjz9GZyAA9eTJyL/pJmiH+fMYjkwQkCGX429dXfi214uiBGoylVJhgAOLiIjGxsUKGodr5VxdXY2mpqZBBY3FxcXDhoWioqJRK2j877Y2uIPBmHYFAKD5V7+Cb/t2KFeuRMGsWeitqUH9j36E0iefRPqMGVE9hl4uR5PPh/9pb8eDJSWXsvwxkVJhAODAIiKi8aZSqTB16lRMnTp1yG3BYBAtLS1DdhT27NmDd955J7IlLwgCCgoKhm3lHEtBoycYxP90dEBztqtgtAZOnoTzo49guP56eBYuRFZ5OQxr1uDUk0+i7Y03MOWZZ6J6HJkgQCkIeL2tDQ8UFydMbUXKhQEOLCIiShzh3YDi4uIht4miiI6OjiGtnGtra/HBBx+g/+xMAOCfBY3DnXzQ6/WRN91jAwPoDQSgi/FyhGv3bkAQkGkyoamzE8FgEHKlEpkVFWh/6y34OzuhzMmJ6rG0cjlafD40er0oSZBCwpQLAxxYRESUHGQyGfLz85Gfnz9sQWNvb++ggsZwYNi+fTu6u7sj99XpdJFg0Dp7NpxFRUhXKBBQqaI+Iug5cwaqSZOgNhiAzk74fD6kpaUh7YorQrfX1UUdBjQyGZx+P2rdboaBeOHAIiKi5CcIAjIzM5GZmYm5c+cOub2/v3/YgsYtZ86gT6dDvdMZehyZDCqlEiqVCiqVCsqzv6qUSijPHiUEgEBvLxSZmZHjheEwoDg7tCjQ0xP12hVndylq3W5cnZ19qX8EoyrlwgAHFhERTXxarRYzZszAjPMK+x48fhxvtrUhPy8Pfp8PvvCX3w+nywW/3w+cPfkgCAKUZ4PCgMsFlVYLt9sNmUwWGVgknC1ClC7huGHXCEOP4iHlwgAHFhERpS5vMAgZALVKBfUwpwkkAH6/f0hQCAoC+p1OnDx1CmIwiMLCwtD9wwWOMZ5MkCQJvrOhIxGkXBgAOLCIiChVKWUyXOgtWECo06BKqURaWhpcZ3cLJK0WcDqRodUiLT0dOr0eQOjyAQAoMjNjXosiQU4SACkcBjiwiIgo9RgUClzoLTgYDMLlcsHlcqG/vx+SJCEtLQ36sjIMVFdjSlER5Oe0Ih44eRIAoCktjWkdgiDEfKJhLMW/J2QcTJkyBXV1dZGOWERElBrK09IAQRj08z8QCKC7uxt1dXU4dvw4mltaIIoiCgoKUFZWhilTpqCwshICgB67PfJ9ot+P3q1bkTZtWtQnCQBAlCRIkoQZCTTsKWV3BjiwiIgo9czSaqEQBLj9fnj6+uByOjEwMABBEKDVajGpsBAZOh0U531qT5s+HbqlS9H25psIOp1Q5uejt6YGvvZ2lH71qzGtwSOK0MhkmMkwEF8cWERElHpOnTqF3Zs3ozc7G22BAJQeDzIyMlBUVASdTnfRAUpFX/862t96C73btiHY3w+10QjjI48gfebMmNbhFkUYFApMS5AeA0CKhgEOLCIimvgkScLRo0dhs9lgs9lw5swZpKeno+yuu3DaaMSUjAzIYijikymVKLj1VhTceutlrckjitiQmwtFAkxvDEvJMMCBRUREE5Moijh06BCsVivsdjuampqg1+tRWVmJhx56CMuXL8dHbjfW19bCK0lIG+eK/n5RRJpcjpsTbFc6JcMAwIFFREQTRTAYxL59+2Cz2WC329HR0YGcnByYTCaYzWYsWrRoUNvhVUolZqSn41BfH4pUqnEbFiRJEnoCAVRmZmKOVjsuzxmtlA0DHFhERJS8fD4fdu3aBZvNhurqavT29qKwsBDr1q2D2WzGvHnzRqwBkAkCvm004qtHj8IVDEIf5XyCy9UdCEArl+Nxo3Fcni8WKRsGOLCIiCi5DAwMYMeOHbDZbNi6dSv6+/sxefJk/Ou//ivMZjNmzpwZ9af8tdnZuDkvD//V2op0uXzMGwD5RBEDkoSHioqw5GzDokSSsmGAA4uIiBJfX18ftm7dCpvNhu3bt8Pr9aK8vBy33XYbLBYLpk6desnb/E+WlmKH04kTAwMoUqliKiaMRVCS0Ob3Y15GBr5RUjImz3G5UjYMcGAREVFi6u7uxpYtW2C1WrFr1y4EAgFceeWVuOeee2AymWAcpW32bKUSv5oxA7fV1qLJ6x2TQBCQJLT4fLgiLQ2vzJiB9ATqOniulA0DHFhERJQ42trasHnzZthsNuzbtw8AsGDBAjz88MOoqqpCQUHBmDzvbK0Wv5k5E1/99FM0eL3IVSqhGaUjfwPBIDoDAZSlpeHXM2eiNIEvSadsGAA4sIiIKJ6ampoiRwAPHjwIuVyOZcuW4cknn0RlZSWys7PHZR3zMzLwp9mz8fjJk9jlckElCMhRKC758oMoSWj3+yECMGdl4QfTpsGYwEEASPEwMGXKFBw9ejTeyyAiShmnT5+ONAE6evQoVCoVrrrqKjz//PNYvXo19HEqritLT8ebc+bgleZm/EdDAxp9PqTJZDAoFFEXF/rPHh30iiJylUo8PnkybisogDyBphOOJKXDQPh4oSRJ43bOlIgolUiShGPHjsFqtQ7qArh69WrccccdWLlyJdITpEe/SibD/cXFuDorC39obcWfOzrQ5vdDlCSoZTJoZDKoBSFSVyBKErxnTwn4RBGCIKBQqcQX8vOxvqAgoS8LnC/lw4Db7UZHRwfy8vLivRwiogkh3AUwvANwbhfAb3zjG1ixYgVUKlW8lzmi8vR0PDd1Kh4xGvFuRwd2OJ3Y53Kh3e+HOxiEePZ+MkGAWhBgVKuxWKfDaoMBn8vJgTZBiwQvRJCimOPrdDphMBjQ29sbty2cseDxeOB2u8ftuhQR0UQV7gJot9tht9vR3t6O7OxsmEwmWCyWIV0Ak4109lRAvdcLrxiKAxqZDFM0GuQplQm7uxzt+3fy/pcZBWq1mg2HiIgukc/nw+7du2G1Wgd1Abz66qsv2gUw2QiCgElqNSap1fFeyphI6TCQqEmOiChReTwebN++fUgXwBtvvBFmsxmzZs3iz9YklNJhgIiILq6vrw81NTWw2WzYtm0bvF4vysrKcNttt8FsNmPatGkMAEmOYYCIiIbo6elBdXU1bDYbdu3aBb/fjzlz5ox6F0BKDAwDF+FyuSCKIgwGQ7yXQkQ0ptrb2yMFgHv37oUkSVi4cCEeeughmEymMesCSPHHMHARv/nNb9DQ0IDvf//7UCqV8V4OEdGoampqihwBPLcL4BNPPIGqqiqetkoRKR8GXnnlFaxevRrl5eWR5kPyc86ILliwAL/61a+wYcMGzJkzJ44rJSIaHadPn4bdbofVah3UBfC5557DmjVrJtQRcopOyoeBp59+Gk8//TRmzZo16PcdDgeOHj2KzZs348iRI9i3bx/DABElpXAXwPAOwOnTpyNdAG+//XasWrUqYboAUnykfBioqKjA73//e5w+fRr79u3DsWPH0NraimAwiIyMDEyZMgWf+cxnUFxcHO+lEhFFbaQugBUVFXjwwQcTvgsgja+UDwNr1qzBQw89BLlcjqlTp8JkMqGsrAwlJSXIy8tDZmYm1Go1tFptvJdKRHRBwWAQ+/fvh81mG9QFsKqqChaLBYsXL07qLoA0dlL+/4qpU6dCr9fj9ddfR25uLhQKBf+yEFHS8Pl82LNnT6QLYE9PDwoKCrB27VqYzWbMnz9/wnQBpLGT8u96c+fOhUKhgEqlYmtiIkoK4S6AdrsdW7ZsiXQB/Jd/+Rd2AaRLkvJhoLS0FD/5yU94fIaIElp/fz+2bt06qAvg9OnTsX79epjNZlxxxRUMAHTJUj4MAMDnP/957N27F3PnzmVFLREljN7eXlRXV8NqtUa6AM6ePRt33303TCYTJk+eHO8l0gTBMADgxRdfxDvvvIPXX38dixcvjvQbADDon4mIxlp7ezs2b94Mm80W6QK4YMECfOMb34DJZEJhYWG8l0gTEMMAgKqqKmRmZiI3N3fIbQwFRDTWmpqaIk2APvnkE8hkMixdupRdAGncCJIkSRe7k9PphMFgQG9vb8p0phJFEQ6HA21tbcjJycG0adPivSQimkDOnDkT6QHw6aefQqVSYcWKFbBYLOwCSKMm2vdv7gycw+/34ze/+Q3ee+89fPrppwgGgzAYDFCpVCgrK8MPf/hDFBUVxXuZRJSEJEnC8ePHYbVaI10A09LSsHr1amzYsIFdACmuuDNwVm9vL+677z7s2rULy5cvx9y5c1FYWAiZTIaWlha8/vrrmDRpEv7nf/4HarU63ssloiQgiiIOHz4c2QFobGyETqdDRUUFLBYLli9fzp8nNKa4MxCjN998Ex999BH+7//9v6iqqkJGRsag22+55RYsWrQIn3zyCZYsWRKnVRJRoju3C+DmzZvR1tYW6QJoNpuxZMkSNjajhMP/I8/63e9+h/Xr1+Pzn//8sLcXFhaisLAQJ0+eZBggokH8fj92794dCQDhLoAWiwUmkwkLFixgF0BKaAwDZ+Xn56OlpWXI73u9XrS0tOC73/0u5HI55s6dG4fVEVGi8Xg82LFjB2w2G7Zu3Yq+vj4YjUbccMMNsFgs7AJISYVh4KwNGzbg2Wefxdq1a7Fhwwbk5uaivb0dhw8fxu7du9Hb24snn3wSs2fPjvdSiShO+vv7UVNTA6vViu3bt8Pj8WD69On40pe+xC6AlNRYQHiWKIr429/+htdeew2HDx9GXV0dZDIZJk+ejIqKCtx6660wmUzxXiYRjbNwF0CbzYaPPvoo0gXQbDbDbDazCyAltGjfvxkGztPX14fW1lbk5+dDp9PFezlEFAcdHR2w2+2w2+3Ys2dPpAugyWSC2WxmF0BKGjxNcIkyMjIGnSQQRRGSJEEmk3H7j2gCC3cBtNlsOHjwIGQyGZYsWYInnngClZWVyMnJifcSicYMw8BFsAKYaOKqq6uLNAE6twvgs88+i4qKigm/E0oUxjBARCkj3AUw3ATo1KlTSEtLw6pVq/CVr3wFq1evZhdASkkMA0Q0oYW7AIYHAZ3bBfD+++/HihUr2AWQUh7DwHmCwSAEQeDlAaIkJooi9u/fD6vVOqQLoMlkwpIlS6BUKuO9TKKEwTBwHofDgf/+7//GQw89BJVKFe/lEFGUzu0CWF1dje7ubuTn50eOALILINHIGAbO43Q68cYbb+CGG25AeXl5vJdDRBfg8Xiwc+dO2Gw2bNmyBX19fSgpKcF1110Hi8WC2bNn8xQQURQYBs4zZcoUAKEqY4YBosQT7gJos9mwbds2eDweXHHFFbj11lthNpsxffp0BgCiGDEMnEev1yMrKwtnzpyJ91KI6KxwF0C73Y6dO3dGugDedddd7AJINAoYBoZRWlqKurq6eC+DKKV1dnZGmgCFuwDOnz8fDz74IEwmEyZNmhTvJRJNGAwDw5gyZQo+/fTTeC+DKOU0NTVh8+bNsFqtOHjwIARBwNKlS/Htb38bVVVV7AJINEYYBoZRWlqKDz74AJIk8dojUZT++te/YteuXaisrERlZWXUlfvhLoB2ux21tbWRLoDPPPMMKisr2QWQaBwwDAyjtLQUbrcb7e3tyM/Pj/dyiBJaR0cHbr75ZtTW1mLRokV46aWXcM899+Cxxx5Dfn7+kFAtSRL6+vrwhz/8YUgXwC9/+cvsAkgUBwwDwwifKDhz5gzDANFF/OxnP0NnZyd27tyJ0tJSvPLKK/jFL34BQRDwgx/8YEgYEAQBarUab7/9NpYvX84ugEQJgGFgGMXFxVAoFKirq8OyZcvivRyihFZbW4sZM2agtLQUAHDHHXegvb0dP/rRj/CDH/xg2MsFKpUK77//PhQK/ggiSgRsxzUMuVwOo9HIEwWUsnp6evCzn/0Mzz33HFpaWka8X39/P/r6+pCbmwtJkgAACoUC1113HTweD95//30AiNx2LgYBosTBMDCC0tJS9hqglCOKIjZu3Ih169bhueeew3PPPYf6+vph7ytJErRaLdLT09HZ2TkoNJSWlmL58uV48803I49LRImLYWAE7DVAqUgmk8Hj8eCzn/0sdu/eDYPBgG3btg37Zh7+vaqqKhw+fBjHjh2L3KZSqbBkyZLIEV25XD4+L4CILgnDwAimTJmC5uZmeDyeeC+FaFxdc801+M53voPS0lKsW7cOGzduhNPpHHK/cC3ADTfcAADYtGlT5DaNRgOHw4EZM2bw7xBREmAYGEG4GGqkLVKiiUqr1UYmdt5+++3YsWPHkEtmkiRFvoqLi3H99dfjzTffxJ///GcAQHNzM/bt24e5c+dCo9EMWzNARImDYWAE5w4sIko14aOA11xzDQBgx44dgy4VCIIAmUwWud9jjz0Gs9mMBx54AFdffTUWLlyIadOm4ctf/vKgxyOixMQwMAIOLKJUFwgEAAAWiwXvvfce+vr6Ird5PB788Y9/xM9//nMAQHZ2Nl566SW89dZbWLFiBX7zm9/g73//OwoLC+OydiKKDc/2XACLCGmikiQJx48fR0dHB1asWDFsL4Dwp/k777wTGzZsQFNTE/R6PZxOJ7RaLf74xz+ivr4ed955JzQaDTQaDVauXImVK1eO98shosvEMHABHFhEE4kkSTh8+DBsNhtsNhsaGhowbdq0yPG/84VPAFx33XXwer145pln0NDQgIyMDLz99tt49tlnYTAYoNFoxvNlENEYYBi4AA4somQniiI+/vjjSABoa2tDVlYWqqqq8K1vfQtLly4d8XsDgQB+/etf49VXX4Xf78cnn3yCq6++Gvfddx+0Wu0Fv5eIkgvDwAVwYBElI7/fjz179sBms2Hz5s3o7u5Gfn4+TCYTzGYzFixYENW5f0mSUF9fj5UrV+KNN97A1KlTx2H1RBQPDAMXwIFFlCy8Xi927twJq9WKrVu3wuVyobi4GNdddx1MJhPmzJkT9UjhMKVSie9973tjtGIiSiQMAxfAgUWUyNxuN2pqamCz2bBt2zYMDAxg2rRpuOWWW2A2m1FWVsbLW0QUFYaBC+DAIko0TqcT1dXVsNvt2LlzJ3w+H2bNmoU77rgDZrM5sptFRBQLhoGL4MAiirfOzk5s3rwZNpsNe/bsgSiKmDdvHh544AFUVVWhqKgo3kskoiTHMHAR4RMFROOppaUlcgLgwIEDEAQBS5YsweOPP46qqirk5ubGe4lENIEwDFzEuQOLeJ6axlJ9fX0kABw5cgRKpRLLly/H008/jYqKCmRmZsZ7iUQ0QTEMXMS5A4vKy8vjvBqaSCRJwokTJ2C322G1WnHy5MlIF7/169dj9erV0Gq18V4mEaUAhoGLOHdgEcMAXS5JknDkyBFYrVbY7XY4HA5kZGSgoqICX//613HVVVdxB4qIxh3DwEVwYBFdruG6AGZmZqKqqgqPP/44li5dCqVSGe9lElEKYxiIAgcWUawCgcCgLoBdXV3Iy8uDyWSCxWKJugsgEdF4YBiIAgcWUTTCXQBtNhu2bNkCl8uFoqIifO5zn4PZbL6kLoBEROOBYSAKHFhEIwl3AbTb7aipqYl0Abz55pthsVjYBZCIkgLDQBQ4sIjO5XQ6sWXLFthstkgXwJkzZ7ILIBElLYaBKHBgEXV2dqK6uhpWqxV79uxBMBjEvHnzcP/998NkMrELIBElNYaBKHBgUWoKdwG02+34+OOPIQgCFi9ejMceewxVVVXIy8uL9xKJiEYFw0AUOLAodbALIBGlIoaBKHFg0cQkSRJOnjwZCQAnTpyIdAH80pe+hNWrVyMjIyPeyyQiGlMMA1HiwKKJQ5Ik1NbWwmq1wmazweFwQKvVoqKiAvfccw+7ABJRymEYiBIHFiW3cBdAu90Om82G1tZWGAyGSBfAJUuWQKVSxXuZRERxwTAQJQ4sSj4X6gJoNpuxcOFCdgEkIgLDQNQ4sCg5+Hw+7Ny5E1ardUgXQJPJhCuvvJJdAImIzsMwECUOLEpcbrcb27Ztg81mw7Zt2+B2uzF16lTcfPPNMJvNKC8vZxdAIqILYBiIAQcWJQ6n04mtW7fCarVGugDOmDEDt99+O0wmE6ZOnRrvJRIRJQ2GgRhwYFF8dXV1YfPmzbDZbNi9e3ekC+B9990Hs9nMLoBERJeIYSAGHFg0/lpbWyM9AM7tAvjoo4/CZDKxCyAR0ShgGIgBBxaNj/r6etjtdlitVhw5cgQKhYJdAImIxhDDQAw4sGhsDNcFUK1WY9WqVewCSEQ0DhgGYsCBRaMn3AUwHADq6+uh1WqxZs0a3H333Vi5ciWbOxERjROGgRiEBxbxeOGlEUURBw4ciASAc7sAPvroo1i6dCm7ABIRxQHDQIx4vDA2gUAAe/fuhdVqjXQBzM3NhdlshslkwqJFi9gFkIgozhgGYsSBRRcX7gJos9mwZcsWOJ1OFBUV4dprr4XZbGYXQCKiBMMwECMOLBpeuAug3W5HTU0N3G43pkyZgptuugkWi4VdAImIEhjDQIw4sOifwl0AbTYbduzYEekCuGHDBpjNZnYBJCJKEgwDMUr1gUUjdQG89957YTabUVxcHO8lEhFRjBgGYpSKA4taW1tht9sjXQABYNGiRXj00UdRVVXFngtEREmOYeASpMKJAofDEekCePjwYSgUCixbtgzf+c53UFFRgaysrHgvkYiIRgnDQCy8XuDYMVzjcgG7dgFtbcDAACCXA3o9UFYGzJoFzJ4NTJoEJFHBnCRJOHXqFKxWK+x2O44fPw61Wo2VK1fii1/8ItasWcMugEREExTDQDROnQLeegt4/XWgsxPX9vai3+2G1N7+zwp5UQTCx+XS0oCFC4H164HPfjb07wlouC6A6enpqKiowNe+9jVcddVVSEvQtRMR0ehhGLiQ+nrg+98HNm0C+vsBtRrIyEBAo0FbQwMMBQVQKs77IwwEQrsF27YB27cDRUXA/fcDX/lKaAchzsJdAMM1AC0tLTAYDKisrMQjjzyCZcuWsQsgEVGKYRgYjiiGdgH+7d9ClwL0eqC4OLLtr/L5AAA+r3doGFAoAJ0u9OX3A62twHe/C3zwQShYTJs23q8m0gXQZrPBbrdHugCaTCaYzWZ2ASQiSnEMA+dzu4FHHgHeey/05l9U9M/t/7NUKhUEQYDX54NWqx35sZRKoKAgtFNgtwPXXw/86EehSwdjLNwF0G63o7q6Gk6nE5MmTcI111wDi8XCLoBERBTBMHAutxu45x7gww+BrCxghDd6AaFA4PN6o3vctLRQqGhtBR58EPjxj0PBYJS53W5s374dNpst0gWwtLQUN910E8xmM2bMmMEugERENATDQFggAHzzm6EgkJNz0aI/lUoF39nLBVGRyYDCwlAgePRRICMDMJsvb80IdQGsqamB1WqNdAEsLy/Hhg0bYDKZMC0OlyWIiCi5MAyE/fa3wMaNQHZ2VNX/KpUKTqcztucQhNBlg6Ym4NvfBt5/H7iEhj3hLoB2ux27du1CMBjE3Llzce+998JkMqGkpCTmxyQiotTFMAAAx4+Htu4VCiA9PapvUavV8Pv9ECUJsli23gUhtEPgcADPPw+8/HJU/Qja2toiRwDDXQAXLlzILoBERHTZGAYkCXjmGaCrK3RdP0rh43c+rzf26YVyOWAwAO++C3z+8yMWFDY0NEQCwKFDhyJdAJ966ilUVlayCyAREY0KhoG9e0P9ALKyhpwauBB1OAz4fJc2ylinA5xO4NVXgc98BhAESJKE06dPw2q1wmazDeoC+Pzzz2PNmjXQ6XSxPxcREdEFMAy88UaozXBubtTfcsrrxX+2t2O314u++nroVCpMU6vx5exsVMTyZm0wQNq7F6f+8hf8vbERVqs10gVwzZo17AJIRETjIrXDQGdnqJ9AenpMcwSa/X64RRFr09KQr1BAm5UFm8uFRxoa8FRhIf71Itv3EoABtxvOvj6o29thv/de/M+sWaiqqmIXQCIiGnepHQb27g1t1cdYfLcqIwOrMjLQ1NwMj8eDadnZuCUrC7edPo0/dHUNGwYkSYLb7YbT5YLL5UIgEIBCoUBBWhpuLizEHR9+yC6AREQUF6kdBj79NPTr+S2Fo6Q+e7xQAiATBBQolTg8MBC5XZQk9Pf3w+V0wtXXh2AwCKVSCb1eD71ej7S0NAhOJ+ByAT09of4GRERE4yy1w8ChQ6HTBJcoqFSiJxjEGbcbOzwebOvrw1qdDk6XC06nE319fRBFESqVCllZWdDpdNBoNBh0QUKjCZ1kqK0FVq++7JdEREQUq9QOA8ePh+YHXKJfOp140+uF8tQpyAAsk8txo8uFBpcLGo0GOTk50Ot0UKnVGLEiQakMdT90OC55HURERJcjtcOAxxPTccLzfTkvD+U9PegKBrEDQFAQkJmXh9LMzOgLAAUh9BXtnAMiIqJRltpj6y5zaM9UtRpfmDULX5w8Gb+eMwdKnQ4v9PdDeSm7DRwgREREcZLaYSA9HRDFy3oIuVyO7KwsKBUKWHQ6HPF4UB/LACNJCn1dSuMiIiKiUZDaYWDmTMDvH7WH854tRuyLJWD4fKG6galTR20dREREsUjtMDBnTujXGE8UdAUCQ34vIEl4v7cXakHAVLU6+gfzeEJTEmfOjGkNREREoyW1Cwhnzw4VEAYCMZ0q+D8tLegPBrEwPR35SiU6AwH8rbcXZ3w+PJyfj/RYihIHBoBZswC9/hJeABER0eVL7TCwaFGo0U9vb0yzCdbp9XinpwdvdXejNxiEVi7HTI0G38jPj202gSSFgsjVV1/C4omIiEZHaocBnQ74wheAn/0s9MYcZUX/Or0e60bjk7zLBWi1wE03Xf5jERERXaLUrhkAQmEgPT30xjyeJCk0F6GqCpg2bXyfm4iI6BwMAzNnAtdcE3pjDgbH73l7ekIh5O67x+85iYiIhsEwAADPPAMUFwNtbePzfH4/0N8P3H47sHz5+DwnERHRCBgGAKCgAHj6aUAuDxUTjiVRBFpbQycIHnlkbJ+LiIgoCgwDYTfcANxxR+gT+1jVD4gi0NwcCh8//SmQkTE2z0NERBSD1D5NcC5BCF0u8HiA//qv0JG/zMzRmxkQCIR2BPLzgVdeAebNG53HJSIiukzcGTiXXA68+CLwjW+EPsU3NV1+u2JJCl16aGkJnRr47W+BZctGZ71ERESjgGHgfDIZ8MQTod2BGTNCn+Y7OkKf7GMhSaFLDuFAsWEDsHEjsGDBmCybiIjoUvEywUhWrwbeew/4xS+AP/whdNJAkkLX+dPSQu2Lz7+EIIqhywwDA6EvjSa0C/DQQ4DZHJ/XQUREdBGCJF18So/T6YTBYEBvby/0qdhD3+UC3n8f+NOfgCNHQm/4fn9oF+HczoWSBKjVoTkDn/0s8MUvAgsXjl7dARERUQyiff9mGIhVby9QWxv6amkBvN5QrYFWC0yfHmpiNG0aoOCmCxERxVe07998x4qVwQCsWBH6IiIimgBYQEhERJTiGAaIiIhSHMMAERFRimMYICIiSnEMA0RERCmOYYCIiCjFMQwQERGlOIYBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcVENKgoPNnQ6nWO6GCIiIho94fftiw0ojioMuFwuAIDRaLzMZREREdF4c7lcMBgMI94uSBeLCwBEUURTUxN0Oh0EQRjVBRIREdHYkCQJLpcLRUVFkMlGrgyIKgwQERHRxMUCQiIiohTHMEBERJTiGAaIiIhSHMMAERFRimMYICIiSnEMA0RERCmOYYCIiCjF/f/2b7UAJYnTzwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -317,10 +317,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:45.338530Z", - "iopub.status.busy": "2024-02-09T16:52:45.338129Z", - "iopub.status.idle": "2024-02-09T16:52:45.448999Z", - "shell.execute_reply": "2024-02-09T16:52:45.448300Z" + "iopub.execute_input": "2024-02-14T16:07:39.089298Z", + "iopub.status.busy": "2024-02-14T16:07:39.088856Z", + "iopub.status.idle": "2024-02-14T16:07:39.209231Z", + "shell.execute_reply": "2024-02-14T16:07:39.208498Z" } }, "outputs": [ @@ -354,10 +354,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:45.451721Z", - "iopub.status.busy": "2024-02-09T16:52:45.451316Z", - "iopub.status.idle": "2024-02-09T16:52:45.458347Z", - "shell.execute_reply": "2024-02-09T16:52:45.457772Z" + "iopub.execute_input": "2024-02-14T16:07:39.212215Z", + "iopub.status.busy": "2024-02-14T16:07:39.211786Z", + "iopub.status.idle": "2024-02-14T16:07:39.219076Z", + "shell.execute_reply": "2024-02-14T16:07:39.218506Z" } }, "outputs": [ @@ -384,10 +384,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:45.460748Z", - "iopub.status.busy": "2024-02-09T16:52:45.460362Z", - "iopub.status.idle": "2024-02-09T16:52:45.477369Z", - "shell.execute_reply": "2024-02-09T16:52:45.476803Z" + "iopub.execute_input": "2024-02-14T16:07:39.221634Z", + "iopub.status.busy": "2024-02-14T16:07:39.221233Z", + "iopub.status.idle": "2024-02-14T16:07:39.239555Z", + "shell.execute_reply": "2024-02-14T16:07:39.238992Z" } }, "outputs": [ @@ -429,10 +429,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:45.480035Z", - "iopub.status.busy": "2024-02-09T16:52:45.479617Z", - "iopub.status.idle": "2024-02-09T16:52:45.652135Z", - "shell.execute_reply": "2024-02-09T16:52:45.651486Z" + "iopub.execute_input": "2024-02-14T16:07:39.242283Z", + "iopub.status.busy": "2024-02-14T16:07:39.241888Z", + "iopub.status.idle": "2024-02-14T16:07:39.415253Z", + "shell.execute_reply": "2024-02-14T16:07:39.414646Z" } }, "outputs": [ @@ -448,7 +448,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABh+klEQVR4nO3dd3yT5frH8U+SNt27tFjassteMpVdaFCOchQ3MhT30SMeKEP2kCHrCIIgIjKcqCiun6SADOEgCOJA9iptKXTvNknz/P6IraCMFtI+SXO9Xy9e59Dx5IpQ8s39XNd9axRFURBCCCGEy9KqXYAQQggh1CVhQAghhHBxEgaEEEIIFydhQAghhHBxEgaEEEIIFydhQAghhHBxEgaEEEIIF+dWkS+yWq2kpKTg5+eHRqOp6pqEEEIIYQeKopCXl0dERARa7dXf/1coDKSkpBAVFWW34oQQQghRfc6dO0dkZORVP1+hMODn51d+MX9/f/tUJoQQQogqlZubS1RUVPnr+NVUKAyU3Rrw9/eXMCCEEEI4mevd4pcGQiGEEMLFSRgQQgghXJyEASGEEMLFSRgQQgghXJyEASGEEMLFSRgQQgghXJyEASGEEMLFSRgQQgghXJyEASGEEMLFSRgQQgghXJyEASGEEMLFVehsAiGEevItFlJMJoqtVjSAt05HlIcH+mscRyqEEJUhYUAIB1NUWooxK4u9ubkcyMvjZHExJqsVK6DBtpznpdPRzNubtr6+dA8IoHtgILrrHEQihBBXI2FACAeRWFzM+osX+fDiRVJMJhRAB3hqtfhotWg1GhTAqiiUWK3syc1ld24uK1JSaOTtzaNhYdxXqxZB7u4qPxMhhLORMCCEykoVhTWpqSw4d44Msxm9RkOom9s1bwN4X/L/i61WjhUWMunMGVaeP8+0+vUxBAVd98hSIYQoI2FACBWdLS5m3MmT7MjJQQdE6PVoK/ki7qnVcotej0VRSCwp4emjR3mgVi0m1atHgJv8iAshrk86kIRQyaGCAh46dIit2dkE6nSE3UAQuJSbRkOEXo+HRsO7Fy4w9PBhLppMdqxYCFFTSRgQQgVHCgoYdvgwZ4qLidDr8dLp7HZtfzc3wtzd+SE3l8ePHCHTbLbbtYUQNZOEASGqWZbZzFNHj5JUUkKEXl8lUwB6rZYwd3f25+Xx4vHjlCqK3R9DCFFzSBgQoprNTkzkeFERtW/ytsD16LVaQtzc+C47m3cvXKiyxxFCOD8JA0JUo82ZmXx08SL+Oh1u1dDt76XToQPmJSZyqqioyh9PCOGcJAwIUU1KFYWZiYmYrVb87NgjcD2h7u6km838Nymp2h5TCOFcZO5IiGqyIzubE4WFBLu7V2oPAKvZTPqnn5KzaxelBQV4REcTdv/9+LRsWaHv12o0+Op0bMrMJKWkhAgPjxt9CkKIGkpWBoSoJh9evIhFUfCs5JkC51esIOPbb/G//XbCBw9Go9WSOH8+hUePVvga/joduRYLn6alVbZsIYQLkDAgRDVIN5nYmp2NTyVvDxSdPEnuDz8Q9uCDhD/yCEGxsUS//DLuoaFc/OijCl9Hq9HgptHwcVoaikwWCCH+QsKAENXg98JCCktL8ankqkDevn2g0RDYu3f5x7Tu7gT26EHRiROYMzIqfC0frZaUkhLSZN8BIcRfSBgQohocLizECpWeICg+cwb9Lbeg8/K67ONeDRvaPn/2bIWv5anVUmS1criwsFI1CCFqPgkDQlSDwwUFAJU+PMiSk4NbYODfPu4WEGD7fHZ2ha/lptFgBY5IGBBC/IWEASGqQbrZzI3sKmA1mdBcctiQ1WoFQKPXA6BU4uwBjUaDFsixWG6gEiFETSajhUJUA5Oi3FAY0Or1KBYLFouFU6dPU1JSQkBAAF75+SiKUh4KKkoBzNJAKIT4C1kZEKIa6DUabuQl2C0gAEtWFklJSZSUlKDX61GsVi6cPElJSQmZZjM5OTnlKwYV4V4NOx8KIZyLhAEhqkGYXo/1Bt6Re9StS8G5cxRlZxMSHIxWo6Fu3brUMptxc3NDEx5OSkoKx44dIykpidzc3Ks+jqIoKECQmywICiEuJ2FAiGrQzNsbDVR+xr9JE0rNZnxPnMDHxweLxYLFZCJ/9278YmJo0LYtjRo3JiwsDLPFQnJyMseOHSM5OZm8vLzLHs+sKOiApt7edn1uQgjnJ28RhKgGzby90Wk0mBUFfQWX6QsLC8n09sanQwfyv/oKTVERFkXh7IcfYkpLo+4TTwDg7uZGcHAwwcHBmMxmcnNzycvNJSkpCa1Wi5+fH/7+/lg9PfHUamkmYUAI8RcSBoSoBs19fPDW6Si0WtFXYOMhs8VCUnIy3l5eRI4cSfonn5CzaxeWjAxK69cnauRIvJs2/dv36d3dCQ0JITQkBJPJRG5uLrm5ueTk5GAJCKBOaSknDhwgqGNHdNV4WJIQwrFplAqsW+bm5hIQEEBOTg7+/v7VUZcQNc4Lx47xSVoadfT6a+43oCgKZ86epdRioX79+pe9aB89epTQ0FBCQkIq9dhFxcUkFRVRf+dO3L75hsDAQGJjYzEYDNx6661oK7kzohDCOVT09VtWBoSoJg+HhfFFRgbFVite13hXfj41lZLiYurVq/e3d+96vR5TJfYWKFPs5kZtf382TZhA1qBBGI1GEhIS2LBhAyEhIfTp04d+/frRqlUrCQZCuCAJA0JUk9sDAmjq7c2vBQVEaLVXXB3IysoiJzubiDp18PT0/NvnbyQMWBWFgtJSHg0PJ9zDg/CmTWnatCn//ve/OXToEEajkc2bN7N+/XrCwsKIi4vDYDDQvHnzSu+YKIRwTnKbQIhq9H12NkOOHEEHBP5lxK+wsJCziYkEBwcTHhZ2xe9PS0sjOzubxo0bV/gxU00mQtzd+apVK6KuEDDAtrPhzz//TEJCAps3byYzM5OIiIjyYBATEyPBQAgnVNHXbwkDQlSzyadPsyIlhXB3d9z/WJI3WyycPnUKT09PoqOjr/q9OTk5pKSk0KRpU7QVeHEuKC0lt7SUBQ0b8nB4eIXqs1qt7N+/n4SEBLZs2UJOTg7R0dEYDAYMBgMNGjSo2BMVQqhOwoAQDirXYuHe337jUEEBt+j1aIEzZ85QWlr6t4bBvyoqKuLMmTM0aNAADw+Paz5OidVKmtnMP0JCeKtJkwqFh7+yWCzs27cPo9HId999R35+Pg0aNCgPBtcKLkII9UkYEMKBnS4qYtDhw5wuKoKMDPLz8qhXrx6e13mBLy0t5dixY0RGRuLn53fVryu2Wkk3m+kaEMA7TZvib4ddB00mE3v27CEhIYHt27dTWFhITEwM/fr1Iy4ujoiIiJt+DCGEfUkYEMLBnSgs5K6dOzlpMnGLjw9hFfzZOnrsGKEhIVccL1QUhZzSUgqsVnoEBLA8JoYgd3d7l05JSQm7du0iISGBHTt2UFJSQosWLTAYDMTFxRF2lZ4HIUT1kjAghIP78ccfeXLsWDz/9S+SbrkFgFru7uius5x/+vRpPD09ueWP7yljtlq5aLHgpdUyNDyc0dHR+FTDxkKFhYV8//33GI1Gdu/ejclkok2bNhgMBvr27VvpPRGEEPYjYUAIB5aSksKQIUNo2rQpry1axGeZmcw6e5YLZjM6bIcJeVxl3j85ORmLxULdunVRFIUiq5Ws0lI0QIyXFzMbNKBrQEC1Pp8yBQUFbN++HaPRyP/+9z+sViu33nor/fr1IzY2lsDAQFXqEsJVSRgQwkEVFxczfPhw8vPzeffdd8t/pi6aTGxIS+PdCxc4U1yMFUBR8NRq8dBqKVsvyMzOJqeoiMCwMFAU9FotrXx8GBwezt2hodWyGlARubm5fPfddxiNRvbt2wdAp06dMBgM9OrVS/4tEaIaSBgQwgEpisKkSZPYtm0b77zzzhX3CzBbrWzPzmZfXh4/5+fzW0EBhVYrZT+oxYWF5KSkcH/btrQNCKB7QAAd/Pwceh+ArKwstm7ditFo5MCBA+h0Orp06YLBYKBnz574+PioXaIQNZKEASEc0Hvvvcd///tfZs+eTVxcXIW+x2y1ctFspsRqRQOcPnqU0U89xQfvvUdMTEzVFlwF0tLS2LJlC0ajkV9++QW9Xk/Xrl2Ji4uje/fueHl5qV2iEDWGnE0ghIPZu3cvixYtYtiwYRUOAgDuWi11Lhk5DKxbF42ikJSU5JRhoFatWjz88MM8/PDDpKamsnnzZoxGI+PHj8fT05Pu3bsTFxdH165dr7uXghDCPmRlQIhqkJKSwuDBg2nRogWLFi26qcOAFEWhd+/ePPbYYzz22GP2K1JlycnJJCQkYDQaOXbsGN7e3vTq1Yu4uDi6dOmCexWMSApR08nKgBAOoqioiPj4ePz9/Zk5c+ZNnwqo0WiIjo7m3LlzdqrQMdSpU6c84Jw9e7b8ZMVvvvkGPz8/evfuTVxcHB07dsTNDpsoCSH+JD9RQlQhRVGYMWMG586dY/Xq1XZbWYuMjKxxYeBSdevW5amnnuKpp57i5MmT5cHgiy++ICAggD59+hAXF0f79u3lyGUh7EDCgBBVaN26dRiNRl599VUaNmxot+tGR0dz4MABu13PkTVs2JDnnnuOZ599lmPHjpUHgw0bNhASEkKfPn0wGAy0bt1agoEQN0jCgBBVZM+ePSxZsoThw4fTp08fu147KiqK9PR0ioqKXKb7XqPR0KRJE5o0acILL7zAoUOHMBqNbN68mfXr1xMWFkbfvn0xGAy0aNHCoUcthXA00kAoRBVISkpi6NChtGzZktdee83u71h/+eUXhg8fzvvvv++UEwX2ZLVa+eWXX8qDQWZmJhEREcTFxWEwGIiJiZFgIFyW7DMghEoKCwsZPnw4JSUlrF279pqnC96o7Oxs+vbty9y5c4mNjbX79Z2V1Wpl//79JCQksGXLFnJycoiOji4PBva8VSOEM5BpAiFUoCgK06ZNIyUlhdWrV1dJEAAICAjA19eXxMTEKrm+s9JqtXTs2JGOHTsyZswY9u3bR0JCAuvXr+ftt9+mQYMG5cGgbt26apcrhMOQMCCEHa1Zs4YtW7Ywb948GjRoUGWPUzZeKGHg6tzc3Ljtttu47bbbGDduHHv27CEhIYF169bx5ptvEhMTU37kcp06ddQuVwhVSRgQwk52797N0qVLeeKJJ+jdu3eVP15UVBRJSUlV/jg1gV6vp0ePHvTo0YOSkhJ27dpFQkICb731FkuWLKF58+blwSA8PFztcoWodtIzIIQdnDt3jqFDh9K2bVsWLFhQLSNuy5cv5/PPP+fbb7+t8seqqYqKiti5cydGo5Hdu3djMplo3bo1BoOBvn37EhoaekPXtVqtmM1m2U5ZqE4aCIWoJoWFhTz22GNYLBbWrl2Lr69vtTzuN998w+TJk9mxYwfe3t7V8pg1WUFBAdu3b8doNLJnzx5KS0u59dZbMRgMxMbGEhQUVOFrHT16lNdee43U1FRiY2N54okn5M9IqEIaCIWoBoqiMHXqVFJTU1mzZk21BQGw7UIIOO2BRY7Gx8eH/v37079/f3Jzc9m2bVv5hlGvvvoqHTt2xGAw0Lt37+u+KcrOziY8PBwPDw9GjBiBm5sbTz/9NDqdrpqejRCVI9t1CXET3nnnHbZu3cqMGTOoX79+tT52dHQ0QI3ellgt/v7+DBgwgCVLlrBp0ybGjRuHxWLhlVdewWAw8PHHH3OtRdXOnTszdepUevXqRVBQEF26dJEgIByarAwIcYO+//57li1bxtNPP03Pnj2r/fEDAgLw8/OTMFDFgoKCGDhwIAMHDiQ9PZ0tW7bQrl07rFbrVV/gTSYTer2ed955hw4dOlR7UBSismRlQIgbkJiYyMSJE+nevTtPPvmkKjVoNBqioqJkvLAahYaG8tBDD9GoUaNrvtPX6/UAbNq0iXvvvfe6txWOHDnC66+/zsMPP8z7779/zVUHIaqChAEhKqmgoIBRo0YRGhrKjBkzVD0cJyoqSlYGHExpaSkAn376Ke7u7nTt2vWaf0d++OEH7rjjDtatW4e3tzfjx4/nmWeeobCwsLpKFkJuEwhRGVarlSlTpnDx4kXWrl2Lj4+PqvVERUWxf/9+VWsQV7Zy5Up69uxZ3ttxKUVR0Gg0pKWlMXnyZBo1asTGjRvx8fHhxx9/pGfPnjz88MOy1bSoNrIyIEQlrFq1im3btjFjxgyH2M42Ojqa9PR0eRfpIBRFQafToSgKW7ZsueotAqvVCsBHH31EWloaL774YnmwbNy4MS1btuTgwYPVWbpwcbIyIEQF7dixg+XLl/Pss8/So0cPtcsBbCsDIOOFjsBsNvPqq6/i6+uLoigEBATQrVu3v52YaLVay28bfPbZZ7Ro0YLOnTuXfz4vLw+tVkt6ejrw5yqCEFVJVgaEqICzZ88yadIkevXqxfDhw9Uup1xZGJC+AfVptVr8/PyYNWsWo0aNIiMjg08++aS8wbOoqKj86zQaDcnJyVy4cIH27dtftgVyeno6Bw8exGAwqPI8hGuSMCDEdeTn5zNy5EjCwsKYPn26qg2Df1U2XigTBerT6XSMGDGCixcvlofHJUuW8MQTT2CxWFi1ahWDBw/m5MmTgC1g6vX6y4KAxWJh69at6PV6evXqBSCrAqJaOM6/akI4IKvVyuTJk8nIyGDBggUOt6Vs2XihrAw4lqioKKZNm8b58+f54IMPcHNz48yZMxw6dIhbbrkFgObNm5OYmHjZiOKJEydYv349DzzwAPBnb4EQVU16BoS4hpUrV7Jz505ee+21K3aFOwIJA46t7LCjefPmkZ6ejre3N4qi4OXlRd++ffnyyy/p06cPBQUFjB07lpKSEv7zn/8Al68KlJaWlp9S6QjNq6JmkTAgxFVs376dFStW8K9//YuuXbuqXc5VRUdH8+OPP6pdhqiAsmCg0Wjw8PAgPj6ewYMH06hRIxo2bEheXh5vvfUWLVq0KP+6MjqdjrVr17Jx40ZiYmKIi4vDYDBQp04dVZ6LqFnk1EIhruD06dMMGzaMLl268Oqrrzr0fVs5vdD57d27l4sXL9K5c2dq1ap11a8rKSlh9+7dJCQksGPHDoqLi2nevDlxcXHExcVRu3btaqxaOAM5wliIG5Sfn8/QoUNxc3Nj9erVDv8C++uvv/L444/z/vvvy3ihCykqKmLnzp0kJCSwa9cuTCYTrVu3xmAw0Ldv3/JVCOHa5AhjIW6A1Wpl4sSJZGVlsXbtWocPAnD56YUSBlyHl5cXBoMBg8FAQUEB27dvJyEhgddee40FCxbQrl07DAYDsbGxBAcHq12ucHASBoS4xJtvvsmuXbtYtGhR+Qy/o/P395fxQhfn4+ND//796d+/P7m5uWzbtg2j0cjcuXOZO3cuHTt2xGAw0Lt3b1ndFVckYUCIP2zdupW3336bF154gdtvv13tcipMxgvFpfz9/RkwYAADBgwgKyuL7777DqPRyCuvvMKsWbPo0qULBoOBnj174uvrq3a5wkFIGBACOHXqFFOnTqVv374MGzZM7XIqTcKAuJKgoCAGDhzIwIEDSU9PZ8uWLRiNRqZMmYJer+e2227DYDDQvXt3p7glJqqONBAKl5ebm8uwYcPw8PBg1apVTvmP4ptvvsmGDRvYtGmT2qUIJ3DhwgU2b96M0Wjk0KFDeHh40L17dwwGA127dsXDw0PtEoWdSAOhEBVQ1jCYk5NTfp68M4qKiiIjI4PCwkKnfQ6i+oSHh/Poo4/y6KOPkpKSQkJCAkajkTFjxuDt7U2PHj0wGAx06dIFvV6vdrmiGkgYEC5t+fLl7Nmzh8WLFzv15i1yeqG4UREREQwbNoxhw4aRmJiI0WjEaDTy7bff4uvrS69evTAYDHTq1Ak3N3nJqKnkT1a4rC1btrBq1SpefPFFunTponY5N6VsvDAxMVHCgLhh0dHRPPnkkzz55JOcOnWqPBh89dVXBAQEEBsbS1xcHB06dHCoA7vEzZMwIFzSyZMnmTp1KgaDgSFDhqhdzk0LCAjA399fmgiF3TRo0IBnn32WZ555huPHj5cHg88++4zg4GD69OlDXFwcbdu2lWBQA0gYEC4nNzeXkSNHEhkZyaRJkxx6q+HKiIyMlDAg7E6j0RATE0NMTAzPP/88v//+O0ajkYSEBD7++GPCwsLo27cvcXFxtGzZssb8PLkaCQPCpVitVsaPH09eXh7Lli3Dy8tL7ZLsJjo6WjYeElVKo9HQokULWrRowYgRI/j1118xGo1s2rSJ999/n1tuuaX8nISmTZtKMHAiEgaES1m6dCl79+5lyZIlREREqF2OXUVFRbFv3z61yxAuQqvV0qZNG9q0acOoUaM4cOAARqORL774grVr1xIVFVUeDBo1aiTBwMFJGBAuIyEhgTVr1vDSSy/RqVMntcuxOxkvFGrRarV06NCBDh06MHbsWPbt24fRaOTjjz9m1apV1K9fv/zI5Xr16qldrrgC2XRIuIRjx44xfPhwevXqxYwZM2rku5TffvuNxx57TE4vFA7DbDazZ88eEhIS2LZtG4WFhTRu3Lg8GERGRqpd4vWlpcGPP8Lhw/Dbb3D8OBQVgUYD3t7QpAm0bAlNm0LHjhAUpHbFl5EjjIX4Q05ODkOGDMHX15dVq1bh6empdklVIicnhz59+jBnzhz69u2rdjlCXMZkMrFr1y4SEhLYsWMHxcXFNG/evPxWQu3atdUu8U+KAvv2wfr18NVXkJtr+xiAXg9l0xNWK5SU2IKBRmMLAvfeCw8+CK1a2T6mMgkDQgClpaW8+OKLHDlyhHXr1tW4PoG/io2NZfDgwQwfPlztUoS4qqKiIr7//nsSEhL4/vvvMZlMtG7dmri4OPr27UutWrXUK+74cZg4Efbssb3Q+/iAvz/odNf+PosFcnJsqwZeXtC7N0ybBiqffiphQAhg0aJFvPfeeyxdupSOHTuqXU6VGzZsGA0bNmTy5MlqlyJEhRQUFLB9+3YSEhL43//+R2lpKe3atcNgMBAbG0twcHD1FGKxwOrVsHAhZGba3uV7e1f+3b2iQEEBZGdDeDiMGwcPPfTnakI1kzAgXN6mTZuYMGECI0eOZNCgQWqXUy0mTpxIamoqK1euVLsUISotNzeXbdu2kZCQwA8//ABAhw4dyoNBlb3+FBbCf/4DX34Jbm4QGnrzL95WK1y8aPv/jzwCs2aBu/vN11pJEgaESzt27BiPP/44ffr0Ydq0aTWyYfBKVqxYwSeffILRaFS7FCFuSnZ2Nlu3bsVoNHLgwAE0Gg2dO3fGYDDQq1cvfH197fNARUXw7LOwaZNtNcDHxz7XLZOXZ+s5eOAB26pDNZ/vIKcWCpeVnZ3NqFGjqF+/PhMmTHCZIAC2XQgzMzNlvFA4vcDAQAYOHMjAgQPJyMhgy5YtGI1Gpk6diru7O7fddhv9+vWje/fuN/533WqF+HgwGiEkxHav3978/Gy3Gj7+GAICYMYM+z+GHUgYEDVKaWkpL7/8MsXFxbz11lsudy572YFF586do0mTJipXI4R9hISE8OCDD/Lggw9y8eJFNm/ejNFoZMKECXh4eNCtWzcMBgNdu3at3LTQJ5/Axo22F+mq3I3U1xdKS2HtWujRA+Liqu6xbpCEAVGjLF68mP3797Ns2TLHGlWqJhIGRE0XFhbGoEGDGDRoECkpKSQkJGA0Ghk7dixeXl706NEDg8HAbbfdhl6vv/qFkpNt9/HB9mJd1fz94fx5mDIF2reH6mqMrCAJA6LG+Oabb3jvvfcYPXo07du3V7scVfj7++Pv7y9nFAiXEBERwbBhwxg2bBiJiYnlwWDTpk34+vrSq1cvDAYDnTp1wu2v9+pnz4bUVKiucWONBsLC4NQpWLwYpk6tnsetIGkgFDXCkSNHGD58OAaDgSlTprhUn8BfDRs2jAYNGjBlyhS1SxFCFadOnSo/cjkxMRF/f39iY2MxGAy0b98eXVIS9Olje4EOCKjwdQutVtZlZPBbURGHiovJLS1lyi23cHdgYMWLy8iwjSzu3FktqwPSQChcRlZWFvHx8TRq1Ijx48e7dBAA2xkFcpSxcGUNGjTg2Wef5ZlnnuH48ePlweDzzz8nODiYcXo93bOzcYuOpjL/WmRbLLyVnk5td3cae3iwv7Cw8sUFBtpWJDZuhMcfr/z3VxF1dkEQwk4sFgvjxo3DZDIxb968a98jdBFylLEQNhqNhpiYGF544QU2btzI2rVruatfPyK//5703FyOnzxJ6oULFBYVcd0lciDUzY1NjRvzVaNGjAgLu7GidDrbHgYffPDnFscOQFYGhFNbtGgRBw8eZPny5YSHh6tdjkOIioqS8UIh/kKj0dC8eXOaa7Uor79OcUgImpIScnNzyczMxN3dvbznxtPT84orBnqtlhB77CTo62vrHUhLs/UROAAJA8Jpff3113zwwQeMGTOGdu3aqV2Ow4j6Yy90mSgQ4goOH0ZTUoLXLbfgpdUSXrs2hYWF5Obmkp2dTUZGBnp3d/wDAvD398fDw6NStxIqxNMT0tNtJyE6SBiQ2wTCKf3+++/MnDmTAQMG8MADD6hdjkMpGy+UWwVCXMHhw7bGwT/e4WsAH29vbqldm5iYGKKjo/H28SErM5NTp05x6uRJ0tLSKCkpsV8Nbm62WwSHD9vvmjdJVgaE08nMzCQ+Pp7GjRszbtw4l28Y/KuypU5pIhTiClJTbRsAXYEG8PXxwdfHB2vt2hQUFJCbm0tGZiZp6el4eHgQ8MfP103RaGxh4MKFm7uOHUkYEE6lrGHQYrFIw+A1yESBEFdRXFyhQ4i0Gg1+vr74+fpiVRQK8vPJyc0lPT2d86mpKPXq3Xwt9lxtuEkSBoRTWbhwIb/88gtvvvkmYQ5yr80RyUSBEFeh1Va6i1+r0eDn54efnx+pFy6QkZ5OscVy87VU86FF1yI9A8JpfPnll6xfv57Ro0fTpk0btctxaLIyIMRV3MQSf84fkwe1b7kFr5s990SjsW0+5CAkDAincOjQIWbPns0999zDwIED1S7H4ZWNFxYUFKhdihCOpVGjP+/ZV0JxcTHnU1IICAgg+GZ3DrRabb8aNbq569iR46xRCHEVGRkZjB49miZNmjBmzBhpGKyAsomCpKQkGS8U4lLNmtk2/rFYwN29Qt9iKS3lXFISeg8Pdnp6UpCeTtoftwl25udz8Y///1BQEL463fUvWFICHh62WhyEhAHh0MxmM2PHjqW0tJS5c+dKw2AFle01kJiYKGFAiEs1b247rriwsELnEihAcnIyVquVunXrMuLsWc6bzeWf35qXx9a8PADu9PevWBgoKgIfH2jc+Eafhd1JGBAObeHChfz222+sWLGCWrVqqV2O05DxQiGuIiQEunSBzZsrFAYuXrhAYUEB0XXrond358ubXdpXFFsQuececKA3N9IzIBzWxo0b+fjjjxk7diytW7dWuxynI02EQlzFoEG2qYLrjPbl5OSQkZlJeHg4PvZq9isqst0ieOgh+1zPTiQMCIf066+/MmfOHAYOHMi9996rdjlOScYLhbiKPn2gbl3IzLzqlxQVF5Ny/jyBAQEE2fOo4awsaNkSOna03zXtQMKAcDjp6emMGTOGZs2aMXr0aLXLcVqyMiDEVej1MGKEbargChM3FouFpHPn8PTwoPYtt9jvbILc3D8f2x4HHtmRY1UjXJ7ZbGbMmDEAzJ07F/cKdvuKv5PxQiGu4YEHwGCwvVO3Wss/rCgKScnJKIpCZFQUWntNL1kstjDwwAMQF2efa9qRhAHhUObNm8fhw4eZN28eoaGhapfj1MrGC2V1QIgr0Gph+nSoXdt2XsEf+w5cuHCBosJCIiMjcbfXDoFWq+0cgvr1Yfx424qEg5EwIBzGhg0b2LBhA+PGjaNly5Zql+P0Lj3KWAhxBZGRsGgR+PlBairZ2dlkZmURXrs23vZqGLRa4fx5CA2FpUvBnv0HdiRhQDiEX375hblz5/LAAw/wz3/+U+1yagQZLxSiAnr2hNdfp8TDA0tiIkH+/gQFBdnn2mYzpKRAWBi89Rbceqt9rlsFJAwI1aWlpTF69GhatmzJyJEj1S6nRpGJAiGuL6N9e8aHh5MVGEhtqxVNbm6ltyu+jKLYehEuXLBtcrR2rW1vAwcmYUCoymQyMWbMGHQ6nTQMVgGZKBDi2sqaln/z9ydo1y40w4aByWR7R1/ZUGC1Qk4OJCfbvu/55+GLL8AJDlaTHQiFahRFYe7cuRw9epSVK1fe/OEf4m+ioqL44Ycf1C5DCIe1YMECDh06xIoVKwht3BjmzoX+/eHtt2HXLtsLu7s7eHrafun1fzYAKootOBQVQXGxbWLA1xfuvhueego6dVL3yVWChAGhmg0bNvD5558zZcoUmjdvrnY5NVJ0dHT5eKGPj4/a5QjhUD777DM++eQTJk6cePkup7162X4dOwaffALffQdnz0J2tq0P4NIwoNfbQkKrVrbNjO6/H+rVq/4nc5MkDAhVHDx4kHnz5vHggw9y9913q11OjXXpREHTpk1VrkYIx/HLL7/w6quvct9993HPPfdc+YtiYmyjgOPH224ZHDkCiYm2VQCt1ratcP360KSJ7eAhJyZhQFS7ixcvMmbMGFq3bi0Ng1Xs0tMLJQwIYZOWlsaYMWNo0aIF8fHxFfsmf3/bsr8TLf1XhjQQimplMpkYPXo0bm5uzJkzBzd7beohrqhsvDApKUntUoRwCGVNy1qtVpqWLyH/EotqoygKc+bM4fjx49IwWI1kvFAIG0VRePXVVzl69ChvvfUWISEhapfkMGRlQFSbjz/+mC+++IIJEyZIw2A1kjAghM2nn37Kxo0bGTduHC1atFC7HIciYUBUiwMHDrBgwQIeeeQR/vGPf6hdjkuJjIyU2wTC5f3000/MmzePhx56iAEDBqhdjsORMCCqXFFREZMmTaJt27aMGDFC7XJczqXjhUK4oosXLzJ27FjatGnDf/7zH7XLcUjSMyCqnIeHB4sXLyYkJEQaBlVw6emFMlEgXI3JZCI+Ph53d3dpWr4GWRkQVU6r1dKgQQMCAwPVLsUlRUZGAkjfgHA5iqIwa9YsTpw4wfz586Vp+RokDIhqoXHA87tdhb+/PwEBAXJGgXA569ev56uvvmLixIk0a9ZM7XIcmoQBYVdWq1XtEsQVyIFFwtXs37+fBQsW8Oijj9K/f3+1y3F4cvNE3JTjx49z/vx5goKCiImJwcPDA6vVilYrOdORyHihcCXnz59n7NixdOjQgRdffFHtcpyC/Istbti0adN44IEH6NOnD4MHD6Z79+7s3bu3PAgoN3MeuLCrqKgoGS8ULqG4uJj4+Hi8vb2ZNWsWOp1O7ZKcgoQBcUO+/fZb5s6dy8yZM/n555+ZPHkydevW5bbbbmPx4sWArU9AAoFjiIqKkvFCUeMpisLMmTM5c+YM8+fPl6blSpDbBOKG/PTTT9x5553lGwg1b96cHj160LZtW+Lj40lNTWXWrFnSOOggysYLExMTpZFK1Fjvv/8+//d//8esWbOIiYlRuxynIisD4oZYLBZ27dp12cdq1arFiBEjmD9/Pp999hlbtmxRqTrxV2XjhdJEKGqqvXv3smjRIoYOHYrBYFC7HKcjYUDckEcffZRatWoxZcoUMjMzyz/u6+vL4MGD0el0fPnllypWKC4l44WiJktJSWHcuHF06tSJF154Qe1ynJKEAXFDIiMj6d+/P59//jkrV6687EUmODiYO++8k8LCQkpLS1WsUlxKJgpETVRUVMSoUaPw9/dn1qxZMsl0g6RnQFSaoijo9XrmzJmDxWJh6dKlnDp1igEDBtC/f39Onz7NF198wcMPPyydvA5E9hoQNY2iKEyfPp2kpCRWr16Nv7+/2iU5LQkDotI0Gg2lpaXodDrmz59Py5Yteeedd9iyZQtDhw4lMjKSOnXqMG3aNLVLFZeIiorif//7n9plCGE3a9euJSEhgblz59KwYUO1y3FqEgbEDdHpdOWbCz322GP06tWL1NRUfvrpJ1q2bEnnzp3VLlH8RXR0NFlZWeTn5+Pr66t2OULclN27d7NkyRKGDx9ObGys2uU4PQkD4prOnTtHnTp1rngfTqvVlgeCevXqUa9ePbp06aJClaIioqKiANufqYwXCmd27tw5JkyYQNeuXXn22WfVLqdGkE4LcVVTpkzhvvvu4/vvv8dsNv/t84qioNVqOXXqFEeOHFGhQlEZMl4oaoLCwkJGjRpFUFAQM2bMkIZBO5H/iuKKEhISeOONNzh//jwPPfQQH3/8Mfn5+Zd9jUajoaSkhDlz5nD33XdLIHBwMl4onJ2iKEydOpXU1FQWLFiAn5+f2iXVGBIGxN+UlJSwZcsW7rvvPo4fP84999zD0KFDWbBgARcuXLjsaz08PLjrrrt45JFHaNq0qUoVi4qS8ULhzN555x22bt3KjBkzqF+/vtrl1CjSMyD+Rq/Xc9ddd5GTk4OnpyfLli2jTZs2/Otf/+Lo0aNMnTq1fKvPr7/+mtjYWAYMGKBy1aIiZLxQOKudO3eybNkynn76aXr27Kl2OTWOhAHxNxqNhm7dupX/3mq18uyzz9KuXTvuuusujh8/zuLFi9m7dy8zZszgxx9/lO50JyHjhcIZnT17lokTJ9KjRw+efPJJtcupkSQMiOvSaDRYrVY6d+7MyZMnueOOO+jXrx/5+fksX76cevXqqV2iqCAZLxTOpqCggFGjRlGrVi2mT58uDYNVRP6riuvSaDRotVpKS0vx9/fns88+Iz8/n4kTJ/L000+rXZ6ohEvHC4VwdFarlUmTJpGWlsbChQvx8fFRu6QaS8KAqDCdTkdeXh7//Oc/adu2LdOnT1e7JFFJEgaEM1m5ciU7d+5k5syZ5cdwi6ohYUBckaIoV/3cgAED5L6zk/Lz8yMwMFAmCoTD27ZtGytWrOC55567rIdJVA0JA+JvkpOTOXr0KFar9W+f8/Pz4+WXX8bDw0OFyoQ9yESBcHSnTp1i8uTJxMbG8vjjj6tdjkuQBkJxmcLCQv7zn/8A8O6776LX6//2NRqNprrLEnYkYUA4sry8POLj47nllluYOnWq/HtTTSQMiHKX7u61Zs2aKwYB4fyio6PlNo9wSFarlQkTJpCVlcW6devw9vZWuySXIWFAlCvb3WvBggWyu1cNFhUVJeOFwiEtX76cPXv2sGjRovKzNET1kJ4BAcD3338vu3u5iLKJAmkiFI5ky5YtrFq1ihdeeIHbbrtN7XJcjoQBQWJiIhMnTqR79+6yu5cLKAsDSUlJKlcihM2JEyeYOnUqBoOBIUOGqF2OS5Iw4OLKdvcKCQmR40BdhIwXCkeSm5vLqFGjiIyMZNKkSdIwqBLpGXBhVquVKVOmcPHiRdauXSu7e7kQOb1QOAKr1cr48ePJy8tj2bJleHl5qV2Sy5Iw4MJWrVrFtm3bWLhwIXXr1lW7HFGNIiMj5TaBUN2SJUvYu3cvS5YsISIiQu1yXJqsCbuoHTt2sHz5cp555hl69OihdjmimsnKgFCb0Whk7dq1vPTSS3Tq1EntclyehAEXdPbsWSZNmkSvXr144okn1C5HqCA6Oprs7Gzy8vLULkW4oGPHjjFt2jTuvPNOHnnkEbXLEUgYcDn5+fmMHDmSsLAwOQ7UhbVo0YKnn376iltOC1GVsrOziY+Pp379+kycOFEaBh2E9Ay4EKvVyuTJk8nIyGDt2rWyu5cLq1OnDsOHD5cwKKpVaWkpL7/8MkVFRaxYsULOOHEgEgZcSNlxoP/973/lOFCBm5v8+IvqtWjRIvbv38+yZcuoXbu22uWIS8jbAhexfft2OQ5UCKGab775hvfff59Ro0bRvn17tcsRfyFhwAWcPn2aSZMmyXGgQghVHD58mFdeeYW7776bBx98UO1yxBVoFEVRrvdFubm5BAQEkJOTg7+/f3XUJewkPz+foUOH4ubmxurVq6VPQFRYSUkJVqtVNoIRNyUzM5MhQ4YQEhLCypUr5TTUalbR129ZGajBrFYrEydOJCsriwULFkgQEJWyZs0aFi5cSGlpqdqlCCdlsVgYN24cZrOZ+fPnSxBwYBIGarA333yTXbt2MXPmzPLDaYQo8/bbb3Ps2DFKS0uxWCyUlpZy6UJhREQEH374IWfOnFGvSOHUFi5cyM8//8zcuXMJCwtTuxxxDRIGaqitW7fy9ttv8/zzz3P77berXY5wQGPHjmXbtm3odDrc3NzQ6XRoNBoKCws5fPgwiYmJHDp0iIMHD6pdqnBCX3zxBevXr2fMmDG0bdtW7XLEdchsUQ106tQppk6dSt++fRk2bJja5QgHddttt/HRRx+RnJzMTz/9xLFjx0hOTqagoACdTkft2rVp3bo1fn5+apcqnMxvv/3G7Nmzuffeexk4cKDa5YgKkDBQw5QdBxoREcHkyZNldy9xVbfffjsTJkwgNzeXqKgo7r77bho2bEjdunUJDw8nODgYDw8PAgMD1S5VOJGMjAxGjx5Ns2bNGD16tPwb5CQkDNQgZQ2DOTk5ssOguK6oqCjCwsLYuHEjgYGBuLu74+7urnZZwomZzWbGjBmDoii8+uqr0jDoRCQM1CDLly9nz549LF68mMjISLXLEQ6uRYsWaDQafH19JTgKu5g/fz6///47K1asoFatWmqXIypBGghriC1btrBq1SpeeOEFunTponY5wgm0bNmSWbNm4evrq3YpogbYsGEDn376KWPHjqVVq1ZqlyMqScJADXDy5EmmTp2KwWBgyJAhapcjnIS7uzv//Oc/+fnnn7FYLGqXI5zYL7/8wty5c7n//vu555571C5H3AAJA04uNzeXkSNHEhkZyaRJk6RZR1TK6NGjefzxx0lMTASgAhuSCnGZtLQ0Ro8eTcuWLRk1apTa5YgbJD0DTsxqtTJ+/Hjy8vJYtmyZbBsrKq1nz57Uq1ev/O+Ooih/C5RX+pgQACaTidGjR6PT6Zg7d640oDoxCQNObOnSpezdu5clS5YQERGhdjnCCQ0dOvSy32u1tsXC7OxsMjMzCQoKIigoSI3ShINTFIU5c+Zw7NgxVq5cSXBwsNoliZsgYcBJJSQksGbNGl566SU6deqkdjnCyRUUFLBu3TqMRiNHjx7FZDIRFBREWFgY3bt3Z8SIEXh6eqpdpnAgn3zyCV988QVTpkyhefPmapcjbpKEASd07Ngxpk2bxh133MGjjz6qdjnCyZ0/f54XX3yRQ4cO0bZtW+677z7CwsIwm838+uuvLFu2jAsXLrBw4UK1SxUO4qeffmL+/Pk8/PDD3H333WqXI+xAjjB2Mjk5OQwZMgRfX19WrVol79bETVEUhdmzZ/POO++wbNky2rZtS1BQEDqdrvxrtm7dyoABA0hLS5O+FMGFCxcYMmQI9evXZ+nSpbi5yXtKRyZHGNdApaWljB8/noKCAubPny9BQNw0jUbDW2+9xeTJk+nbty+hoaGXBQGANm3a4OnpKacXCkpKSoiPj0ev1zNnzhwJAjWI/Ek6kSVLlrBv3z6WLl0qDYPCbjw8PMjLy/vbx00mE+np6cTHx9OyZUs5sMjFKYrCrFmzOHnyJKtWrZLG0hpGwoCT2LRpE+vWrWPkyJF07NhR7XJEDTJ8+HDeeOMNDh48yD333IO/vz8ZGRkcPnyYHTt2kJiYyLRp02SLaxf30Ucf8fXXXzNjxgyaNm2qdjnCziQMOIFjx44xffp0+vfvzyOPPKJ2OaKG+fe//42npycbNmzgueee4/z581itVsLDw+nevTuvv/46vXv3VrtMoaIff/yRhQsXMnjwYO688061yxFVQBoIHVx2djZDhgwhICCAt99+Gw8PD7VLEjVUSkoKFy9epFatWoSFhckGMgKwTZsMGTKEmJgYXn/99b/1lAjHVtHXb1kZcGClpaW8/PLLFBcX89Zbb0kQEFUqIiLisl4URVHKdx+UHQhdU3FxMfHx8Xh7ezN79mwJAjWYhAEHtnjxYvbv38+yZcuoXbu22uUIFyMhwLUpisIrr7zC2bNnWbVqFQEBAWqXJKqQhAEH9c033/Dee+8RHx9P+/bt1S5HCOFi3nvvPb799ltmz55NTEyM2uWIKib7DDigI0eO8Morr3DXXXfx0EMPqV2OEMLF/PDDDyxevJhhw4YRFxendjmiGkgYcDBZWVnEx8fTqFEjxo8fL8u0QohqlZyczMsvv0znzp15/vnn1S5HVBMJAw7EYrEwbtw4TCYT8+bNQ6/Xq12ScCFms5n09HS1yxAqKioqYtSoUfj7+zNz5szyUyxFzSc9Aw5k0aJFHDx4kGXLlhEeHq52OcLFzJo1i9OnT7N69Wq1SxEqUBSFadOmkZyczOrVq2WM3MVI7HMQX3/9NR988AGjRo3i1ltvVbsc4YKioqI4d+6c2mUIlaxZs4bNmzczbdo0GjZsqHY5oppJGHAAv//+OzNnzmTAgAE88MADapcjXFRkZCQ5OTnk5uaqXYqoZrt372bp0qU88cQTxMbGql2OUIGEAZVlZmYSHx9P48aNGTdunDQMCtVER0cDyOqAi0lMTGTChAl069aNZ555Ru1yhEokDKiorGHQYrFIw6BQXVRUFCBhwJUUFhYSHx9PUFAQM2bMkIZBFyYNhCpauHAhP//8M2+++SZhYWFqlyNcnI+PD8HBwSQmJqpdiqgGVquVKVOmkJqaypo1a/D19VW7JKEiCQMq+fLLL1m/fj0vv/wybdu2VbscIQDb6kBSUpLaZYhq8M477/Ddd9+xcOFC6tevr3Y5QmWyJqSCQ4cOMXv2bO655x4GDhyodjlClIuKipKVARewY8cOli9fztNPP02PHj3ULkc4AAkD1SwjI4PRo0fTpEkTxowZIw2DwqFER0dLGKjhzp49y6RJk+jRowdPPvmk2uUIByFhoBqZzWbGjh1LaWkpc+fOlYZB4XAiIyPJzc2V8cIaqqCggJEjRxIWFsb06dOlYVCUk78J1WjhwoX89ttvzJs3j1q1aqldjhB/I+OFNZeiKLi7uxMTE8OCBQvw8fFRuyThQCQMVJONGzfy8ccfM2bMGFq3bq12OUJcUdl4odwqqHk0Gg1ubm7Mnj27PPQJUUbCQDX49ddfmTNnDgMHDpSGQeHQysYLZWWgZpLbAuJq5G9GFUtPT2fMmDE0a9aM0aNHq12OENclZxQI4XokDFQhs9nMmDFjAJg7dy7u7u4qVyTE9UVHR0sYqAGsVqvaJQgnIpsOVaF58+Zx+PBhVqxYQWhoqNrlCFEhUVFRbN++Xe0yRCWdOHGC1NRUAgMDadSoEZ6enlitVrk1ICpE/pZUkQ0bNrBhwwbGjRtHq1at1C5HiAqLioqS8UInM3PmTO6//35iY2MZNGgQ3bt3Z8+ePeVBQFEUlSsUjk7CQBX45ZdfmDt3Lvfffz///Oc/1S5HiEqRA4ucy5YtW5g5cybTp0/n4MGDTJkyhfr163P77bezaNEiwDZJIIFAXIvcJrCztLQ0Ro8eTcuWLRk1apTa5QhRaWVjZ4mJibRo0ULlasT1HDhwAIPBwIABAwBo3rw5PXr0oF27dowZM4bz588zZ84c2e1UXJOEATsymUyMGTMGnU4nDYPCaXl7e8t4oROxWCz873//Q1GU8hf8WrVq8eKLL+Ln58fSpUvp06cPcXFxKlcqHJncJrATRVGYO3cuR48eZd68eQQHB6tdkhA3TMYLnccjjzxC7dq1mTRpEhkZGeUf9/Hx4dFHH0Wv1/Pll1+qWKFwBhIG7GTDhg18/vnnjBs3TpZWhdOTA4ucR0REBP/4xz/48ssvWbly5WV/bkFBQdxxxx0UFBRgsVhUrFI4OgkDdnDw4EHmzZvHgw8+WH7fTghnJisDzkFRFPR6PbNmzcJgMPDGG28we/ZsvvnmG8B2QuGXX35JeHg4bm5yV1hcnfztuEkXL14sP29g5MiRapcjhF1cOl7o7++vdjniKjQaDaWlpeh0OubNm0fLli1ZtWoVmzdvZtiwYURGRhIaGsqsWbPULlU4OAkDN8FkMjF69Gjc3NyYM2eOJG9RY1w6UdCyZUuVqxHXotPpyjcXGjZsGD179iQlJYWffvqJli1b0rlzZ7VLFE5AXr1ukKIozJkzh+PHj7Ny5UppGBQ1yqV7DUgYcAyJiYlERkZecUdBrVZbHgjq1atHvXr1uP3221WoUjgr6Rm4QR9//DFffPEFEyZMoHnz5mqXI4RdyXihY5k6dSr33nsvO3fuxGw2/+3ziqKg1Wo5ffo0R44cUaFC4ewkDNyAAwcOsGDBAh555BH+8Y9/qF2OEFVCDixyDFu2bOGNN94gLS2Nhx56iI8++oj8/PzLvkaj0VBSUsKrr77K3XffzeHDh1WqVjgrCQOVdOHCBcaNG0fbtm0ZMWKE2uUIUWWioqJkvFBlJSUlJCQkcO+993Ls2DEGDhzIsGHDmD9/PhcuXLjsaz08POjfvz8PP/wwzZo1U6li4aykZ6ASSkpKGD16NHq9XhoGRY0npxeqT6/Xc/fdd5OdnY2npydvvPEGbdq04bnnnuPo0aNMnTqVJk2aAPDNN98QGxsr483ihsirWQUpisLs2bM5ceIEq1atIigoSO2ShKhSMl6oPo1GQ9euXct/b7VaeeaZZ2jbti133XUXx48f5/XXX+fHH39k2rRp7N27F19fXxUrFs5KwkAFrV+/nq+++ooZM2bQtGlTtcsRosrJeKHjKdtXoHPnzpw6dYp+/frRr18/8vPzeeONN2jQoIHaJQonJT0DFbB//34WLFjAoEGDuPPOO9UuR4hqUTZeKH0DjkOj0aDT6SgtLcXPz4/PP/+c/Px8xo8fz7PPPqt2ecKJSRi4jtTUVMaOHUv79u2lYVC4lLLxwqSkJLVLEX+h0+nIy8vjnnvuoXXr1rzyyitqlyScnISBaygpKSE+Ph4vLy9mz56NTqdTuyQhqpUcWKSuoqIiwNYr8FcajYa77rqLPXv2VHdZogaSMHAViqIwc+ZMTp8+zYIFCwgMDFS7JCGqnew1oB6z2czzzz/PzJkz0Wg0f/u8r68vL7/8Mp6enipUJ2oaCQNX8cEHH/DNN98wefJkYmJi1C5HCFVERkZKGFDJvHnzOHz4MAMGDLhiGACu+nEhKkvCwBXs27eP1157jSFDhtCvXz+1yxFCNdHR0eTm5pKTk6N2KS5lw4YNbNiwgXHjxtGqVSu1yxEuQMLAX6SkpDBu3Dg6dOjACy+8oHY5Qqjq0gOLRPX4+eefmTt3Lg888AD//Oc/1S5HuAgJA5coLi4mPj4eHx8faRgUAhkvrG4XL15kzJgxtGrVipEjR6pdjnAhsunQHxRF4ZVXXiExMZF33nmHgIAAtUsSQnXe3t6EhITIeGE1MJlMjB49Gp1Ox6uvvoq7u7vaJQkXUnPCQGEhnDsHxcWgKODhAVFRUMGtOd977z2+/fZbZs+eTePGjau4WCGchxxYVPUURWHOnDkcP36clStXEhwcrHZJwsU4bxgwmWDrVti9Gw4cgBMnbEGgbB5Xo7EFgoYNoW1buO02MBjgCmM4e/fuZfHixQwbNoy4uLjqfR5COLjo6GhOnDihdhk12scff8wXX3zBtGnTaN68udrlCBfkfGHg4kVYvx4++ADOnLG9+Ot0thd5Hx/Q/tEGYbXaAsOvv8LBg7BmDURGwsMPw0MPQZ06wJ8Ng507d+b5559X7WkJ4agiIyPZtm2b2mXUWAcOHGDBggU88sgj/OMf/1C7HOGinCcMKAp89hm88gqcPw9ubhAcbHv3fzVeXlB2799kgtRUmDcP3nkHxo6l6N57GTVqFH5+fsycOROtVvophfirS8cLpZfGvi5cuMDYsWNp166dbHcuVOUcYSAtDSZOhG++sYWC2rVtqwGVoddDWJhtxSAtDWXsWI7MmUOJtzcL3n9fjmgV4iouPb1QZt7tp2y7cw8PD2bPno2bm3P8cyxqJsd/K3zuHAwaBBs32m4D3EgQuJRWC+HhZAPRR4+yqqiIRlfY91sIYRMZGQnIXgP2pCgKs2bN4tSpUyxYsICgoCC1SxIuzrHDwPnzMHSo7b5/eHiFJwOuJ7+ggNTsbKzh4QSmpdke49Qpu1xbiJqmbLxQwoD9fPjhh3z99ddMmjSJJk2aqF2OEA4cBkwmeO45OHzYFgTsNHNrMplITk7Gx9eX0Nq14ZZbbI2ITz0FeXl2eQwhaho5sMh+9u3bx3//+18GDx7MHXfcoXY5QgCOHAaWL4cffoBatewWBEqtVs4lJaHT6ahTpw4asN1yCA+HQ4dg4UK7PI4QNY3sNWAfl253/u9//1vtcoQo55hh4NdfYelS26TAtaYFKkEBzqekYDabiYqMRHfp5IC7u+0WxJo1tn0LhBCXiYqK4ty5cyiKonYpTku2OxeOzDHDwLx5kJMDISF2u2RGRga5eXlERETgcaWAERAARUUwc6ZtYkEIUS4qKoq8vDxyc3PVLsUpKYrCjBkzSExMZMGCBTKiKRyO482yHDsG338P/v62XQQr4FRJCW+mpXG4uJgMiwVPrZYGHh4MCQ6mh58f+fn5XLx4kdDQUPz9/K58EY0GgoLgt99g3z7o1MmOT0oI5ybjhTfn3XffZdOmTbLduXBYjrcy8MkntnMGrvaifQXnzWYKrVbuCgggPjycJ0NDARiZlMT6tDSSk5Px9fWlVq1a176QlxeUlNh2OBRClJPxwhv3ww8/8Prrr/PYY4/JdufCYTnWykBpKXz6qa1PoIKrAgBdfX3p+pexw4eCgnj09GlWnT/PEh+fPxsGr0WjAW9v+PprmDrVbqOMQjg7GS+8McnJybz88st06dKFf/3rX2qXI8RVOdbKwJkzkJlpe0G+SRqNBp+SEvKs1r83DF6Ljw8UFMDRozddgxA1SXR0tEwUVEJhYSGjRo0iICCAV155RbY7Fw7Nsf52Hj5sO3nwCicLVkSR1Uq2xUKSycSKs2f5obiY2wMCrtwweDV6PZjNtlqEEOXKJgrE9SmKwrRp00hJSWHBggWy3blweI51m+DoUdtS/Q2O3Pz3wgU2ZGdjLS3FbDbTy8eHSX80PlVY2e0JWRkQ4jJRUVF89913KIqCphK38VzR6tWr2bJlC3PnzqVBgwZqlyPEdTlWGMjJualvHxQcTA8vL35LSmKfhwce3t5YbmRMUFEgO/umahGipomOjiYvL4+cnBwCAwPVLsdh7d69mzfeeIMnn3yS2NhYtcsRokIc6zaBxWI7VfAG1fPwoJO3N7dbrUzw8iKrsJAXExMrv1GKRmObKhBClIuKigJkouBaEhMTGT9+PN26dePpp59WuxwhKsyxwoCbW6WmCK54CXd36tarh7ubG21MJg7m5LDr9Gkys7KwWCwVu4ii2G3nQyFqChkvvLbCwkLi4+MJCQlhxowZ0jAonIpj3SYIDr7pMKDVaAjw9yfA358QLy/cU1MpBi6kpnIhNRVvHx8C/P3x8/O7+nagGo2tFiFEOW9vb0JDQyUMXIHVamXy5Mmkpqaydu1afGUsWTgZxwoDTZrY3pWXllaqiTDTYiHY7fKnYlEU/i8vD283N26vVw+9oti2U83JIeX8eTSpqfj8EQx8/fz+HD0su6XQtKm9npUQNYYcWHRlq1atYtu2bSxcuJB69eqpXY4QleZYYaBZM9sugMXFtnn/CpqVmkpBaSntvL0Jc3cnw2Lh/3JyOGMy8Z+wMLz/eKEPCgwkKDAQs8VCXm4uubm5JKekoNFo8PP1xd/fH193d7Tu7rZahBCXiYqK4sSJE2qX4VB27NjB8uXLeeaZZ+jRo4fa5QhxQxwrDERH244sPn++UmHA4O/P59nZfJKVRU5pKT46HU09PXkxLIweV9jW2N3NjeDgYIKDgzGbzeTm5pKTm0tScjKBpaXo/Pw4duECnU0m9Hq9PZ+hEE4tKiqKrVu3ynjhH86cOcPEiRPp1asXTzzxhNrlCHHDHCsMaLXw4IO2UwutVtvvK8Dg74/hBjf1cHd3JyQkhJCQEEwlJVgSE9lUqxYzJ0zA19eXXr16YTAY6NSpE25ujvWfS4jqFh0dTX5+vowXAvn5+YwaNYratWszffp0aRgUTs3xXt3uvx+WLYO8PNuxwtVIbzajDwri3g8+oI2fHwkJCWzatImvvvqKgIAA+vTpQ1xcHO3bt5cffOGSysYLExMTXToMWK1WJk2aREZGBmvXrsXbDluoC6EmxwsDdetCnz6wcaPt5MLqetEt22ioWzdo3ZoGGg3PPPMMTz/9NMeOHcNoNGI0GtmwYQMhISH07dsXg8FAq1atJBgIl1E2XpiUlETr1q1VrkY9K1as4Pvvv2fRokXlxzsL4cwcLwwAjB4NO3dCejqEhVXPY2Zm2sLHxImXjTdqNBqaNGlCkyZNeOGFFzh06BBGo5GEhAQ++ugjwsPDiYuLw2Aw0KxZM7mPKmq0svFCV54o2Lp1KytXruT555/n9ttvV7scIezCMcNAo0YQH297YS4qsk0YVKWSEtsEw+jR0LbtVb9Mo9HQsmVLWrZsyUsvvcTBgwdJSEjg66+/5t1336VOnTr069ePuLg4GjVqJMFA1EjR0dEuu9fAqVOnmDp1Kn369OGxxx5Tuxwh7EajVGCv3tzcXAICAsjJyam+07csFhg6FLZuta0OVFVXv8UCqanQoQN88skNnZhYWlrK/v372bRpE9999x25ubnUr1+fuLg4+vXrR926daugcCHUMX36dE6cOMHatWvVLqVa5ebmMmzYMDw8PFi1apX0CQinUNHXb8cNA2Bbuh86FH780TZyaO8tgs1muHDBtqfA++/DLbfY4ZJmfvjhB4xGI9u2baOwsJCYmBgMBgMGg4GIiAg7FC6EelavXs3q1av57rvvXGb1y2q18tJLL/Hbb7+xbt066tSpo3ZJQlRIRV+/HfM2QZngYFi9Gp56Cv73P9s9fX//m96yGLBNK+TkQOvWsGqVXYIA2EYVu3XrRrdu3SgpKWH37t0YjUbeeustlixZQosWLTAYDMTFxRFWXf0QQthRVFSUy40XLlu2jD179rB48WIJAqJGcvw2+NBQWLMGnnjC9k4+JcX2vzfKYrFtalRUZNvT4IMP4I8OaXvz8PCgd+/ezJ49m4SEBGbNmkVoaChLliyhf//+PPXUU6xfv57MzMwqeXwhqsKl44WuICEhgXfeeYd///vfdOnSRe1yhKgSjn2b4K+2bYNJk+DkSdvvAwNtzYUVWSkoKrKNDlqtEBUFU6fCnXfaZ5WhkvLz89m2bRtGo5EffvgBRVHo0KEDBoOB2NhYdf8bC3EdRUVFdO/enenTp9O/f3+1y6lSx48f5/HHH6dnz5688sorLnNbRNQcNaNn4Ery8uDLL+G99+C338Bksn3cw8P2S6u1vcBbrX9OCYDteOQmTeDRR+GeeyAoSLWncKmcnBy2bt2K0Whk//79aDQaunTpgsFgoGfPnnL6mXBId9xxB/fccw/PPvus2qVUmZycHIYMGYKvry+rVq3C8waai4VQW80NA2WsVti3D3bvhl9/hYMHbT0AimL7pdXaegxat7b96tTJtqGQA28QlJGRwZYtW9i0aRM///wzer2e22+/HYPBQPfu3fGq6hFLISro6aefJjQ0lFmzZqldSpUoLS3lxRdf5MiRI6xbt04af4XTqhkNhNei1ULnzrZfYAsH6el/rgR4eNgmEBz4xf+vQkJCePDBB3nwwQe5cOECCQkJGI1Gxo8fj6enJz169MBgMHD77bfLAUpCVZGRkTX69MIlS5awb98+li5dKkFAuATnDQN/pdVW326F1SA8PJzBgwczePBgkpKSyoNBfHw8Pj4+lx2g5O7urna5wsVER0fX2NMLv/32W9atW8fIkSPp2LGj2uUIUS1qThiowSIjI3n88cd5/PHHOX36dPkBSl9//TX+/v7ExsZiMBjo0KGDnJMgqkXZ6YXZ2dkEOUj/jT0cPXq0vDHykUceUbscIaqN8/YMuDhFUTh+/Hj5AUopKSkEBwfTt29f4uLiaNOmjQQDUWWOHTvGoEGDWLVqVY05sCgrK4shQ4YQFBTEypUr8bD3JmdCqKDm9wy4OI1GQ0xMDDExMTz//PP8/vvv5QcorV+/nrCwMPr27Uu/fv1o3rx5jVvKFeoq22vg3LlzNSIMWCwWXn75ZUpKSpg/f74EAeFyJAzUABqNhhYtWtCiRQtGjBjBL7/8gtFo5Ntvv+X9998nIiKifDvkxo0bSzAQN83Ly4tatWrVmAOLFi1axE8//cSyZcsIDw9Xuxwhqp2EgRpGq9XStm1b2rZty6hRo9i/fz8JCQls2LCB1atXU7du3fKTFevXr692ucKJRUVF1YhdCL/++ms++OADxowZw6233qp2OUKoQnoGXITZbGbv3r0YjUa+++47CgsLady4MXFxcRgMBiKraEtmUXPNmDGDY8eOsW7dOrVLuWG///47Tz75JHfccQeTJk2SVTNR49T8TYfEDTOZTOUHKO3YsYPi4mKaN29efoCSLJOKinD20wszMzMZPHgwtWrV4q233pK9O0SNJA2E4qr0ej29evWiV69eFBUVsXPnThISEnjjjTd47bXXaNOmDf369aNPnz6EhISoXa5wUM48Xmg2mxk7diwWi4V58+ZJEBAuT8KAi/Py8ipvLiwoKGD79u1s2rSJBQsWMH/+fNq3b09cXByxsbEuc1ytqJhLJwqcLQz897//5ddff+XNN9+Uo8SFwBmOMBbVxsfHh/79+7No0aLybZA1Gg1z5syhX79+vPjii3z11Vfk5+erXapwAGV9Js42UbBx40bWr1/PmDFjaNOmjdrlCOEQZGVAXFFAQAD33HMP99xzD5mZmWzZsgWj0cjUqVNxd3e/7AAlb2/vG3oMq9WK2WyWmW4nVTZe6EwTBb/++itz5sxh4MCBDBw4UO1yhHAY0kAoKuXixYts3ryZTZs2cejQITw8POjRowdxcXF07dq1Ui/sx48f57XXXuP8+fPExsbyxBNPyMmMTsaZTi9MT09n8ODBREREsHz5cukTEC5BGghFlQgLC2PQoEEMGjSI5OTk8gOUxowZg7e3d/kBSp07d77uAUpZWVmEhobi7u7Oiy++CMBzzz2HTqerjqci7CAqKopjx46pXcZ1mUwmxowZg0ajYe7cuRIEhPgL6RkQN6xOnTo89thjvP/++3z66acMGTKE33//nZdeeol+/fqxY8cOrrXw1KlTJ6ZNm0afPn0ICAigS5cuEgScTHR0NImJidf8c3YE8+fP5/Dhw8ybN4/Q0FC1yxHC4cjKgLCLunXr8tRTT/Hkk09y4sQJEhISaNy48TW/x2QyodfrWbNmDe3bt6dRo0bVVK2wl6ioKAoKChx6vHDDhg1s2LCByZMn07JlS7XLEcIhSRgQdqXRaGjcuPF1gwBQvlT79ddfM3/+/Ov2o5w4cYItW7awe/duBgwYwH333WeXmsWNc/Txwp9//pm5c+fy4IMPMmDAALXLEcJhyW0CoYrS0lLANual0+no1q3bNY9c3r9/P3fccQdvvvkmpaWljBgxgmeeeYaioqLqKllcgSOPF168eJHRo0fTunVrRo4cqXY5Qjg0WRkQqnrzzTfp0aMH9erV+9vnFEVBo9GQnp7OxIkTiYyMZOPGjQQEBLB371769OnDQw89RGxsbPUXLgDHHS80mUyMHj0aNzc35syZg5ub/FMnxLXIyoCodoqilDcKbtmyhXvvvfeKtwisVisAn376Kampqbz00ksEBAQA0LRpU5o1a8bPP/9cfYWLK4qKinKolQFFUZgzZw7Hjx9n/vz5BAcHq12SEA5P4rKoVmazmblz5+Lr6wuAn58f3bt3/9tBN1artfy2wSeffELz5s3p0qVL+edzc3Nxc3PjwoULwJ+rCKL6Odp44ccff8wXX3zBtGnTaN68udrlCOEUZGVAVCutVouvry+vvPIK//nPf8jMzOSzzz4jKSkJoLwHQKvVotFoOH/+POfPn6dDhw7Url27/DoZGRkcPHiQuLg4VZ6H+JMjjRceOHCABQsWMGjQIP7xj3+oXY4QTkPCgKhWOp2OESNGkJaWxpkzZ5gwYQKvvfYajz/+OBaLhdWrVzN06FBOnToFwKlTp9Dr9Zcdq2yxWNi2bRs6nY4+ffoAyKqAisrGC7OyslStIzU1lbFjx9KuXTtGjBihai1COBsJA0I10dHRzJgxgwsXLvDee+/h5ubGiRMn+Pnnn8tXAZo3b05iYuJlO8adPHmSDz/8kPvvvx/4s7dAqKNsvLBsdUcNJSUlxMfH4+npyezZs2XzKiEqScKAcAhlx8guWLCAhIQEvL29URSlfIvjL7/8kqysLJKTkxk/fjyFhYXl42KXrgqUlpZy7tw5CgsLVXkerqgsDKg1UaAoCjNnzuT06dPMnz/fIfc7EMLRSQOhcDhlwUCj0eDh4cGYMWN49NFHady4MfXr1ycrK4sVK1bQqlWr8q8ro9PpmDVrFr/88gvdunWjX79+lT5ASVSOp6cnYWFhqk0UfPDBB3zzzTfMnDmTJk2aqFKDEM5OwoBweJ06deL48ePs3LmT9PR0brvttsuaCf9q0qRJ5Scrlh2g1LNnT+Li4ujSpYscUlMFIiMjVQkDe/fu5bXXXmPIkCH069ev2h9fiJpCjjAWNVpiYiJGoxGj0cipU6fw8/Ojd+/eGAwGOnbsKPeW7eSVV17hyJEjvPvuu9X2mCkpKQwZMoSmTZuyePFi+bMU4goq+votYUC4jJMnT5YHg3PnzhEYGEifPn0wGAy0a9fumtshi2tbs2YNq1atYtu2bdUy2VFcXMzw4cMpKChg3bp18u+SEFdR0ddvuU0gXEbDhg157rnnePbZZzly5AgJCQkYjUY+/fRTQkND6du3LwaDgVatWsmoYiVdOl5Y1Tv+KYrC9OnTSUxMZPXq1RIEhLADCQPC5Wg0Gpo1a0azZs144YUX+O233zAajWzevJkPP/yQ2rVrYzAYMBgMNGnSRIJBBURHRwO28cKqDgPr1q3DaDQyZ84cOfZaCDuRMCBcmlarpXXr1uUn2/30008YjUa++OIL1q5dS1RUVHkwaNiwodrlOqyy0wsTExNp3bp1lT3Onj17WLJkCY8//jh9+/atsscRwtVIz4AQV2CxWNi3bx8JCQls3bqV/Px8GjRoUB4Myt4Jiz/179+fu+66i3/9619Vcv2kpCSGDh1Ky5Ytee2116THQ4gKkAZCIezEZDKxZ88eEhIS2L59O4WFhTRt2hSDwUDfvn2JiIhQu0SH8PTTTxMaGsqsWbPsfu3CwkIef/xxTCYTa9euxc/Pz+6PIURNJA2EQtiJXq+nR48e9OjRg+LiYnbt2oXRaGT58uUsXryYVq1alQeDWrVqqV2uaqKjozly5Ijdr6soCtOmTeP8+fOsXr1agoAQVUDCgBCV4OnpSZ8+fejTpw+FhYXs2LEDo9HIokWLWLhwIe3atcNgMNCnTx+X2xY3Ojoao9Fo9+OkV69ezZYtW5g3bx4NGjSw23WFEH+SMCDEDfL29uaOO+7gjjvuIDc3l23btpGQkMDcuXOZO3cuHTt2pF+/fvTq1cslbq9FRkZSWFho1/HCXbt28cYbb/DUU0/Ru3dvu1xTCPF30jMghJ1lZWXx3XffsWnTJg4cOIBOp+O2224jLi6OXr164e3trXaJVeLEiRM8/PDDvP3227Rp0+amr5eYmMjQoUO59dZbmT9/vjQMCnEDpIFQCAeQlpbGli1bMBqN/PLLL+j1erp164bBYKBbt254enqqXaLdFBcX061bN6ZOncpdd911U9cqKCjgsccew2q1smbNGnx9fe1UpRCuRRoIhXAAtWrV4uGHH+bhhx/m/PnzJCQkkJCQwLhx4/Dy8qJHjx7069evRhygVHZ64c0eZWy1WpkyZQoXL15k7dq1EgSEqAYSBoSoJrfccgtDhw5l6NChJCYmlp+suGnTJnx9fenduzdxcXF06tQJNzfn/NGMioq66dML3377bbZv387ChQupW7eunSoTQlyL3CYQQmWnTp0qP0ApMTGRgICA8gOUbr31Vqe4V55vsXC4sJA5H37IkcJCutxxByVWK+5aLcFubjT19qaZtzfNfXwIdne/6nV27NjByJEjefbZZ3nyySer8RkIUTNJz4AQTkZRFI4dO8amTZtISEjg/PnzhISEXHaAkiMFA0VR+Ck/n48vXmRjRgZ5paXkFRRQWFRESHAwGo0GRVFQAA2g02jw0umIDQzkobAwegYGortkBPHMmTMMHTqUzp078+qrrzrUcxXCWUkYEMKJKYrCb7/9Vt5jkJaWRnh4OHFxcRgMBpo1a6bqAUo/5eUx4+xZDuTlUWy14q3V4qPTUVJQQHJSEo1jYnDT6S57PmZFodBqpaC0FDeNhkbe3oyLjsYQFERBQQFDhw7Fzc2N1atX19iJCyGqm4QBIWoIq9XKwYMHMRqNbNmyhaysLCIjIy87QKm6gkFxaSlLU1JYnpxMXmkpQW5ueGu15Y9fUlLCqVOnqFevHl5eXle/jtVKpsWCu0bDwNBQCles4NiPP5YfDiWEsA8JA0LUQKWlpfz4448YjUa2bt1KXl4e9evXLw8GVdlwl1pSwlNHj/Jjfj6eGg3Bbm5/CyGKonDkyBEiIiIICAi47jVzLRZS8/KwJiezrFEjhnTrVlXlC+GSJAwIUcOZzebyA5S2bdtGYWEhMTEx5cHAngcopZSUMOTwYQ4VFFDL3R2Pa9zPP37iBIEBARU6pyEvL49zycm4165Ng8BAVjVpQjs5e0AIu5EwIIQLKSkpKT9AaefOnZSUlNCiRQv69etH3759CQsLu+FrZ5nNDDp8mJ/y8gh3d8f9Oo19Z8+exc3NjTp16ly35jNnzuDr68stERGcN5uJ0Ov5oHlzYqRnQAi7kDAghIsqLCxk586dGI1Gdu/ejcVioW3btuUHKFXm3ABFURh98iTvXrhAmLs7+gp0+J9PTaW4qIj69etf9WtKrVZOnz6NVqOhXv36aDUarIpCislEF39/1rdoUaHHEkJcm4QBIQR5eXls374do9HInj17AOjQoQMGg4HY2Njr/jwbMzN56uhRPDQa/Cu4EVJGRgbp6ek0adLkql+TeO5ceWBwv2TfgbLGwgl16/L8dVYWhBDXJ2FACHGZ7Oxstm7dSkJCAj/++CNarZYuXbrQr18/evbsiY+Pz2Vfn2exYPjlF84WFxNRia2S8/LySLrCeGGZi2lpZGRkEB0V9bfHBEg3m/HQavmyVSu5XSDETZIwIIS4qvT09PIDlH7++Wf0ej1du3YlLi6O7t274+XlxfsXLhB/8iS13N1xr8To4rXGC3Nzc0lOTiY8PPyqtysURSHZZOLZiAimXuNWgxDi+iQMCCEqJDU1lc2bN2M0Gvn999/x9PSke48efGcwcNbdnToeHhW+VtGpU2Tv3MmFvXtxLyhAHxiIV8OGhD3wANagIM6cOYOfnx91rjPpkG424+fmxvft2hHgpOc0COEIJAwIISotKSkJo9HIhwcPsr13b3RmM4GenvgHBODj48P11geSFi+m6PhxSho0wK9BA3yAzIQErMXFaB5/HH1EBPXq1bvuJkkWReGi2cy8hg15NDzcbs9PCFcjYUAIccOWJCUx/dQpPAsLycvJwWQyodPp8PP3x9/fH5+r3MsvPH4cr/r1SUxOLh8vNKWmcjg+Hm2zZjQdM+ayhsFrSTaZuD80lNdjYuz51IRwKRV9/Zb1NyHE3/xWUIBWpyMsNJSw0FCKS0rIzc0lNyeH7KwsdG5u+P8RDLwv6QvwbtwYAL2HB8VFRQBkabUoISF4FhRUOAgA6DUaDuTnoyiKqucwCOEKJAwIIS5TdhrhpbsMenp44FmrFmG1alFUXExuTg65eXlkZWbi5u6Ov78/Af7+eHp6AqB3dyc3J4ecnBwy0tPRm814BAZWqg5PjYYLJhNpZjNhlZhmEEJUnoQBIcRl8ktLybRY8LjKu3EvT0+8PD0JDw+nsKiI3NxccnJyyMzIwF2vx9/fH51Wi8ViIeX8eTxPnKAkPx//zp0rVYdeqyW7tJRzJSUSBoSoYhIGhBCXKbZaURQFXQWW5r29vPD28qJ2eDgFhYXltxHMFgsmkwmf4mLMX32FV6NGBHTvXqk6tNhWKUqs1ht8JkKIipIwIIS4TFkEuG5n8V/4eHvj4+1N7dq1KSgooDQ3l4vz56Px9qbOv/+N5ga3F5ZuASGqnmz+LYS4jJdOh+aPswJuhEajwUurJeONN1CKioiOj8c9KKjS17ECWo0GTzmjQIgqJz9lQojL+Oh01Nbrb3h53mo2k7RwIabUVCJHjsQjMvKGrlNiteKh1VL/j6ZEIUTVkTAghPibW319Md3AyoBitZK8ZAmFJ04Q+e9/l48a3ogiq5UoDw8CKzGOKIS4MdIzIIT4mxZ/7DZY2Rn/i++/T/5PP+Hbrh2l+fnk7Np12ecDunat8LXMikJ7X98Kf70Q4sZJGBBC/E23gAA8dTryrVb8rnDy4NUUnz0LQP5PP5H/009/+3xFw4DJakWr0dA1IKDCjy2EuHESBoQQf9Pcx4cufn5sy8mpVBioO2GCXR4/22Khjl7PHVc52VAIYV/SMyCEuKJB4eFooNrn/K2KgklReCQ8HM9KBBEhxI2TMCCEuCJDcDAtfXxIN5upwHlmdnPRbKa2Xs/DYWHV9phCuDoJA0KIK/LQapndoAE+Oh1ZFku1PGZBaSkAL9etS4SHR7U8phBCwoAQ4hra+/nxdEQERYpCURXfLjBbrWRZLBiCg3mgVq0qfSwhxOUkDAghrunFOnWICwoiw2ymuIoCgUVRuGA208LHh9kNGqCVI4uFqFYSBoQQ1+Sp07G0cWN6BwaSbjaXL+XbS4nVSqrJRFNvb1Y1bUq4nFAoRLWTMCCEuC4/NzdWNm3KPaGh5JWWkmoy3fDZBWUURSHdbCbdYqGTvz/vN29OXdl6WAhVSBgQQlSIj07HGzEx/LdRI2rp9aSYTGRZLJUOBYqikGuxkGwy4aHV8nJ0NJ+0aCENg0KoSDYdEkJUmFaj4YGwMLoGBLDw3Dm+zMjgvNmMDvDRavHUanHTaP62hbFFUSi2Wim0WjFZrfjodNwZEsKoyEhaypbDQqhOo1RggDg3N5eAgABycnLw9/evjrqEEE7gosnEhrQ0Prp4kXMlJRRZrZT9g6IAl0YCT62WEHd37gsN5YGwMBp6ealQsRCupaKv37IyIIS4YWF6Pc/WqcMzERGkmc0cLizkcEEBmRYLJqsVd60WP52Opt7eNPX2JtLDQyYFhHBAEgaEEDdNo9EQptcTptfTMzBQ7XKEEJUkDYRCCCGEi5MwIIQQQrg4CQNCCCGEi5MwIIQQQrg4CQNCCCGEi5MwIIQQQrg4CQNCCCGEi5MwIIQQQrg4CQNCCCGEi5MwIIQQQrg4CQNCCCGEi5MwIIQQQri4Ch1UVHbKcW5ubpUWI4QQQgj7KXvdLnsdv5oKhYG8vDwAoqKibrIsIYQQQlS3vLw8AgICrvp5jXK9uABYrVZSUlLw8/NDI2eRCyGEEE5BURTy8vKIiIhAq716Z0CFwoAQQgghai5pIBRCCCFcnIQBIYQQwsVJGBBCCCFcnIQBIYQQwsVJGBBCCCFcnIQBIYQQwsVJGBBCCCFc3P8Dt0KI6xKCrg4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXUklEQVR4nO3deXib5Zkv/u+r3ZYlebdjW3ESYmcj+0oW25JCWmiBYQ6F0tAGKIWylbK1QAscoD1MO205HU6XKdD+2ukCDFMohC4QSXHiLGQlIYnJHlved0u2rPV9f38oUuPYTqTEtiTr+7kuX4FIlh4FYn31vPdz34IkSRKIiIgoZcnivQAiIiKKL4YBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcQwDREREKU4RzZ1EUURTUxN0Oh0EQRjrNREREdEokCQJLpcLRUVFkMlG/vwfVRhoamqC0WgctcURERHR+HE4HCgpKRnx9qjCgE6nizyYXq8fnZURERHRmHI6nTAajZH38ZFEFQbClwb0ej3DABERUZK52CV+FhASERGlOIYBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcQwDREREKY5hgIiIKMUxDBAREaU4hgEiIqIUxzBARESU4qKaTUBERJSwRBFobARcLiAQAJRKICcHyMsDLtKTn0IYBoiIKPnU1gL/+Adw8CDw8cdATw8QDAKSFAoASiVQUAAsWgQsWAB87nNAYWGcF524BEmSpIvdyel0wmAwoLe3l1MLiYgoPgIB4O9/B/74R2DnTmBgIPT7Gk3oSy4PBQFJAvx+wOMBfL7QffR64NprgVtvBZYti99rGGfRvn8zDBARUeI7fhz4zneAbdtClwX0eiAjI7rLAKII9PYC/f2h0HDzzcCTTwJZWWO/7jiL9v2bBYRERJS4RBF47TXghhuALVuAzEyguBjQ6aKvB5DJQm/8xcWASgX87nehywZ2+5guPZkwDBARUWIKBIBnnw199fUBRUVAWtqlP54ghHYUCguB06eBr30NeOON0VtvEmMYICKixCOKoRDw2mtAejqQnx/6hD8aFIpQsPB6Q5cL3nxzdB43iTEMEBFR4vnVr4Df/jZUFzAWtWqCEAoYfj/w1FPA9u2j/xxJhGGAiIgSy5EjwEsvhU4HjGXRejgQ9PeHihP7+sbuuRIcwwARESUOny/0Sb23F8jNHfvnCweC2lrgxz8e++dLUAwDRESUON55B9i1KxQExqt7oFIJaLWhUwbHjo3PcyYYhgEiIkoMkgT8/vehf9Zoov42tyjiP9vb8WB9PczHjmFJbS3e6+mJ7bkzM0OXC956K7bvmyAYBoiIKDHs2wccOAAYDDF9W08ggFc6OnDa50OZWn1pzy0IgFodOmqYgrUDDANERJQY3n8/dNwvPT2mb8tVKPCPsjJsnD4dD+XnX/rzZ2UB7e2AzXbpj5GkGAaIiCgx7N37z/kCMVDJZMhRjMLcvfBjHDly+Y+VZBgGiIgo/gYGQsV7MdQKjJmPP473CsYdwwAREcXfiROA23157YZHg0YDHD4cGoecQhgGiIgo/np7Q7MILmO7X5QkiBcfxHthCkVo9LHHc3mPk2RG4SILERHRZfL7Q0cLY6wXECUJfX19cDmdcLpcaFYoIF1OIBCE0FwEny/UeyBFMAwQEVH8qVT/fCOWyy9416AoRgJAX18fREmCRq1GpsGA452dkC6nWVE4kKhUl/4YSYhhgIiI4i8zM7RFHwiEOgKeJxgMwhUOAP39kCQJaRoNcvPyoNfpoFKpIIoi0NV1eTsDfj+g08W/dmGcMQwQEVH8TZ8e6i/g8UTeiAPBIFwuF1xOJ/r7+yEBSE9LQ35+PnQ6HVTnhQaZTAaFXA7J77/0dXg8wKpVozcuOUkwDBARUfyp1cDMmQju3IleAC6XC+7+fgBAeno6CgoLodPpoByhwPDNri64RBHHJAmSKGJrXx/aAgEAwC1ZWci4yKWHQebNu9xXk3QYBoiIKK5aWlpgs9mgcThQ0dGBdqUS2owMFE6aBF1GBhRRnDD4r64uNPv98Pv9ECUJNpcLNpcLAHCNXh9dGPD7Q/UCV155uS8p6TAMEBHRuGtoaIDNZoPVasXhw4ehVCpx48yZ+KzDgXKDAXK9PqbHe2/6dABAR0cHOru6MKO8PPZFdXcDhYVAVVXs35vkGAaIiGhcnD59OhIAjh07BrVajVWrVuHWW2/FmjVroE1PB77wBWDbNiDGMBCmUqkQDAYRDAYhj+XSgCSFjhN+8Ysxz0aYCBgGiIhoTEiShBMnTsBqtcJms+HUqVNIT0/H6tWr8dWvfhUrV65E2vlV++vXAzt3htoTX0JFv+rskUCfzzf0sS+kuzt0iuCmm2J+zomAYYCIiEaNJEmora2NBACHw4GMjAxUVlbigQcewIoVKyJv2MO67jrg9deB6mqgqCjmqn5lOAz4/dGHAZ8vFD6++U1g2rSYnm+iYBggIqLLIooiDh06hE2bNsFut6O5uRkGgwEmkwmPP/44li5dCuUwvQOGpVAA3/8+cP31QEcHEONIYvnZ44U+ny+6b5Ck0NjiuXOBBx+M6bkmEoYBIiKKmSiK2L9/P6xWK+x2O9rb25GTkwOTyQSLxYJFixbFds3+XNOnA9/6FvDd7wI9PaGGRDFQqVTRhQFJAlpbQ/UJL76YkrUCYQwDREQUlUAggD179sBms8Fut6O7uxv5+flYu3YtLBYL5s2bB9loNevZsAFobAR+/vPQv8cQCJQqFfwXCwOSBLS0hOoSfvITYPHiS1/rBMAwQEREI/L5fPjoo49gs9lQXV0Np9OJ4uJiXHfddTCbzZg9e/boBYBzCQLw5JOhmoGf/zz0xp2fH1UNgUqlQn9f38h38PuBtrbQjsCPfwx87nOjuPDkxDBARESDeDwebN++HTabDVu3bkV/fz9KS0tx0003wWKxoLy8HMLlDAOKlkwGPPFEqKjv//wfoKkJyMq66DRBlUqFQDCIoChCfm54kKTQZYf+fmD27NClgeXLx/Y1JAmGASIigtvtRk1NDaxWK7Zt2waPx4OysjLcdtttsFgsmDp16vgEgPMJAnDLLcDKlcAzzwBWa+gNPSMjdBRwmJ2C8MwCv88HuUYTGn7U2xs6MaDVAvffDzz8cOgxCADDABFRynK5XNiyZQusVit27twJn8+H2bNn46677oLZbMbkyZPjvcR/MhqB114DtmwJHT3ctAlobg592lepAI0mdBIBgCoYREYwGCoOVChCgSInB/jyl0PBYs6cOL+YxMMwQESUQnp6elBdXQ2r1Ypdu3YhEAhg3rx5uP/++2EymVBUVBTvJY5MJgu1Cq6qAurrgX/8Azh8GNi3LxQMPB7g7KUBQSZDR2EhSq67Dpg/H/jMZ2I+lZBKBCmKwc9OpxMGgwG9vb3QX2KLSCIiio/Ozk7Y7XZYrVbs3bsXALBgwQKsXbsWVVVVyI/xLH9C6uoC+vpCxYEqFe761rcwedYsPPPMM/FeWVxF+/7NnQEiogmotbU1MgfgwIEDEAQBS5cuxRNPPIGqqipkZ2fHe4mjKzs79HVWwbRpaGhoiOOCkgvDABHRBNHY2BhpA3zo0CEolUosX74cTz/9NCorK2EwGOK9xHFjNBqxb9++eC8jaTAMEBElsTNnzkR2AI4ePQqVSoVVq1bhhRdewJo1a5CRohXzRqMR7e3tGBgYiG1gUYpiGCAiSiKSJOHkyZOwWq2wWq04deoU0tLSsGbNGtxxxx1YuXIl0lO4rW6Y0WgEENotmT59epxXk/gYBoiIEpwkSfj0008jlwDq6+uRkZGBiooK3H///VixYgXUanW8l5lQSkpKAAAOh4NhIAoMA0RECSg8CTA8CKipqQkGgwFVVVV47LHHYpsEmIKysrKQnp4Oh8MR76UkBYYBIqIEIYoiPv7440gAaGtrQ3Z2NsxmM8xmMxYvXnzpkwBTjCAIMBqNPFEQJYYBIqI4CgQC2Lt3L6xWKzZv3oyuri7k5+fDYrHAbDZj/vz5YzMIKAUYjUbuDESJYYCIaJz5fD7s2rULNpsNmzdvhtPpRFFRET73uc/BYrGM3STAFFNSUoJDhw7FexlJgWGAiGgceL3eyCTALVu2xG8SYAoxGo1obW2Fz+eDSqWK93ISGsMAEdEYCU8CtNlsqKmpgcfjwfTp07F+/XqsXbs2fpMAU4TRaIQkSWhqasKUKVPivZyExjBARDSKXC4Xtm7dCqvVih07dsDn82HWrFn46le/CovFkliTACe4c48XMgxcGMMAEdFlGmkS4H333Qez2ZzYkwAnsNzcXKjVahYRRoFhgIjoEnR2dmLz5s2wWq3Ys2cPJEnCwoUL8fDDD8NkMk2MSYBJTiaToaSkhMcLo8AwQEQUpba2tsgcgI8//hiCIGDJkiUTdxLgBMDjhdFhGCAiuoCmpqZIG+BPPvkECoUiZScBJiOj0Qi73R7vZSQ8hgEiovPU1dVFAsCnn34KlUqFlStX4vnnn8eaNWug0+nivUSKktFoRFNTEwKBABQKvuWNhH8yRJTyJEnCqVOnIpMAT548ibS0NKxevRobNmzAqlWrOAkwSZWUlEAURTQ3N0cmGdJQDANElJLCkwDDNQD19fXQarWorKzEvffei6uuuoqTACeAcABwOBwMAxfAMEBEKSM8CdBms8Fms6GpqQl6vR5VVVV49NFHsXTpUnaqm2AKCgqgVCp5ouAiGAaIaEIbaRKgyWSCxWLBokWLeC15ApPJZCguLuaJgovg3wAimnACgQD27duHTZs2DZoEGB4FvGDBAg4CSiE8XnhxDANENCH4fD7s3r07Mgo4PAnw2muvhcViwZw5cxgAUpTRaMS2bdvivYyExjBAREnL6/Vix44dsNlsqK6uRn9/PyZPnoz/9b/+FywWC2bMmMFBQISSkhI0NjZCFEUGwhEwDBBRUnG73di2bVtkEuDAwACuuOIKrF+/HhaLBdOmTWMAoEGMRiMCgQBaWlo4J2IEDANElPD6+vqwZcsW2Gw2bN++HT6fDzNnzsQdd9wBi8WC0tLSeC+RElj4SGFDQwPDwAgYBogoIfX29kYmAX700UcIBAKYO3cu7r33XpjNZhQXF8d7iZQkCgsLIZPJ4HA4sGzZsngvJyExDBBRwujq6sLmzZuxadOmQZMAv/nNb8JkMqGgoCDeS6QkpFAoUFRUxF4DF8AwQERxFZ4EaLPZsH///sgkwG9/+9uoqqpCTk5OvJdIEwCPF14YwwARjbumpqZIG+DwJMBly5bh6aefRkVFBTIzM+O9RJpgjEYj9u7dG+9lJCyGASIaF/X19ZFBQOFJgFdddRUnAdK4KCkpwV/+8hceLxwBwwARjYnhJgFqNBpOAqS4MBqN8Hq96OjoQH5+fryXk3AYBoho1EiShKNHj0YuAdTV1UGr1aKiogJf//rXcdVVV0Gj0cR7mZSCzj1eyDAwFMMAEV0WURRx+PDhSAA4dxLgww8/jGXLlnESIMVdUVERBEGAw+HAokWL4r2chMMwQEQxE0URBw4cgNVqhc1mi0wCrKqqgsViweLFizkJkBKKSqVCYWEhTxSMgH9biSgqwWAQe/fujYwC7urqQl5eHsxmMywWCycBUsLj8cKRMQwQ0Yj8fv+gSYC9vb2YNGkSrrnmGlgsFlx55ZUMAJQ0SkpKcOjQoXgvIyExDBBNYJIk4Y033sCBAwdgsVhgNpsv+ubt9Xqxc+dOWK1WbNmyBX19fZg8eTJuvPFGWCwWzJw5k4OAKCkZjUb8/e9/hyRJ/H/4PAwDRBNUS0sL/vVf/xVNTU1YtGgRXn75Zdx333147LHHkJ+fP+QHoiRJePHFF/G3v/0NAwMDmDZtGm699VZYLBZcccUV/OFJSc9oNMLtdqO7uxvZ2dnxXk5CYRggmqB+/OMfw+/3Y+fOnSgsLMSrr76Kn/3sZ5DL5XjxxReHDQOFhYW44447YDabMWXKlPgtnmgMhI8XOhwOhoHzMAwQTUCiKOLEiROYM2cOCgsLAQBf+cpX0NzcjJ/+9Kd48cUXh1wuEAQBd955ZzyWSzQuwpMuHQ4H5s+fH+fVJBZW/hAlke7ubrz88st44YUX0NbWNuL9+vr6MDAwMKjHv0qlwvXXX4++vj784x//ABDaDQjjZQCa6DQaDfLz83miYBgMA0RJQBRFvPPOO1i3bh2ee+45vPDCCyOOY5UkCXq9HmlpaWhra0Nra2vkttLSUixduhT//d//HXlcolRSUlLCMDAMhgGiJCCTyeDxeHDttddi9+7d0Gg02LFjx7Bv5uHfM5lMOHToEI4ePRq5TaPRYPHixaitrQUAyOXy8XkBRAnCaDSOGKRTGcMAUZL4/Oc/j6eeegpTp06F2WzGe++9B5fLNeR+4VqAG2+8EaIo4sMPP4zcptFocObMGcyePRs+n2/c1k6UKLgzMDyGAaIkkZGREenxf8cdd6CmpgZ1dXWD7iNJUqQOwGg04vrrr8cbb7wRuSxQV1eHQ4cOYf78+VCpVINqBohSgdFohMvlgtPpjPdSEgrDAFESCRf53XDDDZFjg+deKhAEYdApgW9961u4+uqr8fDDD6OiogILFy7EnDlzcMsttwx6PKJUce7xQvonhgGiJBMIBAAAZrMZ7777Lvr7+yO3DQwM4Le//S1efvllAEBmZiZeeuklvP3227jmmmvw3nvv4S9/+Qvy8vLisnaieCspKQHAMHA+hgGiBCGKIj7++GO8/PLLkTf84YQ/zd95553YunUrGhsbAQA9PT1QKpV488038dprr8Hr9QIIHSlcunQpnnzySaxatWrsXwhRAtNqtcjOzmYYOA+bDhHFUXgSoM1mg91uR2dnJ/Ly8nDttddi2rRpw27jh08A/Mu//AvWr1+Pp59+GnV1dcjMzMTbb7+N559/HtnZ2VCr1eP9coiSAosIh2IYIBpnw00CLCwsxGc/+9moJgEGAgG89tprePXVVxEIBFBbW4t169bhvvvug1arxeLFi8fx1RAlH44yHophgGgc+Hw+7Ny5E5s2bYpMAjQajbjxxhthNpsxa9asqIv5JEmCw+HA6tWr8dZbb6G0tHSMV080sRiNRmzfvj3ey0goDANEY2RgYADbt2+H1WpFTU0N3G53ZBKg2WzG9OnTL6maX6lU4nvf+94YrJgoNRiNRnR3d6Ovrw8ZGRnxXk5CYBggGkX9/f3YunUrbDYbtm3bBq/Xi/LycmzYsAFmsxlTp06N9xKJUl74eGFDQwNmzpwZ59UkBoYBosvkdDpRXV0Nm82GnTt3wu/3Y86cObjnnntgNpsjR5mIKDGce7yQYSCEYYDoEnR1dWHz5s2w2WzYvXs3RFHE/Pnz8eCDD8JsNkfGBhNR4tHr9dDr9SwiPAfDAFGU2tvbYbfbYbVasX//fgDA4sWL8dhjj8FkMiE3NzfOKySiaM2dO/eCp3ZSjSBF0Zzc6XTCYDCgt7cXer1+PNZFlBCam5ths9lgtVpx8OBByOVyLFu2DBaLBZWVlcjKyor3EomIRhTt+zd3BojO43A4IgHgyJEjUKlUWLFiBZ577jmsWbOGgZiIJhyGASIAp06digSA48ePQ6PRYNWqVbjtttuwevVqpKenx3uJRERjhmGAUpIkSTh+/DisViusVivOnDmD9PR0rFmzBl/72tewcuVKaDSaeC+TiGhcMAxQypAkCUeOHIkEgMbGRuh0OlRWVuKhhx7C8uXLoVKp4r1MIqJxxzBAE5ooijh48GDkEkBrayuysrJQVVUFi8WCJUuWQKHgXwMiGszn80EUxZTZIeRPQZpwgsEg9u3bF5kE2NHRgdzcXJjNZpjNZixcuDAy+Y+IaDi//e1v0dnZiccffzwlfl4wDNCE4Pf7sWfPnsgkwJ6eHhQWFmLdunWwWCw8U0xEg/z617/G6tWrMX36dIiiCEEQIJPJIvNC8vPz8fLLL+Pmm2/GtGnT4rzasccwQEkrPAnQarViy5YtcLlcKCkpwQ033ACLxRLTJEAiSi2PP/44fvjDH6K8vHzQBwWfzweHw4G2tjYcOnQIBw8eZBggSjQDAwPYsWMHNm3aFJkEOHXqVNxyyy0wm80oKytjACCii7rqqqvw+uuvo6GhAQcOHMDRo0fR2NgIp9MJQRCQn5+PWbNmpcyxYoYBSnj9/f2oqamB1WodNAnwK1/5Csxmc0qkdiIaXcuXL8ezzz6L7u5ulJSU4DOf+QymT5+OyZMno6CgANnZ2dBoNCnTZZRhgBKS0+nEli1bYLPZsGPHDvj9fsyePRt33303zGZzZAQpEdGlMBqNmDRpEt59911kZmZCoVBAqVSm7M4iwwAljO7u7sgkwF27dkEURcybNw8PPvggTCYTJk2aFO8lEtEEceWVVwIAdDpdylwKuBCGAYqr8CRAm82Gffv2AQAWLVqERx99FCaTCXl5eXFeIRFNRHPnzsULL7yAjIyMeC8lIXBqIY27lpaWQZMAZTIZli1bBrPZjKqqqpS5RkdE8dXV1YX6+nrMnTt3wvYS4NRCSijnTwJUKpW46qqr8Oyzz6KiooIhk4jG3cMPP4zDhw/jz3/+MyZPnhzv5cQVwwCNmdOnT8NqtcJms+HYsWNQq9VYtWoV1q9fj9WrV0Or1cZ7iUSUwioqKjB9+vTITBJRFIc0J5MkKSWKCnmZgEZNeBJgeAfg9OnTSE9Px+rVq7F27VpcddVVSEtLi/cyiYguqK+vD11dXcjMzEz69zxeJqBxIUkSamtrI5MAGxoaoNPpUFFRgQcffBArVqzgJEAiSmh9fX34/e9/jw8//BDHjh2Dz+dDZmYmiouLYTKZ8PWvfx1KpTLeyxxTDAMUM1EU8cknn0QuAbS0tCAzMxNVVVX49re/jSVLlkz4vzhENDE0NDTgoYcewqeffor58+fjhhtuQF5eHrxeL/bt24d///d/R2trK773ve/Fe6ljimGAohIMBrF//37YbDbYbDZ0dHQgJycnMglw0aJFE7Yal4gmJlEU8eqrr+LgwYP4xS9+gfnz5yMrK2vQWPONGzfi1ltvxQsvvDChawcYBmhEgUAAu3fvhs1mw+bNm9Hd3Y2CggKsW7cOZrMZ8+bN4yRAIkpaMpkMr776Kn76059i7dq1w95n6dKlkMvlqK+vR2lp6TivcPwwDNAgPp8PH330UWQSoNPpRElJCa677jpYLBbMnj17QqdjIkotcrkc/f39Q37f7/ejo6MDjzzyCBYvXjzha58YBggejwfbt2+H1WrF1q1b4Xa7MWXKFHzhC1+AxWLhJEAimrDuvPNO/PCHP8SePXvwuc99DjqdDl1dXThy5Aiqq6tx6tQpvPjiixO+HTrDQIpyu92oqanBpk2bsH37dng8HpSVlXESIBGllMceewwajQYbN27EO++8g+bmZoiiiPz8fKxZswa//OUvUVlZGe9ljjn2GUghTqcTW7duhdVqxc6dO+Hz+TB79mxYLBZOAiSilOZwONDW1oa8vDzk5+dDo9HEe0mjgn0GCEBoEmB1dTWsVit27dqFYDCIefPm4YEHHuAkQCKis4xG46APRJIkRboPpsJlUoaBCaijoyMyCXDv3r0AgIULF+LRRx9FVVUV8vPz47xCIqLEliohIIxhYIIITwK02Ww4cOAAZDIZli5diieeeAJVVVXIzs6O9xKJiChBMQwksYaGhsgcgMOHD0OpVGLFihV45plnUFlZyfoOIiKKCsNAkjlz5kxkDsC5kwBvvfVWrFmzhpMAiYgoZhMqDAREET5JggRALQhQTIDueJIk4cSJE5EdgFOnTkUmAX71q1/FypUrOQmQiOgyHTt2DD/4wQ/wb//2b8jLy4v3csZdUoeBE243tjudqO3vx/6+Ppz2eCCevU0GwKhWY2FGBmZrtViu12N2knxqDk8CDAcAh8OBjIwMVFRU4IEHHuAkQCKiUaZWq3HgwAHU19czDCQDvyjC1tODP7W2YmtvL9zBIABAIQhQy2QI7wUEARx1u3HY7QYkCRq5HMt1OnypoACfyc6GOsF2DURRxKFDhyKTAJubm2EwGFBVVYXHH38cS5cu5SRAIqIxMmnSJMhkMjgcDixevDjeyxl3SRUGDvT14alTp3Cgrw9BADqZDEUq1UWPf0iShD5RRHVvL7b29mJmejq+P3UqVhgM47PwEYiiiP3798NqtcJut6O9vR05OTkwmUywWCycBEhENE5UKhUKCwvhcDjivZS4SIow4BVF/LyxET9vaoIrEECuUglNDJ/sBUGATi6HTi6HTxRxpL8fX6qtxR2FhXjEaIR2HN9wA4EA9uzZA5vNBrvdju7ubuTn52Pt2rWwWCycBEhEFCclJSUMA4mqLxDAA8eP44PubqgFAcVR7ARciOrsbkJPMIifNzXhQF8ffjVjBrLHcAs+PAnQZrOhuroaTqcTxcXFuO6662A2mzF79mwGACKiODMajfjkk0/ivYy4SOgw4A4G8bWjR2Hv6UGOQoG0UfoELwgCshQKpIsianp7saG2Fr+bNQtZoxgIwpMAbTYbtm7div7+fpSWluKmm26CxWJBeXl5SnW3IiJKdEajEX/9618jbYhTScKGAVGS8MiJE7D39MR8WSBaapkM+UoldrtcuO/YMfzXrFmXdRwxPAnQarVi27Zt8Hg8mD59Om677TZYLBZMnTo15f4HIyJKFkajEQMDA+jq6kJOTk68lzOuEjYMvNXejo2dnchUKMYkCISpZDLkKJWo7u3Fr1tacHdRUUzf73K5sHXrVmzatCkyCXDWrFm46667YDabMXny5DFaORERjabwoCKHw8EwkAgavV68WF8PAMgYh+K+NJkMfYKAlxoaUJWZifL09Avev6enZ9AkwEAggHnz5uH++++HyWRCUYyBgoiI4q+4uBhAKAwsWLAgvosZZwkZBn7scKDZ60XRODbWyVUo0Ojz4Xt1dfjdrFlDbu/s7IxMAtyzZw8AYMGCBXj44YdhMpk4CZCIKMmp1Wrk5+en5ImChAsDzV4v3u/shFYuhyzK6+sDp06ht6YG7tpa+NrbIc/IQNoVVyD/C1+AqrAwqscQBAEGuRw1vb046nZjRno6WltbI5MAP/74YwiCwEmAREQTWElJCRoaGuK9jHGXcGHgzx0d6A0EYtoV6Ny4EQPHj0O3bBmyjUYEenvR9eGHOP3005jy7LNQl5RE9TgZcjnqPR489cEH0L3zDg4dOgSlUonly5fj6aefRmVlJQxxblRERERjx2g04vjx4/FexrhLqDAgSRL+1NoKhSBEvSsAANnXXIO0++6DoPjny9EvX45TTz2FjvfeQ/G9917w+30+H5wuF1xOJ/rkcvzd48HdBQV44ZZbsGbNGmRkZFzyayIiouRhNBphtVpT7nhhQoWBRq8XzT5fzEWD6WVlQ35PVVgIdXExfE1Nw36P1+uNBACv1wuZTIaMjAwU6vWQ1Gp89frrcSVDABFRSjEajejr64PT6UypneCECgO1bjcGRBG6UWj+I0kSAk4n1GerQ4FQI6BwAPD5fJDJ5dBlZCAvPx8ZWi0EQYAoSWj2+VDrdjMMEBGlmHOPFzIMxMmnbjeA0ATCy+Xcvh2B7m4YPv95tLa1weV0wu/3Qy6XQ6fToaCwENr09CHbQDJBAAQBtWfXQkREqaPkbI2Zw+HAlVdeGefVjJ+ECgMdfj+kUXicnpMn4Xj1VUj5+egoKoKitxd6nQ46vR7ai/QQAEK7Ch1+/yishIiIkkl6ejqys7NT7nhhQoUBvyQB0uXFAWdzM06++CIEQUDazTcjQ69HulYLlUoFhUIRVVGIAMATDF7WOoiIKDkZjcaUO16YUGHgci8PBN1uNP74x5D5fMh/9FFIOTnw+f1ob2+HJIr/fB6lEiqlEiqVCkqVKvLPKpUKMpkMEgAlpwgSEaUko9GIurq6eC9jXCVUGMiQyy/5KIfo96PhJz+B2NEB1fr1KJo3b9BjBYJB+Hw++H0++M5+ebxeuFwuBM/ZBZDL5QhkZuLj48fxq82bUVJSgpKSEhiNRmRmZqbUURMiolRkNBpRU1MT72WMq4QKA+VpaZAQmlgYS58BSRTR+P/+H9wnTqDwvvvQptPB6/NBo1ZH7qOQy6FISwPS0oZ8f1AUIyHB6/OhUxAgb2rC/1RXo7OzM3K/9PR0GI3GSDgI/2o0GpGbmwsZdxOIiJKe0WhET08PXC4XdDpdvJczLhIqDMzSaqEWBHhEEekx9Bpo++Mf0bd/PzIWLoTM60Xw1Cl0NzQg/WyxoGHVqgt+v1wmg1yjgUajgU8UIQaD+PcHHsDyp56C2+1GY2MjHA4HGhoaIl//+Mc/0NLSAulsjYNKpYrsIpwfFgoLC6FQJNQfNRERjSB8oqChoQGzhplVMxEl1DvUNI0GeoUCzkAgpjDgOXttp2//fvTt3w+/x4MOhSLyBnyxMHAutygiTSbDzLNBIj09HWVlZSgbprGRz+dDc3NzJCg4HA44HA7U1NSgqakJgUAAACCTyVBUVDRoJyEcGoqLi6E+ZweDiIji69zjhQwDcaCUyXB9Tg5ebW6OqRVk6Xe+M+jf6+rqoFAqUXwJo4T7g0HcmJcHQxSf5FUqFUpLS1FaWjrkNlEU0dLSEgkJ4V/379+Pd999F16vN3Lf/Pz8IUEh/KtWq435NRAR0aXT6/UwGAwpdaIgocIAANycn48/tLaiXxRjbkscplKp4PF4Yv6+AVGEQibDF0dhHHF4N6CoqAjLli0bdJskSejs7IzsJIQvPRw/fhw2mw0ulyty36ysrEE7CeeGBoPBwIJGIqIxYDQaU6rXQMKFgblaLRbrdKjp7YVWJrukNzuVWg2n0xnz93X5/Zij1WL1GLegFAQBubm5yM3NxcKFC4fc7nQ6BwWF8K87d+5EV1dX5H5arXbYgsaSkhIWNBIRXQaGgTgTBAGPT56MfUeOoCcYRNYlFN6pVSqIoohAIBB14Z4zEIBKJsPjkyfHdJJhLOj1esyZMwdz5swZcpvb7R5UyBgODYcOHUJra+uwBY3nn3woLCyE/BJ3XYiIUoHRaMSuXbvivYxxk3BhAACW6/W4s7AQP2tqglYUoYrxE65KpQIAeH2+qMJAQJLgDAaxvqAA67KyLmnN4yU9PR3l5eUoLy8fcpvP50NTU9OQHYWtW7eisbEx0k9BLpcPKmg8NzQUFxdH/vyIiFJVSUkJOjs74Xa7IyfTJrKEDAMA8LDRiM09PTjU349JKhXkMXxaV6lUEAQBPq/3orMIRElCq8+HqWlp+E5paVJfg1epVJgyZQqmTJky5LZgMIjW1tYhlx/27t2Lv/zlL5GCRkEQLljQmAp/KYiIzj1eONyHr4kmYcOAVi7Hf86YgfVHjuCMxxNzIFCqVPD5fBe8jyhJaPL5UKhS4T/Ly5E9CqOTE1V4N6CoqAjLly8fdJskSejo6BhUzOhwOHD06FFs2rQJfX19kftmZ2ePePlBr9cndZgiIgoLjzJmGEgAV6Sl4f+bORN3Hj2KkwMDyFUqkRblJQO1SjXo+N75vKKIdr8fRWo1XpkxA/MyMkZr2UlHEATk5eUhLy8PixYtGnSbJElRFzRmZGQM2UkI/3Nubi6DAhEljczMTGi12pQ5XpjQYQAAZmq1+NPs2Xjs5Els6+1FnyAgR6G4aJGfSqUa9kSBJEnoCgTgkSQs1unw4yuuwEye5R+RIAgwGAwwGAzDzvYOFzSeHxQOHjyI1tbWyP3UavWIOwoFBQUsaCSihCIIQkqdKEj4MAAApRoN/jRrFn7T0oKfNDSgyeeDRiZDpkIx4qRDlVoNv98faV4UlCT0BgJwiyJ0CgWeKC7G14uKoObxu8tysYLG81s5OxwOVFdXo6mpaVBBY3Fx8bBhoaioiAWNRBQXDAMJSCGT4WtFRbBkZeG/WlrwVkcHWs++2atlMqTJZFALQmTHQK5UIqhSocXjgXj2DT9LqcQXCwpwW0EBZnM3YMypVCpMnToVU6dOHXJbMBhES0vLkFbOe/bswTvvvBOp9xAEAQUFBcO2cmZBIxGNJaPRiIMHD8Z7GeMiacJA2LS0NDw7dSoeNhrxbkcHtvb2Yn9fHzr9fvQFgxDDd5TLISkU0Pr9WFNUhFUGA27IzUXOBC4STCbh3YDi4uIht4miiI6OjiGXH2pra/HBBx+gv78/ct/s7OwRJ0nq9frxfElENMGUlJSgtbUVXq93ws+QSbowEKZXKHBbYSFuKyyEJElo9vlwxuOBRxQhAVALAp78yU9w22c/i3vM5ngvl2Igk8mQn5+P/Pz8YQsae3t7h7Rydjgc2L59O7q7uyP31el0I7ZyzsnJYUEjEV1Q+ERBY2Mjpk2bFufVjK2kDQPnEgQBRWo1is5LbjOysuA4O9GQJgZBEJCZmYnMzEzMnTt3yO39/f3DFjR+/PHHaGtri9xPo9EMW6NQUlKCwsJCtnImokHHCxkGklhpaSmOHTsW72XQONJqtZgxYwZmzJgx5Dav14vGxsYhrZztdjuampogiqGLTAqFYkiHxvCOwqRJk1jQSJQicnJyoNFoUqKIcEKHgSlTpuDDDz+MaRwyTVxqtRrTpk0bNuEHAoEhBY0NDQ3YvXs33n777UEFjYWFhcP2UigpKUFaWtp4vywiGiOpdLxwQoeB0tJSuN1utLe3I38UxhLTxKVQKCJv7OcLFzSef/Lh8OHD+Pvf/w632x25b05OzoiTJONV0Oh2u/HGG2/gwIEDyMjIwPXXX4/FixeztwNRFBgGJoBwj/66ujqGAbpk5xY0Ll68eNBtkiShp6dnSDFjXV0dampq0NPTE7mvXq8fsfFSdnb2mO1etbW1Yc+ePfB6vfiP//gPnD59Gr/85S+h0+nG5PmIJpKSkhJs2rQp3ssYcxM6DBQXF0OhUODMmTNYunRpvJdDE5AgCMjKykJWVhbmzZs35Pa+vr6oChrT0tKGBIXwPxcUFFxWQaPRaMSTTz6JkpISbN68GTNnzhzxckb4ktrhw4fxk5/8BHa7HWVlZXjiiSdgMpkueQ1EycpoNKKlpQV+vx/KCXw0fUKHAblcjpKSEtTxRAHFSUZGBmbOnImZM2cOuc3j8QwZOe1wOGC1WtHc3BwpaFQqlRcsaLzYD6jw3wMgdERq8uTJI472FgQBjY2NWLt2LZYtW4bnn38eNTU1+OY3v4k//OEPw7akJprIjEYjRFFEc3MzJk+eHO/ljJkJHQaA0KWCM2fOxHsZRENoNJoLFjQ2NzcPufzw0Ucf4c9//nOkoFEmk6GwsBBPP/00Fi9efMEdhN7eXni9XhQVFV1wXd///vdRUFCAP/3pT0hPT8f111+PhQsX4q233sLs2bN57JJSSvh4ocPhYBhIZqWlpfjggw/ivQyimCgUisin//OJooj29vZBOwpFRUUjvkmHt/5PnDgBpVJ5wfqZjo4ObNu2DTfffHOk1bNer8ctt9yCjRs34n//7/89Kq+PKFnk5eVBpVJN+CLClAgDLS0t8Hg80Gg08V4O0WWTyWQoKChAQUEBlixZctH7i6IIuVyOw4cPIzs7G5mZmUPuEw4Mp06dgtPpxJw5cyK3BQIBaDSaSDGkKIrcHaCUIZPJUFxcPOHDwIT/Gz1lyhRIkoT6+vp4L4Uorg4dOoSSkpIhpwhEUYxMkDxz5gy0Wi1ycnIit0uShIaGBhQUFIzreokSRSocL0yJMACARYSUksJHHwHg2LFjmD59OjIyMgbdRyaTRQoK+/v7odVqB33y7+3txbFjx0YsHnQ6ndi+fTvq6+vh9/vH5oUQxVFJSQkaGhrivYwxNeEvE+j1emRlZbGIkFJSY2Mj1q1bh4GBAdTV1aGsrAwvvfQSVq9ejVWrVuHdd9/FwYMHcdddd6GwsBCzZs1Ce3v7oMmQBw8eRFNTE+655x4AGNQPQRRF7Nu3D4899hiAfxY0nj9y2mg0ori4mJfqKCkZjUY0NTUhGAxO2GZdEz4MAKG6Ae4MUCoqLi7Gn/70Jxw8eBDNzc3YtWsXXnnlFezevRsrVqyA3W7HG2+8gTvvvBMAsGLFChQUFOCXv/wl5s6dC5/Ph2984xuYO3cuKisrAQwOAzKZDJWVldi4ceOQXgqffPIJ/vrXv2JgYCBy/7y8vGEnSQ53+YIoURiNRgQCAbS2tl70NE6ySpkwwIFFlIoEQcD8+fMxf/78YW//zne+g/Xr1w/6Afe73/0Ot99+O8rLy5GXl4eZM2fihRdeGPGHYHheQ2Fh4ZDmXpIkobu7e0gvhZMnT2Lz5s1wOp2R+xoMhhFbOWdlZXG+CMXNuccLGQaSGAcWEQ0vNzcXubm5g36vrKwM27Ztw5kzZ9Dc3IyysrIh94mWIAjIzs5Gdnb2sIHE6XRG+iicu6uwZ88edHR0RO6Xnp4+YivnvLw8nm6gMVVYWAi5XA6Hw4Hly5fHezljIiXCAAcWEcVuypQpkQLcsaLX6zF79mzMnj17yG0DAwNobGwccvnhww8/REtLS6RDo0qlQnFx8bCtnCdNmjRit0WiaMnl8gl/vDAl/pZwYBFR8klLS8P06dMxffr0Ibf5/f5BHRrDlx+2bduGxsZGBAIBAKGahkmTJo1Y0KhWq8f7ZVGSKikpYRhIdhxYRDSxKJVKTJ48edj2sKIoorW1dUgr5wMHDmDjxo3weDyR++bn5w97+aGkpGTIEUxKbUajEbt37473MsZMSoQBDiwiSh3h3YBJkyZh2bJlg26TJAldXV2RnYRwUDhx4sSQgsbMzMwhASH8xYLG1GM0GvH2229P2A6cKREGAA4sIqJQQWNOTg5ycnKwYMGCIbeHCxrPr1PYtWsXOjs7I/dLT08f8eQDCxonJqPRCJ/Ph/rWVhhycyEA0Mhk0EyQvgMpEwY4sIiILuZCBY1ut3tQQWP46x//+AdaWlogSRKAUEHjubsI59YrFBYWsqAxiUiShE/6+7HT6cTOtDQcve8+VBw7BtXZXWaZIKBYrcbijAzM1mqxUq/HTK02zqu+NCnzf+WUKVM4sIiILll6ejrKyspQVlY25DafzzekoLGhoQE1NTVoamoaVNBYVFQ0pKCxpKSEBY0JxB0M4u9dXfhDayv2ulzwShIkSYI3Kwv+QABpZ/87iZKEk243Pj3bsTNNLsdVej1uzc/HuuxsqJJohyhlwkBpaWlkYFF5eXm8l0NEE4hKpUJpaSlKS0uH3CaKIlpaWgYVMzocDuzfvx/vvvsuvF5v5L7hgsbzTz6UlJRAm6SfOJPN1p4efPf0aRw/2znTIJcjRyaDIAjweL1Qer3QGQxDvk+SJPSJImzd3djc04M5Wi3+bdo0LEqSzpopEwbOPV7IMEBE4yW8G1BUVDRsQWNnZ+eQHYXjx4/DZrPB5XJF7puVlTViK+fMzEwWNF4mVyCAf3c48F+trfCIIvIUiiGf7FUqFXwjDOMSBAE6uRw6uRxeUcQnfX24+fBh3F1UhAeLi5GW4LUFKRMGOLCIiBKNIAiRLpALFy4ccrvT6Rxy8qGhoQE7d+5EV1dX5H5arXbEgsbc3FwWNF5Em8+Hu48exUdOJ7RyOYqUymHDlUqlgvucWRsjUctkKFKp0B0I4CWHAwf7+vDz8nLoE7heJHFXNgY4sIiIkoler8ecOXMwZ86cIbe53e5hWzkfOnQIra2twxY0nt/KOdxmN5V1+v24/dNPsc/lQp5SCfUFgpNKpUJPb29UjysIArKVSgyIIjZ1d+NrR4/itRkzkJGggSAxVzVGOLCIiCaK9PR0lJeXD3vZ0+fzoampaciOwtatW9HY2IhgMAgg1IPl3ILGc0NDcXExVCrVeL+sceUTRXz96FHsc7mQr1RetOBPqVJBEkUEAoGoT4WkyWTIVSpR3dODR06exC/LyyFLwEs6KRUGOLCIiFKBSqUacbZEMBgc1KExfBli7969+Mtf/hIpaBQE4YIFjenp6eP8qkbfq83N2OZ0IjeKIAAgEo58fn9MR0Q1MhmyFAq839mJN9va8MWCgkte81hJqTDAgUVElOrCuwFFRUVDJvBJkoSOjo4hrZyPHj2KTZs2oa+vL3Lf7OzsEVs5GwyGhP/AVdvfj582NEAlCNBEWVOhUioBAH6fD0hLi+n5tHI5XMEgXqyvxyqDAcYEO+KeUmEgnJLPnDnDMEBEdB5BEJCXl4e8vDwsWrRo0G2SJEVd0JiRkTFiK+dEKWj8Xl0degMBFMdwKUQQBCiUSvh8vkt6znylEk0+H37kcOCnw/SriKeUCgPhgUV1dXVDjvgQEdHIBEGAwWCAwWDAlVdeOeT2cEHj+UHh4MGDaGtrixQ0qtXqEQsaCwoKxqWg8Uh/P3Y4nTAoFDHtYIh+P4IffICWjz9GZyAA9eTJyL/pJmiH+fMYjkwQkCGX429dXfi214uiBGoylVJhgAOLiIjGxsUKGodr5VxdXY2mpqZBBY3FxcXDhoWioqJRK2j877Y2uIPBmHYFAKD5V7+Cb/t2KFeuRMGsWeitqUH9j36E0iefRPqMGVE9hl4uR5PPh/9pb8eDJSWXsvwxkVJhAODAIiKi8aZSqTB16lRMnTp1yG3BYBAtLS1DdhT27NmDd955J7IlLwgCCgoKhm3lHEtBoycYxP90dEBztqtgtAZOnoTzo49guP56eBYuRFZ5OQxr1uDUk0+i7Y03MOWZZ6J6HJkgQCkIeL2tDQ8UFydMbUXKhQEOLCIiShzh3YDi4uIht4miiI6OjiGtnGtra/HBBx+g/+xMAOCfBY3DnXzQ6/WRN91jAwPoDQSgi/FyhGv3bkAQkGkyoamzE8FgEHKlEpkVFWh/6y34OzuhzMmJ6rG0cjlafD40er0oSZBCwpQLAxxYRESUHGQyGfLz85Gfnz9sQWNvb++ggsZwYNi+fTu6u7sj99XpdJFg0Dp7NpxFRUhXKBBQqaI+Iug5cwaqSZOgNhiAzk74fD6kpaUh7YorQrfX1UUdBjQyGZx+P2rdboaBeOHAIiKi5CcIAjIzM5GZmYm5c+cOub2/v3/YgsYtZ86gT6dDvdMZehyZDCqlEiqVCiqVCsqzv6qUSijPHiUEgEBvLxSZmZHjheEwoDg7tCjQ0xP12hVndylq3W5cnZ19qX8EoyrlwgAHFhERTXxarRYzZszAjPMK+x48fhxvtrUhPy8Pfp8PvvCX3w+nywW/3w+cPfkgCAKUZ4PCgMsFlVYLt9sNmUwWGVgknC1ClC7huGHXCEOP4iHlwgAHFhERpS5vMAgZALVKBfUwpwkkAH6/f0hQCAoC+p1OnDx1CmIwiMLCwtD9wwWOMZ5MkCQJvrOhIxGkXBgAOLCIiChVKWUyXOgtWECo06BKqURaWhpcZ3cLJK0WcDqRodUiLT0dOr0eQOjyAQAoMjNjXosiQU4SACkcBjiwiIgo9RgUClzoLTgYDMLlcsHlcqG/vx+SJCEtLQ36sjIMVFdjSlER5Oe0Ih44eRIAoCktjWkdgiDEfKJhLMW/J2QcTJkyBXV1dZGOWERElBrK09IAQRj08z8QCKC7uxt1dXU4dvw4mltaIIoiCgoKUFZWhilTpqCwshICgB67PfJ9ot+P3q1bkTZtWtQnCQBAlCRIkoQZCTTsKWV3BjiwiIgo9czSaqEQBLj9fnj6+uByOjEwMABBEKDVajGpsBAZOh0U531qT5s+HbqlS9H25psIOp1Q5uejt6YGvvZ2lH71qzGtwSOK0MhkmMkwEF8cWERElHpOnTqF3Zs3ozc7G22BAJQeDzIyMlBUVASdTnfRAUpFX/862t96C73btiHY3w+10QjjI48gfebMmNbhFkUYFApMS5AeA0CKhgEOLCIimvgkScLRo0dhs9lgs9lw5swZpKeno+yuu3DaaMSUjAzIYijikymVKLj1VhTceutlrckjitiQmwtFAkxvDEvJMMCBRUREE5Moijh06BCsVivsdjuampqg1+tRWVmJhx56CMuXL8dHbjfW19bCK0lIG+eK/n5RRJpcjpsTbFc6JcMAwIFFREQTRTAYxL59+2Cz2WC329HR0YGcnByYTCaYzWYsWrRoUNvhVUolZqSn41BfH4pUqnEbFiRJEnoCAVRmZmKOVjsuzxmtlA0DHFhERJS8fD4fdu3aBZvNhurqavT29qKwsBDr1q2D2WzGvHnzRqwBkAkCvm004qtHj8IVDEIf5XyCy9UdCEArl+Nxo3Fcni8WKRsGOLCIiCi5DAwMYMeOHbDZbNi6dSv6+/sxefJk/Ou//ivMZjNmzpwZ9af8tdnZuDkvD//V2op0uXzMGwD5RBEDkoSHioqw5GzDokSSsmGAA4uIiBJfX18ftm7dCpvNhu3bt8Pr9aK8vBy33XYbLBYLpk6desnb/E+WlmKH04kTAwMoUqliKiaMRVCS0Ob3Y15GBr5RUjImz3G5UjYMcGAREVFi6u7uxpYtW2C1WrFr1y4EAgFceeWVuOeee2AymWAcpW32bKUSv5oxA7fV1qLJ6x2TQBCQJLT4fLgiLQ2vzJiB9ATqOniulA0DHFhERJQ42trasHnzZthsNuzbtw8AsGDBAjz88MOoqqpCQUHBmDzvbK0Wv5k5E1/99FM0eL3IVSqhGaUjfwPBIDoDAZSlpeHXM2eiNIEvSadsGAA4sIiIKJ6ampoiRwAPHjwIuVyOZcuW4cknn0RlZSWys7PHZR3zMzLwp9mz8fjJk9jlckElCMhRKC758oMoSWj3+yECMGdl4QfTpsGYwEEASPEwMGXKFBw9ejTeyyAiShmnT5+ONAE6evQoVCoVrrrqKjz//PNYvXo19HEqritLT8ebc+bgleZm/EdDAxp9PqTJZDAoFFEXF/rPHh30iiJylUo8PnkybisogDyBphOOJKXDQPh4oSRJ43bOlIgolUiShGPHjsFqtQ7qArh69WrccccdWLlyJdITpEe/SibD/cXFuDorC39obcWfOzrQ5vdDlCSoZTJoZDKoBSFSVyBKErxnTwn4RBGCIKBQqcQX8vOxvqAgoS8LnC/lw4Db7UZHRwfy8vLivRwiogkh3AUwvANwbhfAb3zjG1ixYgVUKlW8lzmi8vR0PDd1Kh4xGvFuRwd2OJ3Y53Kh3e+HOxiEePZ+MkGAWhBgVKuxWKfDaoMBn8vJgTZBiwQvRJCimOPrdDphMBjQ29sbty2cseDxeOB2u8ftuhQR0UQV7gJot9tht9vR3t6O7OxsmEwmWCyWIV0Ak4109lRAvdcLrxiKAxqZDFM0GuQplQm7uxzt+3fy/pcZBWq1mg2HiIgukc/nw+7du2G1Wgd1Abz66qsv2gUw2QiCgElqNSap1fFeyphI6TCQqEmOiChReTwebN++fUgXwBtvvBFmsxmzZs3iz9YklNJhgIiILq6vrw81NTWw2WzYtm0bvF4vysrKcNttt8FsNmPatGkMAEmOYYCIiIbo6elBdXU1bDYbdu3aBb/fjzlz5ox6F0BKDAwDF+FyuSCKIgwGQ7yXQkQ0ptrb2yMFgHv37oUkSVi4cCEeeughmEymMesCSPHHMHARv/nNb9DQ0IDvf//7UCqV8V4OEdGoampqihwBPLcL4BNPPIGqqiqetkoRKR8GXnnlFaxevRrl5eWR5kPyc86ILliwAL/61a+wYcMGzJkzJ44rJSIaHadPn4bdbofVah3UBfC5557DmjVrJtQRcopOyoeBp59+Gk8//TRmzZo16PcdDgeOHj2KzZs348iRI9i3bx/DABElpXAXwPAOwOnTpyNdAG+//XasWrUqYboAUnykfBioqKjA73//e5w+fRr79u3DsWPH0NraimAwiIyMDEyZMgWf+cxnUFxcHO+lEhFFbaQugBUVFXjwwQcTvgsgja+UDwNr1qzBQw89BLlcjqlTp8JkMqGsrAwlJSXIy8tDZmYm1Go1tFptvJdKRHRBwWAQ+/fvh81mG9QFsKqqChaLBYsXL07qLoA0dlL+/4qpU6dCr9fj9ddfR25uLhQKBf+yEFHS8Pl82LNnT6QLYE9PDwoKCrB27VqYzWbMnz9/wnQBpLGT8u96c+fOhUKhgEqlYmtiIkoK4S6AdrsdW7ZsiXQB/Jd/+Rd2AaRLkvJhoLS0FD/5yU94fIaIElp/fz+2bt06qAvg9OnTsX79epjNZlxxxRUMAHTJUj4MAMDnP/957N27F3PnzmVFLREljN7eXlRXV8NqtUa6AM6ePRt33303TCYTJk+eHO8l0gTBMADgxRdfxDvvvIPXX38dixcvjvQbADDon4mIxlp7ezs2b94Mm80W6QK4YMECfOMb34DJZEJhYWG8l0gTEMMAgKqqKmRmZiI3N3fIbQwFRDTWmpqaIk2APvnkE8hkMixdupRdAGncCJIkSRe7k9PphMFgQG9vb8p0phJFEQ6HA21tbcjJycG0adPivSQimkDOnDkT6QHw6aefQqVSYcWKFbBYLOwCSKMm2vdv7gycw+/34ze/+Q3ee+89fPrppwgGgzAYDFCpVCgrK8MPf/hDFBUVxXuZRJSEJEnC8ePHYbVaI10A09LSsHr1amzYsIFdACmuuDNwVm9vL+677z7s2rULy5cvx9y5c1FYWAiZTIaWlha8/vrrmDRpEv7nf/4HarU63ssloiQgiiIOHz4c2QFobGyETqdDRUUFLBYLli9fzp8nNKa4MxCjN998Ex999BH+7//9v6iqqkJGRsag22+55RYsWrQIn3zyCZYsWRKnVRJRoju3C+DmzZvR1tYW6QJoNpuxZMkSNjajhMP/I8/63e9+h/Xr1+Pzn//8sLcXFhaisLAQJ0+eZBggokH8fj92794dCQDhLoAWiwUmkwkLFixgF0BKaAwDZ+Xn56OlpWXI73u9XrS0tOC73/0u5HI55s6dG4fVEVGi8Xg82LFjB2w2G7Zu3Yq+vj4YjUbccMMNsFgs7AJISYVh4KwNGzbg2Wefxdq1a7Fhwwbk5uaivb0dhw8fxu7du9Hb24snn3wSs2fPjvdSiShO+vv7UVNTA6vViu3bt8Pj8WD69On40pe+xC6AlNRYQHiWKIr429/+htdeew2HDx9GXV0dZDIZJk+ejIqKCtx6660wmUzxXiYRjbNwF0CbzYaPPvoo0gXQbDbDbDazCyAltGjfvxkGztPX14fW1lbk5+dDp9PFezlEFAcdHR2w2+2w2+3Ys2dPpAugyWSC2WxmF0BKGjxNcIkyMjIGnSQQRRGSJEEmk3H7j2gCC3cBtNlsOHjwIGQyGZYsWYInnngClZWVyMnJifcSicYMw8BFsAKYaOKqq6uLNAE6twvgs88+i4qKigm/E0oUxjBARCkj3AUw3ATo1KlTSEtLw6pVq/CVr3wFq1evZhdASkkMA0Q0oYW7AIYHAZ3bBfD+++/HihUr2AWQUh7DwHmCwSAEQeDlAaIkJooi9u/fD6vVOqQLoMlkwpIlS6BUKuO9TKKEwTBwHofDgf/+7//GQw89BJVKFe/lEFGUzu0CWF1dje7ubuTn50eOALILINHIGAbO43Q68cYbb+CGG25AeXl5vJdDRBfg8Xiwc+dO2Gw2bNmyBX19fSgpKcF1110Hi8WC2bNn8xQQURQYBs4zZcoUAKEqY4YBosQT7gJos9mwbds2eDweXHHFFbj11lthNpsxffp0BgCiGDEMnEev1yMrKwtnzpyJ91KI6KxwF0C73Y6dO3dGugDedddd7AJINAoYBoZRWlqKurq6eC+DKKV1dnZGmgCFuwDOnz8fDz74IEwmEyZNmhTvJRJNGAwDw5gyZQo+/fTTeC+DKOU0NTVh8+bNsFqtOHjwIARBwNKlS/Htb38bVVVV7AJINEYYBoZRWlqKDz74AJIk8dojUZT++te/YteuXaisrERlZWXUlfvhLoB2ux21tbWRLoDPPPMMKisr2QWQaBwwDAyjtLQUbrcb7e3tyM/Pj/dyiBJaR0cHbr75ZtTW1mLRokV46aWXcM899+Cxxx5Dfn7+kFAtSRL6+vrwhz/8YUgXwC9/+cvsAkgUBwwDwwifKDhz5gzDANFF/OxnP0NnZyd27tyJ0tJSvPLKK/jFL34BQRDwgx/8YEgYEAQBarUab7/9NpYvX84ugEQJgGFgGMXFxVAoFKirq8OyZcvivRyihFZbW4sZM2agtLQUAHDHHXegvb0dP/rRj/CDH/xg2MsFKpUK77//PhQK/ggiSgRsxzUMuVwOo9HIEwWUsnp6evCzn/0Mzz33HFpaWka8X39/P/r6+pCbmwtJkgAACoUC1113HTweD95//30AiNx2LgYBosTBMDCC0tJS9hqglCOKIjZu3Ih169bhueeew3PPPYf6+vph7ytJErRaLdLT09HZ2TkoNJSWlmL58uV48803I49LRImLYWAE7DVAqUgmk8Hj8eCzn/0sdu/eDYPBgG3btg37Zh7+vaqqKhw+fBjHjh2L3KZSqbBkyZLIEV25XD4+L4CILgnDwAimTJmC5uZmeDyeeC+FaFxdc801+M53voPS0lKsW7cOGzduhNPpHHK/cC3ADTfcAADYtGlT5DaNRgOHw4EZM2bw7xBREmAYGEG4GGqkLVKiiUqr1UYmdt5+++3YsWPHkEtmkiRFvoqLi3H99dfjzTffxJ///GcAQHNzM/bt24e5c+dCo9EMWzNARImDYWAE5w4sIko14aOA11xzDQBgx44dgy4VCIIAmUwWud9jjz0Gs9mMBx54AFdffTUWLlyIadOm4ctf/vKgxyOixMQwMAIOLKJUFwgEAAAWiwXvvfce+vr6Ird5PB788Y9/xM9//nMAQHZ2Nl566SW89dZbWLFiBX7zm9/g73//OwoLC+OydiKKDc/2XACLCGmikiQJx48fR0dHB1asWDFsL4Dwp/k777wTGzZsQFNTE/R6PZxOJ7RaLf74xz+ivr4ed955JzQaDTQaDVauXImVK1eO98shosvEMHABHFhEE4kkSTh8+DBsNhtsNhsaGhowbdq0yPG/84VPAFx33XXwer145pln0NDQgIyMDLz99tt49tlnYTAYoNFoxvNlENEYYBi4AA4somQniiI+/vjjSABoa2tDVlYWqqqq8K1vfQtLly4d8XsDgQB+/etf49VXX4Xf78cnn3yCq6++Gvfddx+0Wu0Fv5eIkgvDwAVwYBElI7/fjz179sBms2Hz5s3o7u5Gfn4+TCYTzGYzFixYENW5f0mSUF9fj5UrV+KNN97A1KlTx2H1RBQPDAMXwIFFlCy8Xi927twJq9WKrVu3wuVyobi4GNdddx1MJhPmzJkT9UjhMKVSie9973tjtGIiSiQMAxfAgUWUyNxuN2pqamCz2bBt2zYMDAxg2rRpuOWWW2A2m1FWVsbLW0QUFYaBC+DAIko0TqcT1dXVsNvt2LlzJ3w+H2bNmoU77rgDZrM5sptFRBQLhoGL4MAiirfOzk5s3rwZNpsNe/bsgSiKmDdvHh544AFUVVWhqKgo3kskoiTHMHAR4RMFROOppaUlcgLgwIEDEAQBS5YsweOPP46qqirk5ubGe4lENIEwDFzEuQOLeJ6axlJ9fX0kABw5cgRKpRLLly/H008/jYqKCmRmZsZ7iUQ0QTEMXMS5A4vKy8vjvBqaSCRJwokTJ2C322G1WnHy5MlIF7/169dj9erV0Gq18V4mEaUAhoGLOHdgEcMAXS5JknDkyBFYrVbY7XY4HA5kZGSgoqICX//613HVVVdxB4qIxh3DwEVwYBFdruG6AGZmZqKqqgqPP/44li5dCqVSGe9lElEKYxiIAgcWUawCgcCgLoBdXV3Iy8uDyWSCxWKJugsgEdF4YBiIAgcWUTTCXQBtNhu2bNkCl8uFoqIifO5zn4PZbL6kLoBEROOBYSAKHFhEIwl3AbTb7aipqYl0Abz55pthsVjYBZCIkgLDQBQ4sIjO5XQ6sWXLFthstkgXwJkzZ7ILIBElLYaBKHBgEXV2dqK6uhpWqxV79uxBMBjEvHnzcP/998NkMrELIBElNYaBKHBgUWoKdwG02+34+OOPIQgCFi9ejMceewxVVVXIy8uL9xKJiEYFw0AUOLAodbALIBGlIoaBKHFg0cQkSRJOnjwZCQAnTpyIdAH80pe+hNWrVyMjIyPeyyQiGlMMA1HiwKKJQ5Ik1NbWwmq1wmazweFwQKvVoqKiAvfccw+7ABJRymEYiBIHFiW3cBdAu90Om82G1tZWGAyGSBfAJUuWQKVSxXuZRERxwTAQJQ4sSj4X6gJoNpuxcOFCdgEkIgLDQNQ4sCg5+Hw+7Ny5E1ardUgXQJPJhCuvvJJdAImIzsMwECUOLEpcbrcb27Ztg81mw7Zt2+B2uzF16lTcfPPNMJvNKC8vZxdAIqILYBiIAQcWJQ6n04mtW7fCarVGugDOmDEDt99+O0wmE6ZOnRrvJRIRJQ2GgRhwYFF8dXV1YfPmzbDZbNi9e3ekC+B9990Hs9nMLoBERJeIYSAGHFg0/lpbWyM9AM7tAvjoo4/CZDKxCyAR0ShgGIgBBxaNj/r6etjtdlitVhw5cgQKhYJdAImIxhDDQAw4sGhsDNcFUK1WY9WqVewCSEQ0DhgGYsCBRaMn3AUwHADq6+uh1WqxZs0a3H333Vi5ciWbOxERjROGgRiEBxbxeOGlEUURBw4ciASAc7sAPvroo1i6dCm7ABIRxQHDQIx4vDA2gUAAe/fuhdVqjXQBzM3NhdlshslkwqJFi9gFkIgozhgGYsSBRRcX7gJos9mwZcsWOJ1OFBUV4dprr4XZbGYXQCKiBMMwECMOLBpeuAug3W5HTU0N3G43pkyZgptuugkWi4VdAImIEhjDQIw4sOifwl0AbTYbduzYEekCuGHDBpjNZnYBJCJKEgwDMUr1gUUjdQG89957YTabUVxcHO8lEhFRjBgGYpSKA4taW1tht9sjXQABYNGiRXj00UdRVVXFngtEREmOYeASpMKJAofDEekCePjwYSgUCixbtgzf+c53UFFRgaysrHgvkYiIRgnDQCy8XuDYMVzjcgG7dgFtbcDAACCXA3o9UFYGzJoFzJ4NTJoEJFHBnCRJOHXqFKxWK+x2O44fPw61Wo2VK1fii1/8ItasWcMugEREExTDQDROnQLeegt4/XWgsxPX9vai3+2G1N7+zwp5UQTCx+XS0oCFC4H164HPfjb07wlouC6A6enpqKiowNe+9jVcddVVSEvQtRMR0ehhGLiQ+nrg+98HNm0C+vsBtRrIyEBAo0FbQwMMBQVQKs77IwwEQrsF27YB27cDRUXA/fcDX/lKaAchzsJdAMM1AC0tLTAYDKisrMQjjzyCZcuWsQsgEVGKYRgYjiiGdgH+7d9ClwL0eqC4OLLtr/L5AAA+r3doGFAoAJ0u9OX3A62twHe/C3zwQShYTJs23q8m0gXQZrPBbrdHugCaTCaYzWZ2ASQiSnEMA+dzu4FHHgHeey/05l9U9M/t/7NUKhUEQYDX54NWqx35sZRKoKAgtFNgtwPXXw/86EehSwdjLNwF0G63o7q6Gk6nE5MmTcI111wDi8XCLoBERBTBMHAutxu45x7gww+BrCxghDd6AaFA4PN6o3vctLRQqGhtBR58EPjxj0PBYJS53W5s374dNpst0gWwtLQUN910E8xmM2bMmMEugERENATDQFggAHzzm6EgkJNz0aI/lUoF39nLBVGRyYDCwlAgePRRICMDMJsvb80IdQGsqamB1WqNdAEsLy/Hhg0bYDKZMC0OlyWIiCi5MAyE/fa3wMaNQHZ2VNX/KpUKTqcztucQhNBlg6Ym4NvfBt5/H7iEhj3hLoB2ux27du1CMBjE3Llzce+998JkMqGkpCTmxyQiotTFMAAAx4+Htu4VCiA9PapvUavV8Pv9ECUJsli23gUhtEPgcADPPw+8/HJU/Qja2toiRwDDXQAXLlzILoBERHTZGAYkCXjmGaCrK3RdP0rh43c+rzf26YVyOWAwAO++C3z+8yMWFDY0NEQCwKFDhyJdAJ966ilUVlayCyAREY0KhoG9e0P9ALKyhpwauBB1OAz4fJc2ylinA5xO4NVXgc98BhAESJKE06dPw2q1wmazDeoC+Pzzz2PNmjXQ6XSxPxcREdEFMAy88UaozXBubtTfcsrrxX+2t2O314u++nroVCpMU6vx5exsVMTyZm0wQNq7F6f+8hf8vbERVqs10gVwzZo17AJIRETjIrXDQGdnqJ9AenpMcwSa/X64RRFr09KQr1BAm5UFm8uFRxoa8FRhIf71Itv3EoABtxvOvj6o29thv/de/M+sWaiqqmIXQCIiGnepHQb27g1t1cdYfLcqIwOrMjLQ1NwMj8eDadnZuCUrC7edPo0/dHUNGwYkSYLb7YbT5YLL5UIgEIBCoUBBWhpuLizEHR9+yC6AREQUF6kdBj79NPTr+S2Fo6Q+e7xQAiATBBQolTg8MBC5XZQk9Pf3w+V0wtXXh2AwCKVSCb1eD71ej7S0NAhOJ+ByAT09of4GRERE4yy1w8ChQ6HTBJcoqFSiJxjEGbcbOzwebOvrw1qdDk6XC06nE319fRBFESqVCllZWdDpdNBoNBh0QUKjCZ1kqK0FVq++7JdEREQUq9QOA8ePh+YHXKJfOp140+uF8tQpyAAsk8txo8uFBpcLGo0GOTk50Ot0UKnVGLEiQakMdT90OC55HURERJcjtcOAxxPTccLzfTkvD+U9PegKBrEDQFAQkJmXh9LMzOgLAAUh9BXtnAMiIqJRltpj6y5zaM9UtRpfmDULX5w8Gb+eMwdKnQ4v9PdDeSm7DRwgREREcZLaYSA9HRDFy3oIuVyO7KwsKBUKWHQ6HPF4UB/LACNJCn1dSuMiIiKiUZDaYWDmTMDvH7WH854tRuyLJWD4fKG6galTR20dREREsUjtMDBnTujXGE8UdAUCQ34vIEl4v7cXakHAVLU6+gfzeEJTEmfOjGkNREREoyW1Cwhnzw4VEAYCMZ0q+D8tLegPBrEwPR35SiU6AwH8rbcXZ3w+PJyfj/RYihIHBoBZswC9/hJeABER0eVL7TCwaFGo0U9vb0yzCdbp9XinpwdvdXejNxiEVi7HTI0G38jPj202gSSFgsjVV1/C4omIiEZHaocBnQ74wheAn/0s9MYcZUX/Or0e60bjk7zLBWi1wE03Xf5jERERXaLUrhkAQmEgPT30xjyeJCk0F6GqCpg2bXyfm4iI6BwMAzNnAtdcE3pjDgbH73l7ekIh5O67x+85iYiIhsEwAADPPAMUFwNtbePzfH4/0N8P3H47sHz5+DwnERHRCBgGAKCgAHj6aUAuDxUTjiVRBFpbQycIHnlkbJ+LiIgoCgwDYTfcANxxR+gT+1jVD4gi0NwcCh8//SmQkTE2z0NERBSD1D5NcC5BCF0u8HiA//qv0JG/zMzRmxkQCIR2BPLzgVdeAebNG53HJSIiukzcGTiXXA68+CLwjW+EPsU3NV1+u2JJCl16aGkJnRr47W+BZctGZ71ERESjgGHgfDIZ8MQTod2BGTNCn+Y7OkKf7GMhSaFLDuFAsWEDsHEjsGDBmCybiIjoUvEywUhWrwbeew/4xS+AP/whdNJAkkLX+dPSQu2Lz7+EIIqhywwDA6EvjSa0C/DQQ4DZHJ/XQUREdBGCJF18So/T6YTBYEBvby/0qdhD3+UC3n8f+NOfgCNHQm/4fn9oF+HczoWSBKjVoTkDn/0s8MUvAgsXjl7dARERUQyiff9mGIhVby9QWxv6amkBvN5QrYFWC0yfHmpiNG0aoOCmCxERxVe07998x4qVwQCsWBH6IiIimgBYQEhERJTiGAaIiIhSHMMAERFRimMYICIiSnEMA0RERCmOYYCIiCjFMQwQERGlOIYBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcVENKgoPNnQ6nWO6GCIiIho94fftiw0ojioMuFwuAIDRaLzMZREREdF4c7lcMBgMI94uSBeLCwBEUURTUxN0Oh0EQRjVBRIREdHYkCQJLpcLRUVFkMlGrgyIKgwQERHRxMUCQiIiohTHMEBERJTiGAaIiIhSHMMAERFRimMYICIiSnEMA0RERCmOYYCIiCjF/f/2b7UAJYnTzwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -486,10 +486,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:45.654678Z", - "iopub.status.busy": "2024-02-09T16:52:45.654282Z", - "iopub.status.idle": "2024-02-09T16:52:45.657371Z", - "shell.execute_reply": "2024-02-09T16:52:45.656794Z" + "iopub.execute_input": "2024-02-14T16:07:39.418166Z", + "iopub.status.busy": "2024-02-14T16:07:39.417696Z", + "iopub.status.idle": "2024-02-14T16:07:39.420835Z", + "shell.execute_reply": "2024-02-14T16:07:39.420227Z" } }, "outputs": [], @@ -503,10 +503,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:45.659923Z", - "iopub.status.busy": "2024-02-09T16:52:45.659475Z", - "iopub.status.idle": "2024-02-09T16:52:48.853614Z", - "shell.execute_reply": "2024-02-09T16:52:48.852909Z" + "iopub.execute_input": "2024-02-14T16:07:39.423452Z", + "iopub.status.busy": "2024-02-14T16:07:39.423073Z", + "iopub.status.idle": "2024-02-14T16:07:42.613305Z", + "shell.execute_reply": "2024-02-14T16:07:42.612611Z" } }, "outputs": [ @@ -515,7 +515,7 @@ "output_type": "stream", "text": [ "energy: -1.4996861455587294\n", - "time: 3.03641676902771\n", + "time: 3.004215717315674\n", "max-cut objective: -3.999686145558729\n", "solution: [0 1 0 1]\n", "solution objective: 4.0\n" @@ -523,7 +523,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABiBklEQVR4nO3deVyU9fr/8dfMwLCvChgyuKS45pKmljvKWJ7ymJ3KzKVsP/XNjuKSqWmu4ZKappWZS6uW7f1yELfKY5qmlrlviICsMuzMcv/+mOBobqDAPTDX8/Hw8f0Gw8w1R+F+87mvz+fSKIqiIIQQQgiXpVW7ACGEEEKoS8KAEEII4eIkDAghhBAuTsKAEEII4eIkDAghhBAuTsKAEEII4eIkDAghhBAuzq08D7Lb7SQnJ+Pn54dGo6nqmoQQQghRCRRFITc3l/DwcLTaq//+X64wkJycjMFgqLTihBBCCFF9zp49S0RExFU/X64w4OfnV/Zk/v7+lVOZEEIIIaqU2WzGYDCUXcevplxhoPTWgL+/v4QBIYQQooa53i1+aSAUQgghXJyEASGEEMLFSRgQQgghXJyEASGEEMLFSRgQQgghXJyEASGEEMLFSRgQQgghXJyEASGEEMLFSRgQQgghXJyEASGEEMLFSRgQQgghXFy5ZhMIIVSUlwfJyVBUBBoNeHuDwQB6vdqVCSFqCQkDQjibwkIwmWDXLti7F06cgJISsNsdYUCrBS8vaNEC2rWD7t0df3Q6tSsXQtRQGkVRlOs9yGw2ExAQQE5OjkwtFKKqJCbCunXwySeOlQBFcVzgPT3Bw8MRAhTFEQqKix0rBXY7uLlBkybw6KPwwAMQFKT2OxFCOInyXr8lDAihNpsNVq+G+fMhM9Ox/B8YWP7bAEVFkJ3tCAYNGsC0aWA0OlYRhBAurbzXb2kgFEJNZ87A0KEweTLk5kJ4OISGVqwfwNMTbrkFwsIcqwtPPw1jx0JOTtXVLYSoVSQMCKGWgwfh4Ydh82bHSkBoqONWwI1yc3OECQ8P+OADGD4c0tIqrVwhRO0lYUAINRw+DCNGwOnTjgu4l1flPbe/vyNY/PILPP44ZGVV3nMLIWolCQNCVLfsbHjqKUhKcgSBqtgFoNc7AsGePfDii46+BCGEuAoJA0JUt9mz4dgxqFfv5m4LXI9eD3XqwJYtjtsGQghxFRIGhKhOmzbBp586lvLdquGYDy8vx8rD3Llw8mTVv54QokaSMCBEdbHZYOZMsFjAz6/6XrduXcjIgDfeqL7XFELUKHICoRDVZft2OH4cgoMrdAZAid3O8owMvs/JwWyz0dTDg3+HhtLZx6d8T6DVgq8vbNzoOMwoPPwG34AQoraSlQEhqssnn4DV6jgXoAKmpqTwYWYm9/j7ExsWhk6j4cXERPYVFJT/Sfz9wWyGzz+vYNFCCFcgYUCI6pCR4ThPoLy/zf/lYGEhJrOZF0JDGRUWxqCgIJZHRnKLuzuLK3KGgFbr6FFYv95xpLEQQlxEwoAQ1eHPP6GgoMJhICE3Fy0wKDCw7GN6rZZ/BgZyoLCQ8xZL+Z/Mx8dxmyA9vUI1CCFqPwkDQlSHQ4f+N1SoAg4XFdFAr8fnb2cRtPrrkKIjRUXlfzJPT8dExEOHKlSDEKL2kzAgRHUovQBXcHhQhtVK3SsEiNKPZVit5X8yNzdHIDl8uEI1CCFqPwkDQlSHjIwbmiJYbLfjftHX2ex2ADz++lhRRe7/azSO3gEZYCSE+BvZWihEdSgpuaEw4KHVYlEULFYrp06epLi4mICAALK8vEBR8KzocyqK45wDIYS4iKwMCFEd9Pob6uKv6+ZGutVKUlISxcXF6PV67IrC4fPnKSouxp6VRU5OTtmKQbm4u1e4DiFE7SZhQIjqEBrquF9fQVEeHpzIzyersJDgOnXQaLU0bNCA3JAQ3NzcaKDRcC45maNHj3I2KQmz2Yz9aq+jKI4/QUE3+WaEELWNhAEhqkOLFo7bBBVcHbgDsNhs7Pb1xcfHB6vVSpHVyvd5ebTz8+OOxo1p2qQJoaGhWC0Wks6d4+jRoySdO4c5Nxf7xa9nsTjmFDRvXrnvTQhR40nPgBDVoUULx4XYYnHcMiiH/IICgrOy6O3jw/t5eeRpNLhbrew9c4bkkhImN2gAgLu7O3WCg6kTHExJSQlmsxlzbi5JSUlotVr8/Pzw9/fHx25H6+npqEUIIS4iYUCI6tCyJXh7Ow4eKkcYsFgsnEtKwtvbm3kRESzPyOC7nBzSrVaa22wsNBi43dv7sq/T6/XUrVuXunXrUlwaDMxmcnJyCLFayatfn/PHj3NHUBC6v51dIIRwXRpFuf66pdlsJiAggJycHPz9/aujLiFqnxdegM8+g/r1r7mzwK4onDl9GqvNRqNGjXD766KtAEeOHHFc7OvUKffLKkBxYSG2pCTWNmrECjc3AgMDiY6Oxmg0cvvtt6PVyh1DIWqj8l6/ZWVAiOoyeDB8/TUUFcFfJwj+nQKkpqRQVFxMw4YNy4IAgAbHb/4lJSUVelkN4FlUBPXq8czGjfTKzsZkMhEfH8+GDRuoU6cOffr0oV+/ftx2220SDIRwQbIyIER1sdvh7rvh998dY4SvsDqQlZ1Namoq9cPDCQgIuOzzSefOYbVaafhXv0C5Xzc5GR59FObPL/uwoigcPHgQk8nEpk2bSEtLIzQ0lJiYGIxGIy1btkRzA2cjCCGcR3mv3xIGhKhOP/0Ew4Y5mgkvGj4EjobBxDNnCA4OJiws7IpfnpaezoULF4hq2rT8r5maCnXqwLffgsFwxYfY7Xb2799PfHw8mzZtIisri/Dw8LJgEBUVJcFAiBpIwoAQzmrKFHjnHQgLKzsAyGKxcPLUKTw9PYmMjORql90LOTkkJyfTvFmz8i3n5+eD2exYERg8uFzl2e129uzZQ3x8PAkJCeTk5BAZGYnRaMRoNNK4ceNyvlEhhNokDAjhrMxmuP9+OHgQbrkFu1bL6dOnsf2tYfBKCgoLOX36NI0bN8bTw+Par1Nc7BhX/I9/wLvvOuYSVJDVamX37t2YTCa2bNlCXl4ejRs3LgsGkZGRFX5OIUT1kTAghDM7dQqGDEE5dYoUwJyXR8OGDfH09Lzml1ltNo4ePUpERAT+fn5Xf2BRkWM4Uteu8P77UAnftyUlJezcuZP4+Hi2bdtGQUEBUVFR9OvXj5iYGMLDw2/6NYQQlUvCgBDO7vhx0u69F92JE3jccgu+oaHX/RIFOHrkCHWutr1QURxTCfPzoUcPWL68So4fLi4u5ueffyY+Pp7t27dTXFxMq1atMBqNxMTEEFqO9yKEqHoSBoRwcr/++iuTn3ySeZ6etEpKcnwwJMTRXHgNpb0F4bfccuknLBZIS3NsWxw+HMaOBR+fKqr+fwoKCvjpp58wmUzs2LGDkpIS2rZti9FopG/fvtSpwJkIQojKJWFACCeWnJzMsGHDaN68OYsXLkT3xRcwaxacP+8IA0FBcJWegEu2FyoKFBZCdrZjq2JUFMyc6bg9oIL8/Hy2bduGyWTiv//9L3a7ndtvv51+/foRHR1N4N92UAghqpaEASGcVFFRESNHjiQvL48PPvjgf99TaWmwYQN88AGcPv2/KYeeno5g8NfWvuysLIpzcqhXemHV6+G222DoULjvvmpZDSgPs9nMli1bMJlM7N69G4BOnTphNBrp1auX/CwRohpIGBDCCSmKwuTJk9m6dSvvv/8+Ta90XoDFAtu2we7dsH8//PGHY6bBX9+q+UVFnM3Jocm//oVbu3bQvTt07HjNI47Vlp2dzebNmzGZTOzduxedTkeXLl0wGo307NkTHycJMELUNhIGhHBCH374IW+88QazZ88mJiamfF9U2gtQXAwaDX+eOsWIsWP58OOPiYqKqtqCq0B6ejoJCQmYTCYOHDiAXq+na9euxMTE0L17d7yuclSzEKLiZDaBEE5m165dLFq0iBEjRpQ/CIDjYKL69cv+85bAQBSNhqSkpBoZBkJCQhg8eDCDBw8mNTWVTZs2YTKZmDhxIp6ennTv3p2YmBi6du2Kx/XOUhBCVApZGRCiGiQnJzN06FBatWrFokWLbmoYkKIo9O7dm8cee4zHHnus8opU2blz54iPj8dkMnH06FG8vb3p1asXMTExdOnSBfe/TmsUQpSfrAwI4SQKCwuJjY3F39+fmTNn3vRUQI1GQ2RkJGfPnq2kCp1D/fr1ywLOmTNnyiYrfv/99/j5+dG7d29iYmK44447cHOTH11CVCb5jhKiCimKwvTp0zl79iyrVq2qtJW1iIiIWhcGLtagQQOeeuopnnrqKU6cOFEWDL7++msCAgLo06cPMTExdOjQQUYuC1EJJAwIUYXWrl2LyWTi9ddf59Zbb620542MjGTv3r2V9nzO7NZbb+W5557j2Wef5ejRo2XBYMOGDdSpU4c+ffpgNBpp06aNBAMhbpCEASGqyM6dO1myZAkjR46kT58+lfrcBoOBjIwMCgsLXab7XqPR0KxZM5o1a8YLL7zAwYMHMZlMbNq0iXXr1hEaGkrfvn0xGo20atVKRi4LUQHSQChEFUhKSmL48OG0bt2ahQsXVvpvrAcOHGDkyJF89NFHNXJHQWWy2+0cOHCgLBhkZWURHh5OTEwMRqORqKgoCQbCZck5A0KopKCggJEjR1JcXMyaNWvwu9Z0wRt04cIF+vbtS1xcHNHR0ZX+/DWV3W5nz549xMfHk5CQQE5ODpGRkWXBoDJv1QhRE8huAiFUoCgK06ZNIzk5mVWrVlVJEAAICAjA19eXxMTEKnn+mkqr1XLHHXdwxx13MG7cOHbv3k18fDzr1q3jvffeo3HjxmXBoEGDBmqXK4TTkDAgRCVavXo1CQkJzJ07l8aNG1fZ65RuL5QwcHVubm7ceeed3HnnnUyYMIGdO3cSHx/P2rVrefvtt4mKiiobuVz/okOdhHBFEgaEqCQ7duxg6dKlPPHEE/Tu3bvKX89gMJBUOvpYXJNer6dHjx706NGD4uJifv75Z+Lj43n33XdZsmQJLVu2LAsGYWFhapcrRLWTngEhKsHZs2cZPnw47dq1Y/78+dWyxW358uV8+eWX/PDDD1X+WrVVYWEhP/74IyaTiR07dlBSUkKbNm0wGo307duXunXr3tDz2u12LBaLHKcsVCcNhEJUk4KCAh577DGsVitr1qzB19e3Wl73+++/Z8qUKWzfvh1vb+9qec3aLD8/n23btmEymdi5cyc2m43bb78do9FIdHQ0QUFB5X6uI0eOsHDhQlJTU4mOjuaJJ56QvyOhCmkgFKIaKIrC1KlTSU1NZfXq1dUWBMBxCiFQYwcWORsfHx/69+9P//79MZvNbN26tezAqNdff5077rgDo9FI7969r/tL0YULFwgLC8PDw4NRo0bh5ubG008/jU6nq6Z3I0TFyHFdQtyE999/n82bNzN9+nQaNWpUra8dGRkJUKuPJVaLv78/AwYMYMmSJWzcuJEJEyZgtVqZMWMGRqOR9evXc61F1c6dOzN16lR69epFUFAQXbp0kSAgnJqsDAhxg3766SeWLVvG008/Tc+ePav99QMCAvDz85MwUMWCgoIYNGgQgwYNIiMjg4SEBNq3b4/dbr/qBb6kpAS9Xs/7779Px44dqz0oClFRsjIgxA1ITExk0qRJdO/enSeffFKVGjQaDQaDQbYXVqO6devy8MMP06RJk2v+pq/X6wHYuHEj999//3VvKxw+fJg333yTwYMH89FHH11z1UGIqiBhQIgKys/PZ8yYMdStW5fp06erOhzHYDDIyoCTsdlsAHz++ee4u7vTtWvXa/4b+eWXX7j77rtZu3Yt3t7eTJw4kWeeeYaCgoLqKlkIuU0gREXY7XZeffVV0tLSWLNmDT4+PqrWYzAY2LNnj6o1iCtbsWIFPXv2LOvtuJiiKGg0GtLT05kyZQpNmjThq6++wsfHh19//ZWePXsyePBgOWpaVBtZGRCiAlauXMnWrVuZPn26UxxnGxkZSUZGhvwW6SQURUGn06EoCgkJCVe9RWC32wH49NNPSU9P58UXXywLlk2bNqV169bs27evOksXLk5WBoQop+3bt7N8+XKeffZZevTooXY5gGNlAGR7oTOwWCy8/vrr+Pr6oigKAQEBdOvW7bKJiXa7vey2wRdffEGrVq3o3Llz2edzc3PRarVkZGQA/1tFEKIqycqAEOVw5swZJk+eTK9evRg5cqTa5ZQpDQPSN6A+rVaLn58fs2bNYsyYMWRmZvLZZ5+VNXgWFhaWPU6j0XDu3DnOnz9Phw4dLjkCOSMjg3379mE0GlV5H8I1SRgQ4jry8vIYPXo0oaGhvPbaa6o2DP5d6fZC2VGgPp1Ox6hRo0hLSysLj0uWLOGJJ57AarWycuVKhg4dyokTJwBHwNTr9ZcEAavVyubNm9Hr9fTq1QtAVgVEtXCen2pCOCG73c6UKVPIzMxk/vz5TnekbOn2QlkZcC4Gg4Fp06aRkpLCxx9/jJubG6dPn+bgwYPccsstALRs2ZLExMRLtigeP36cdevW8eCDDwL/6y0QoqpJz4AQ17BixQp+/PFHFi5ceMWucGcgYcC5lQ47mjt3LhkZGXh7e6MoCl5eXvTt25dvvvmGPn36kJ+fz/jx4ykuLuY///kPcOmqgM1mK5tS6QzNq6J2kTAgxFVs27aNd955h3//+9907dpV7XKuKjIykl9//VXtMkQ5lAYDjUaDh4cHsbGxDB06lCZNmnDrrbeSm5vLu+++S6tWrcoeV0qn07FmzRq++uoroqKiiImJwWg0Ur9+fVXei6hdZGqhEFdw6tQpRowYQZcuXXj99ded+r6tTC+s+Xbt2kVaWhqdO3cmJCTkqo8rLi5mx44dxMfHs337doqKimjZsiUxMTHExMRQr169aqxa1AQywliIG5SXl8fw4cNxc3Nj1apVTn+B/f3333n88cf56KOPZHuhCyksLOTHH38kPj6en3/+mZKSEtq0aYPRaKRv375lqxDCtckIYyFugN1uZ9KkSWRnZ7NmzRqnDwJw6fRCCQOuw8vLC6PRiNFoJD8/n23bthEfH8/ChQuZP38+7du3x2g0Eh0dTXBwsNrlCicnYUCIi7z99tv8/PPPLFq0qGwPv7Pz9/eX7YUuzsfHh/79+9O/f3/MZjNbt27FZDIRFxdHXFwcd9xxB0ajkd69e8vqrrgiCQNC/GXz5s289957vPDCC9x1111ql1Nusr1QXMzf358BAwYwYMAAsrOz2bJlCyaTiRkzZjBr1iy6dOmC0WikZ8+e+Pr6ql2ucBISBoQATp48ydSpU+nbty8jRoxQu5wKkzAgriQoKIhBgwYxaNAgMjIySEhIwGQy8eqrr6LX67nzzjsxGo107969RtwSE1VHGgiFyzObzYwYMQIPDw9WrlxZI38ovv3222zYsIGNGzeqXYqoAc6fP8+mTZswmUwcPHgQDw8PunfvjtFopGvXrnh4eKhdoqgk0kAoRDmUNgzm5OSUzZOviQwGA5mZmRQUFNTY9yCqT1hYGI8++iiPPvooycnJxMfHYzKZGDduHN7e3vTo0QOj0UiXLl3Q6/VqlyuqgYQB4dKWL1/Ozp07Wbx4cY0+vEWmF4obFR4ezogRIxgxYgSJiYmYTCZMJhM//PADvr6+9OrVC6PRSKdOnXBzk0tGbSV/s8JlJSQksHLlSl588UW6dOmidjk3pXR7YWJiooQBccMiIyN58sknefLJJzl58mRZMPj2228JCAggOjqamJgYOnbs6FQDu8TNkzAgXNKJEyeYOnUqRqORYcOGqV3OTQsICMDf31+aCEWlady4Mc8++yzPPPMMx44dKwsGX3zxBcHBwfTp04eYmBjatWsnwaAWkDAgXI7ZbGb06NFEREQwefJkpz5quCIiIiIkDIhKp9FoiIqKIioqiueff54///wTk8lEfHw869evJzQ0lL59+xITE0Pr1q1rzfeTq5EwIFyK3W5n4sSJ5ObmsmzZMry8vNQuqdJERkbKwUOiSmk0Glq1akWrVq0YNWoUv//+OyaTiY0bN/LRRx9xyy23lM1JaN68uQSDGkTCgHApS5cuZdeuXSxZsoTw8HC1y6lUBoOB3bt3q12GcBFarZa2bdvStm1bxowZw969ezGZTHz99desWbMGg8FQFgyaNGkiwcDJSRgQLiM+Pp7Vq1fz0ksv0alTJ7XLqXSyvVCoRavV0rFjRzp27Mj48ePZvXs3JpOJ9evXs3LlSho1alQ2crlhw4ZqlyuuQA4dEi7h6NGjjBw5kl69ejF9+vRa+VvKH3/8wWOPPSbTC4XTsFgs7Ny5k/j4eLZu3UpBQQFNmzYtCwYRERFql3hd6SUl/Jqby6GCAv7Iz+dYQQGFdjsawFuno5mXF619fWnu7c0dfn4EuburXfIlZISxEH/Jyclh2LBh+Pr6snLlSjw9PdUuqUrk5OTQp08f5syZQ9++fdUuR4hLlJSU8PPPPxMfH8/27dspKiqiZcuWZbcS6tWrp3aJZRRFYXduLuvS0vg2MxOzzUbphVKv0VC6d8IOFNvtaDQaNECQmxv3163LQ6Gh3Obj4xS/dEgYEAKw2Wy8+OKLHD58mLVr19a6PoG/i46OZujQoYwcOVLtUoS4qsLCQn766Sfi4+P56aefKCkpoU2bNsTExNC3b19CQkJUq+1YQQGTTp1ip9lMsd2Oj06Hv06H7joXdquikGO1Umi346XV0jsoiGkNG2JQ+ZcPOY5YCGDJkiXs3r2bpUuX1vogAI6+gaSkJLXLEOKavLy8ylYE8vPz2bZtG/Hx8SxatIgFCxbQvn17jEYj0dHRBAcHV0tNVrudVampLEhKIstiIcjNjbpubuX+7d5No6GOuzuKopBvt/N9ZiZ7cnOZEBnJw6GhaJ1gleBaZGVA1FobN27klVdeYfTo0QwZMkTtcqrFpEmTSE1NZcWKFWqXIkSFmc1mtm7dSnx8PL/88gsAHTt2LAsGVXX9KbDZ+M/x43yTmYmbRkNdN7ebvnjbFYU0iwWAR0JDmdW4Me4qHM4ktwmESzt69CiPP/44ffr0Ydq0aU5x7646vPPOO3z22WeYTCa1SxHiply4cIHNmzdjMpnYu3cvGo2Gzp07YzQa6dWrF76+vpXyOoU2G88ePcrGrCyC3Nzw0ekq5XlL5dpsmG02HgwJYcGtt+JWzYFAbhMIl3XhwgXGjBlDo0aNeOWVV1wmCIDjFMKsrCzZXihqvMDAQAYNGsSgQYPIzMwkISEBk8nE1KlTcXd3584776Rfv3507979hv+t2xWF2BMnMGVnU8fNDa9KDgIAfjodGmB9ejoBbm5Mb9So0l+jMkgYELWKzWbj5ZdfpqioiHfffdfl5rKXDiw6e/YszZo1U7kaISpHnTp1eOihh3jooYdIS0tj06ZNmEwmXnnlFTw8POjWrRtGo5GuXbtWaLfQZ+npfJWRQYBOVyVBoJSvTodNUViTmkqPgABiqqkPoiIkDIhaZfHixezZs4dly5Y51Val6iJhQNR2oaGhDBkyhCFDhpCcnEx8fDwmk4nx48fj5eVFjx49MBqN3Hnnnej1+qs+z7niYmadOQM4LtZVzV+nI6WkhFdPn6aDnx/BTnYegYQBUWt8//33fPjhh4wdO5YOHTqoXY4q/P398ff3lxkFwiWEh4czYsQIRowYQWJiYlkw2LhxI76+vvTq1Quj0UinTp1wc7v0cjf7zBlSS0oIv0ZgqEwajYZQvZ6ThYUsTkpiqpPdLpAwIGqFw4cPM2PGDO69914eeughtctRlcFgkOmFwuVERkbyxBNP8MQTT3Dy5Mmykcvffvst/v7+REdHYzQa6dChA0kWCz9kZeGn01Vo14C9qIjM77+n8MQJik6exJafzy1PPklgjx7l+no3jQYvrZb16em8GBHhVKsDEgZEjZednU1sbCxNmjRh4sSJLtUweCUSBoSra9y4Mc8++yzPPPMMx44dKwsGX375JcHBwegffZQLDRsSWcHGQ2tuLhlffol7nTp4GAwUHD5c4doC3dxItVj4KiODx2+5pcJfX1UkDIgazWq1MmHCBEpKSpg7d+417xG6isjISHbt2qV2GUKoTqPREBUVRVRUFM8//zyHDh3i/5lMTNfrKcjK4kRyctmttfKMM3cLDKTp4sW4BQZSePIkp6dOrXBNur+OM/44LY3H6tVzml9eJAyIGm3RokXs27eP5cuXExYWpnY5TsFgMMj2QiH+RqPR0LJlS7QNGvDmgQPUsVgozs3FbDaTlZWFu7t7WTC42o4Erbs72sDAm67FV6vlZGEh6RYLoU7yC4yEAVFjfffdd3z88ceMGzeO9u3bq12O0zAYDIDsKBDiSg4VFFBst3OLlxdab2/qhYVRUFCA2WzmwoULZGZm4q7XE/BXMKiK7cmeWi0ZViuHCgokDAhxM/78809mzpzJgAEDePDBB9Uux6mUbi9MTEyUMCDE3xwqKECj0VzSOOjt7Y23tzf16tUjPz/fsVqQnU1GRgZ6D4+yFQOPSrpwu2k0KMCh/Hx6VsJKQ2WQMCBqnKysLGJjY2natCkTJkxwmntuzqL0B5c0EQpxudSSEmzXOIXfx8cHHx+fS4NBZiYZ6el4eHjgHxBw08fya/4KA+f/ml3gDCQMiBqltGHQarVKw+A1yI4CIa6syGajPNMBNBoNvr6++Pr6oigKefn5mHNyyMjIIDUlhYaVMJq42G6/6eeoLBIGRI2yYMECDhw4wNtvv01oaKja5TityMhIOXhIiCvQ/vVbeUVoNBr8fH3x8/Xl/PnzZGRmYr3Z3+oVBTcnWtWs/nmKQtygb775hnXr1jF27Fjatm2rdjlOTVYGhLgyf7cb/x24dOfBLfXq3XRjoUajwVuFkcZX4zyVCHENBw8eZPbs2QwcOJBBgwapXY7TK91emJ+fr3YpQjiVJl5ejnv21+gbuJKi4mKSU1IICAgg+CYHDdkVBbui0KQcZxtUF7lNIJxeZmYmY8eOpVmzZowbN04aBsuhdEdBUlKS7CgQ4iItvL3RAVZFwb2cP0tsNhtJZ8/iodfj+ccfZOzejTU7G4C8ffvK/v+gmBh05Tjbo9hux0OrpYWPzw2/j8omYUA4NYvFwvjx47HZbMTFxUnDYDmVnjUg2wuFuFRLHx+8tFoK7HYCyrlMf+7cOex2Ow0aNODM4sVYMjPLPpf766/k/vorAP533VWuMFBot+Oj09FUVgaEKJ8FCxbwxx9/8M477xASEqJ2OTWGbC8U4srquLvTxd+fTRcuEFCOx59PSyO/oIAGkZG4u7vT5I03bur1FUWhwG5nYEgIeukZEOL6vvrqK9avX8/48eNp06aN2uXUONJEKMSVDQkLQ8v1t/bl5OSQlZlJWFhYpR3tXfjXLYKHnWw3lIQB4ZR+//135syZw6BBg7j//vvVLqdGku2FQlxZn6AgGnh6kmW1XvUxRUVFpKSkEBAYSHBQUKW9drbVSmsfH+7w86u056wMEgaE08nIyGDcuHG0aNGCsWPHql1OjSUrA0JcmV6rZVREBBog32a77PNWm42zSUl4eHpyS716lfa6Zqu17LW1TtYILWFAOBWLxcK4ceMAiIuLw93dXeWKai7ZXijE1T0YEoIxOJhsqxX7RdsMFeBcUhKKomCIiKi03UtWRcFss/FgSAgxlbjSUFkkDAinMnfuXA4dOsTcuXOpW7eu2uXUaKXbC2V1QIjLaTUaXmvYkHp6PaklJWXnDpw/f56CwkIiIiJwu4kDii5mVxTOl5TQyMuLiQ0aOOX2aAkDwmls2LCBDRs2MGHCBFq3bq12OTXexaOMhRCXi/D0ZFHTpvi5uZFqsXAhJ4fsrCzqhYXhXUnb/uyKQorFQl29nqVNmxLspKudEgaEUzhw4ABxcXE8+OCD/POf/1S7nFpBthcKcX09AwN5s2lTPGw2EgsK8A8MJKiSlvEtdjvJJSWEurvzblQUtztZ0+DFJAwI1aWnpzN27Fhat27N6NGj1S6nVpEdBUJcXwdFIWz1agILC7EHB2O2Wit8XPHFFEUh22rlvMVCSx8f1rRoQZeA8pxqoB4JA0JVJSUljBs3Dp1OJw2DVUB2FAhxbaVNy/5nz/Jzjx6MqFePEkUh2WKpcCiwKwo5VivnSkpQgOfr1+fr1q1p6+tbdW+gksgJhEI1iqIQFxfHkSNHWLFixU0P/xCXMxgM/PLLL2qXIYTTmj9/PgcPHuSdd96hab16xAH9g4N5LyWFn81mzpWU4K7R4KnV4qnVotdoyhoAFUWhRFEotNspstuxKgq+Oh331anDU+HhdPL3V/fNVYCEAaGaDRs28OWXX/Lqq6/SsmVLtcuplSIjI8u2F/o40VAUIZzBF198wWeffcakSZMuOeW0V1AQvYKCOFpQwGfp6Wy5cIEzRUVcsNmw2O2XhAH9XyHhNh8f+gQF8a+QEBo60cyB8pIwIFSxb98+5s6dy0MPPcR9992ndjm11sU7Cpo3b65yNUI4jwMHDvD666/zwAMPMHDgwCs+Jsrbm4kNGjCxQQPMViuHCwpILCqiyG5Hq9HgodXSyNOTZt7e+Oh01fsGKpmEAVHt0tLSGDduHG3atJGGwSp28fRCCQNCOKSnpzNu3DhatWpFbGxsub7G382NTv7+NWrpvyKkgVBUq5KSEsaOHYubmxtz5syptEM9xJWVbi9MSkpSuxQhnEJp07JWq5Wm5YvIT2JRbRRFYc6cORw7dkwaBquRbC8UwkFRFF5//XWOHDnCu+++S506ddQuyWnIyoCoNuvXr+frr7/mlVdekYbBaiRhQAiHzz//nK+++ooJEybQqlUrtctxKhIGRLXYu3cv8+fP55FHHuEf//iH2uW4lIiICLlNIFzeb7/9xty5c3n44YcZMGCA2uU4HQkDosoVFhYyefJk2rVrx6hRo9Qux+VcvL1QCFeUlpbG+PHjadu2Lf/5z3/ULscpSc+AqHIeHh4sXryYOnXqSMOgCi6eXig7CoSrKSkpITY2Fnd3d2lavgZZGRBVTqvV0rhxYwIDA9UuxSVFREQASN+AcDmKojBr1iyOHz/OvHnzpGn5GiQMiGrhjPO7XYW/vz8BAQEyo0C4nHXr1vHtt98yadIkWrRooXY5Tk3CgKhUdrtd7RLEFcjAIuFq9uzZw/z583n00Ufp37+/2uU4Pbl5Im7KsWPHSElJISgoiKioKDw8PLDb7Wi1kjOdiWwvFK4kJSWF8ePH07FjR1588UW1y6kR5Ce2uGHTpk3jwQcfpE+fPgwdOpTu3buza9eusiBwM/PAReUyGAyyvVC4hKKiImJjY/H29mbWrFnoavjMgOoiYUDckB9++IG4uDhmzpzJ/v37mTJlCg0aNODOO+9k8eLFgKNPQAKBczAYDLK9UNR6iqIwc+ZMTp8+zbx586RpuQLkNoG4Ib/99hv33HNP2QFCLVu2pEePHrRr147Y2FhSU1OZNWuWNA46idLthYmJidJIJWqtjz76iP/3//4fs2bNIioqSu1yahRZGRA3xGq18vPPP1/ysZCQEEaNGsW8efP44osvSEhIUKk68Xel2wuliVDUVrt27WLRokUMHz4co9Godjk1joQBcUMeffRRQkJCePXVV8nKyir7uK+vL0OHDkWn0/HNN9+oWKG4mGwvFLVZcnIyEyZMoFOnTrzwwgtql1MjSRgQNyQiIoL+/fvz5ZdfsmLFiksuMsHBwdxzzz0UFBRgs9lUrFJcTHYUiNqosLCQMWPG4O/vz6xZs2Qn0w2SngFRYYqioNfrmTNnDlarlaVLl3Ly5EkGDBhA//79OXXqFF9//TWDBw+WTl4nImcNiNpGURRee+01kpKSWLVqFf7+/mqXVGNJGBAVptFosNls6HQ65s2bR+vWrXn//fdJSEhg+PDhREREUL9+faZNm6Z2qeIiBoOB//73v2qXIUSlWbNmDfHx8cTFxXHrrbeqXU6NJmFA3BCdTld2uNBjjz1Gr169SE1N5bfffqN169Z07txZ7RLF30RGRpKdnU1eXh6+vr5qlyPETdmxYwdLlixh5MiRREdHq11OjSdhQFzT2bNnqV+//hXvw2m12rJA0LBhQxo2bEiXLl1UqFKUh8FgABx/p7K9UNRkZ8+e5ZVXXqFr1648++yzapdTK0inhbiqV199lQceeICffvoJi8Vy2ecVRUGr1XLy5EkOHz6sQoWiImR7oagNCgoKGDNmDEFBQUyfPl0aBiuJ/K8orig+Pp633nqLlJQUHn74YdavX09eXt4lj9FoNBQXFzNnzhzuu+8+CQROTrYXippOURSmTp1Kamoq8+fPx8/PT+2Sag0JA+IyxcXFJCQk8MADD3Ds2DEGDhzI8OHDmT9/PufPn7/ksR4eHtx777088sgjNG/eXKWKRXnJ9kJRk73//vts3ryZ6dOn06hRI7XLqVWkZ0BcRq/Xc++995KTk4OnpyfLli2jbdu2/Pvf/+bIkSNMnTq17KjP7777jujoaAYMGKBy1aI8ZHuhqKl+/PFHli1bxtNPP03Pnj3VLqfWkTAgLqPRaOjWrVvZf9vtdp599lnat2/Pvffey7Fjx1i8eDG7du1i+vTp/Prrr9KdXkPI9kJRE505c4ZJkybRo0cPnnzySbXLqZUkDIjr0mg02O12OnfuzIkTJ7j77rvp168feXl5LF++nIYNG6pdoign2V4oapr8/HzGjBlDSEgIr732mjQMVhH5X1Vcl0ajQavVYrPZ8Pf354svviAvL49Jkybx9NNPq12eqICLtxcK4ezsdjuTJ08mPT2dBQsW4OPjo3ZJtZaEAVFuOp2O3Nxc/vnPf9KuXTtee+01tUsSFSRhQNQkK1as4Mcff2TmzJllY7hF1ZAwIK5IUZSrfm7AgAFy37mG8vPzIzAwUHYUCKe3detW3nnnHZ577rlLephE1ZAwIC5z7tw5jhw5gt1uv+xzfn5+vPzyy3h4eKhQmagMsqNAOLuTJ08yZcoUoqOjefzxx9UuxyVIA6G4REFBAf/5z38A+OCDD9Dr9Zc9RqPRVHdZohJJGBDOLDc3l9jYWG655RamTp0qP2+qiYQBUebi071Wr159xSAgar7IyEi5zSOckt1u55VXXiE7O5u1a9fi7e2tdkkuQ8KAKFN6utf8+fPldK9azGAwyPZC4ZSWL1/Ozp07WbRoUdksDVE9pGdAAPDTTz/J6V4uonRHgTQRCmeSkJDAypUreeGFF7jzzjvVLsflSBgQJCYmMmnSJLp37y6ne7mA0jCQlJSkciVCOBw/fpypU6diNBoZNmyY2uW4JAkDLq70dK86derIOFAXIdsLhTMxm82MGTOGiIgIJk+eLA2DKpGeARdmt9t59dVXSUtLY82aNXK6lwuR6YXCGdjtdiZOnEhubi7Lli3Dy8tL7ZJcloQBF7Zy5Uq2bt3KggULaNCggdrliGoUEREhtwmE6pYsWcKuXbtYsmQJ4eHhapfj0mRN2EVt376d5cuX88wzz9CjRw+1yxHVTFYGhNpMJhNr1qzhpZdeolOnTmqX4/IkDLigM2fOMHnyZHr16sUTTzyhdjlCBZGRkVy4cIHc3Fy1SxEu6OjRo0ybNo177rmHRx55RO1yBBIGXE5eXh6jR48mNDRUxoG6sFatWvH0009f8chpIarShQsXiI2NpVGjRkyaNEkaBp2E9Ay4ELvdzpQpU8jMzGTNmjVyupcLq1+/PiNHjpQwKKqVzWbj5ZdfprCwkHfeeUdmnDgRCQMupHQc6BtvvCHjQAVubvLtL6rXokWL2LNnD8uWLaNevXpqlyMuIr8WuIht27bJOFAhhGq+//57PvroI8aMGUOHDh3ULkf8jYQBF3Dq1CkmT54s40CFEKo4dOgQM2bM4L777uOhhx5SuxxxBRpFUZTrPchsNhMQEEBOTg7+/v7VUZeoJHl5eQwfPhw3NzdWrVolfQKi3IqLi7Hb7XIQjLgpWVlZDBs2jDp16rBixQqZhlrNynv9lpWBWsxutzNp0iSys7OZP3++BAFRIatXr2bBggXYbDa1SxE1lNVqZcKECVgsFubNmydBwIlJGKjF3n77bX7++WdmzpxZNpxGiFLvvfceR48exWazYbVasdlsXLxQGB4ezieffMLp06fVK1LUaAsWLGD//v3ExcURGhqqdjniGiQM1FKbN2/mvffe4/nnn+euu+5SuxzhhMaPH8/WrVvR6XS4ubmh0+nQaDQUFBRw6NAhEhMTOXjwIPv27VO7VFEDff3116xbt45x48bRrl07tcsR1yF7i2qhkydPMnXqVPr27cuIESPULkc4qTvvvJNPP/2Uc+fO8dtvv3H06FHOnTtHfn4+Op2OevXq0aZNG/z8/NQuVdQwf/zxB7Nnz+b+++9n0KBBapcjykHCQC1TOg40PDycKVOmyOle4qruuusuXnnlFcxmMwaDgfvuu49bb72VBg0aEBYWRnBwMB4eHgQGBqpdqqhBMjMzGTt2LC1atGDs2LHyM6iGkDBQi5Q2DObk5MgJg+K6DAYDoaGhfPXVVwQGBuLu7o67u7vaZYkazGKxMG7cOBRF4fXXX5eGwRpEwkAtsnz5cnbu3MnixYuJiIhQuxzh5Fq1aoVGo8HX11eCo6gU8+bN488//+Sdd94hJCRE7XJEBUgDYS2RkJDAypUreeGFF+jSpYva5YgaoHXr1syaNQtfX1+1SxG1wIYNG/j8888ZP348t912m9rliAqSMFALnDhxgqlTp2I0Ghk2bJja5Ygawt3dnX/+85/s378fq9WqdjmiBjtw4ABxcXH861//YuDAgWqXI26AhIEazmw2M3r0aCIiIpg8ebI064gKGTt2LI8//jiJiYkAlONAUiEukZ6eztixY2ndujVjxoxRuxxxg6RnoAaz2+1MnDiR3Nxcli1bJsfGigrr2bMnDRs2LPu3oyjKZYHySh8TAqCkpISxY8ei0+mIi4uTBtQaTMJADbZ06VJ27drFkiVLCA8PV7scUQMNHz78kv/Wah2LhRcuXCArK4ugoCCCgoLUKE04OUVRmDNnDkePHmXFihUEBwerXZK4CRIGaqj4+HhWr17NSy+9RKdOndQuR9Rw+fn5rF27FpPJxJEjRygpKSEoKIjQ0FC6d+/OqFGj8PT0VLtM4UQ+++wzvv76a1599VVatmypdjniJkkYqIGOHj3KtGnTuPvuu3n00UfVLkfUcCkpKbz44oscPHiQdu3a8cADDxAaGorFYuH3339n2bJlnD9/ngULFqhdqnASv/32G/PmzWPw4MHcd999apcjKoGMMK5hcnJyGDZsGL6+vqxcuVJ+WxM3RVEUZs+ezfvvv8+yZcto164dQUFB6HS6ssds3ryZAQMGkJ6eLn0pgvPnzzNs2DAaNWrE0qVLcXOT3ymdmYwwroVsNhsTJ04kPz+fefPmSRAQN02j0fDuu+8yZcoU+vbtS926dS8JAgBt27bF09NTphcKiouLiY2NRa/XM2fOHAkCtYj8TdYgS5YsYffu3SxdulQaBkWl8fDwIDc397KPl5SUkJGRQWxsLK1bt5aBRS5OURRmzZrFiRMnWLlypTSW1jISBmqIjRs3snbtWkaPHs0dd9yhdjmiFhk5ciRvvfUW+/btY+DAgfj7+5OZmcmhQ4fYvn07iYmJTJs2TY64dnGffvop3333HdOnT6d58+ZqlyMqmYSBGuDo0aO89tpr9O/fn0ceeUTtckQt83//9394enqyYcMGnnvuOVJSUrDb7YSFhdG9e3fefPNNevfurXaZQkW//vorCxYsYOjQodxzzz1qlyOqgDQQOrkLFy4wbNgwAgICeO+99/Dw8FC7JFFLJScnk5aWRkhICKGhoXKAjAAcu02GDRtGVFQUb7755mU9JcK5lff6LSsDTsxms/Hyyy9TVFTEu+++K0FAVKnw8PBLelEURSk7fVBOIHRNRUVFxMbG4u3tzezZsyUI1GISBpzY4sWL2bNnD8uWLaNevXpqlyNcjIQA16YoCjNmzODMmTOsXLmSgIAAtUsSVUjCgJP6/vvv+fDDD4mNjaVDhw5qlyOEcDEffvghP/zwA7NnzyYqKkrtckQVk3MGnNDhw4eZMWMG9957Lw8//LDa5QghXMwvv/zC4sWLGTFiBDExMWqXI6qBhAEnk52dTWxsLE2aNGHixImyTCuEqFbnzp3j5ZdfpnPnzjz//PNqlyOqiYQBJ2K1WpkwYQIlJSXMnTsXvV6vdknChVgsFjIyMtQuQ6iosLCQMWPG4O/vz8yZM8umWIraT3oGnMiiRYvYt28fy5YtIywsTO1yhIuZNWsWp06dYtWqVWqXIlSgKArTpk3j3LlzrFq1SraRuxiJfU7iu+++4+OPP2bMmDHcfvvtapcjXJDBYODs2bNqlyFUsnr1ajZt2sS0adO49dZb1S5HVDMJA07gzz//ZObMmQwYMIAHH3xQ7XKEi4qIiCAnJwez2ax2KaKa7dixg6VLl/LEE08QHR2tdjlCBRIGVJaVlUVsbCxNmzZlwoQJ0jAoVBMZGQkgqwMuJjExkVdeeYVu3brxzDPPqF2OUImEARWVNgxarVZpGBSqMxgMgIQBV1JQUEBsbCxBQUFMnz5dGgZdmDQQqmjBggXs37+ft99+m9DQULXLES7Ox8eH4OBgEhMT1S5FVAO73c6rr75Kamoqq1evxtfXV+2ShIokDKjkm2++Yd26dbz88su0a9dO7XKEAByrA0lJSWqXIarB+++/z5YtW1iwYAGNGjVSuxyhMlkTUsHBgweZPXs2AwcOZNCgQWqXI0QZg8EgKwMuYPv27Sxfvpynn36aHj16qF2OcAISBqpZZmYmY8eOpVmzZowbN04aBoVTiYyMlDBQy505c4bJkyfTo0cPnnzySbXLEU5CwkA1slgsjB8/HpvNRlxcnDQMCqcTERGB2WyW7YW1VH5+PqNHjyY0NJTXXntNGgZFGfmXUI0WLFjAH3/8wdy5cwkJCVG7HCEuI9sLay9FUXB3dycqKor58+fj4+OjdknCiUgYqCZfffUV69evZ9y4cbRp00btcoS4otLthXKroPbRaDS4ubkxe/bsstAnRCkJA9Xg999/Z86cOQwaNEgaBoVTK91eKCsDtZPcFhBXI/8yqlhGRgbjxo2jRYsWjB07Vu1yhLgumVEghOuRMFCFLBYL48aNAyAuLg53d3eVKxLi+iIjIyUM1AJ2u13tEkQNIocOVaG5c+dy6NAh3nnnHerWrat2OUKUi8FgYNu2bWqXISro+PHjpKamEhgYSJMmTfD09MRut8utAVEu8q+kimzYsIENGzYwYcIEbrvtNrXLEaLcDAaDbC+sYWbOnMm//vUvoqOjGTJkCN27d2fnzp1lQUBRFJUrFM5OwkAVOHDgAHFxcfzrX//in//8p9rlCFEhMrCoZklISGDmzJm89tpr7Nu3j1dffZVGjRpx1113sWjRIsCxk0ACgbgWuU1QydLT0xk7diytW7dmzJgxapcjRIWVbjtLTEykVatWKlcjrmfv3r0YjUYGDBgAQMuWLenRowft27dn3LhxpKSkMGfOHDntVFyThIFKVFJSwrhx49DpdNIwKGosb29v2V5Yg1itVv773/+iKErZBT8kJIQXX3wRPz8/li5dSp8+fYiJiVG5UuHM5DZBJVEUhbi4OI4cOcLcuXMJDg5WuyQhbphsL6w5HnnkEerVq8fkyZPJzMws+7iPjw+PPvooer2eb775RsUKRU0gYaCSbNiwgS+//JIJEybI0qqo8WRgUc0RHh7OP/7xD7755htWrFhxyd9bUFAQd999N/n5+VitVhWrFM5OwkAl2LdvH3PnzuWhhx4qu28nRE0mKwM1g6Io6PV6Zs2ahdFo5K233mL27Nl8//33gGNC4TfffENYWBhubnJXWFyd/Ou4SWlpaWXzBkaPHq12OUJUiou3F/r7+6tdjrgKjUaDzWZDp9Mxd+5cWrduzcqVK9m0aRMjRowgIiKCunXrMmvWLLVLFU5OwsBNKCkpYezYsbi5uTFnzhxJ3qLWuHhHQevWrVWuRlyLTqcrO1xoxIgR9OzZk+TkZH777Tdat25N586d1S5R1ABy9bpBiqIwZ84cjh07xooVK6RhUNQqF581IGHAOSQmJhIREXHFEwW1Wm1ZIGjYsCENGzbkrrvuUqFKUVNJz8ANWr9+PV9//TWvvPIKLVu2VLscISqVbC90LlOnTuX+++/nxx9/xGKxXPZ5RVHQarWcOnWKw4cPq1ChqOkkDNyAvXv3Mn/+fB555BH+8Y9/qF2OEFVCBhY5h4SEBN566y3S09N5+OGH+fTTT8nLy7vkMRqNhuLiYl5//XXuu+8+Dh06pFK1oqaSMFBB58+fZ8KECbRr145Ro0apXY4QVcZgMMj2QpUVFxcTHx/P/fffz9GjRxk0aBAjRoxg3rx5nD9//pLHenh40L9/fwYPHkyLFi1UqljUVNIzUAHFxcWMHTsWvV4vDYOi1pPpherT6/Xcd999XLhwAU9PT9566y3atm3Lc889x5EjR5g6dSrNmjUD4Pvvvyc6Olq2N4sbIlezclIUhdmzZ3P8+HFWrlxJUFCQ2iUJUaVke6H6NBoNXbt2Lftvu93OM888Q7t27bj33ns5duwYb775Jr/++ivTpk1j165d+Pr6qlixqKkkDJTTunXr+Pbbb5k+fTrNmzdXuxwhqpxsL3Q+pecKdO7cmZMnT9KvXz/69etHXl4eb731Fo0bN1a7RFFDSc9AOezZs4f58+czZMgQ7rnnHrXLEaJalG4vlL4B56HRaNDpdNhsNvz8/Pjyyy/Jy8tj4sSJPPvss2qXJ2owCQPXkZqayvjx4+nQoYM0DAqXUrq9MCkpSe1SxN/odDpyc3MZOHAgbdq0YcaMGWqXJGo4CQPXUFxcTGxsLF5eXsyePRudTqd2SUJUKxlYpK7CwkLA0SvwdxqNhnvvvZedO3dWd1miFpIwcBWKojBz5kxOnTrF/PnzCQwMVLskIaqdnDWgHovFwvPPP8/MmTPRaDSXfd7X15eXX34ZT09PFaoTtY2Egav4+OOP+f7775kyZQpRUVFqlyOEKiIiIiQMqGTu3LkcOnSIAQMGXDEMAFf9uBAVJWHgCnbv3s3ChQsZNmwY/fr1U7scIVQTGRmJ2WwmJydH7VJcyoYNG9iwYQMTJkzgtttuU7sc4QIkDPxNcnIyEyZMoGPHjrzwwgtqlyOEqi4eWCSqx/79+4mLi+PBBx/kn//8p9rlCBchYeAiRUVFxMbG4uPjIw2DQiDbC6tbWloa48aN47bbbmP06NFqlyNciBw69BdFUZgxYwaJiYm8//77BAQEqF2SEKrz9vamTp06sr2wGpSUlDB27Fh0Oh2vv/467u7uapckXEitCQMFNhtni4spsttRFAUPrRaDhwe+5Zwf8OGHH/LDDz8we/ZsmjZtWsXVClFzyMCiqqcoCnPmzOHYsWOsWLGC4OBgtUsSLqbGhoESu53N2dnsMJvZm5vL8cJCiux2SnfjagAPrZZbPT1p5+vLnQEBGIOC8LzC0v+uXbtYvHgxI0aMICYmplrfhxDOLjIykuPHj6tdRq22fv16vv76a6ZNm0bLli3VLke4oBoXBtJKSliXlsbHaWmcLirCrijoNBo8tVp8tFq0f221seMIDL/n57MvL4/V588T4eHB4NBQHg4Npb6HB/C/hsHOnTvz/PPPq/jOhHBOERERbN26Ve0yaq29e/cyf/58HnnkEf7xj3+oXY5wUTUmDCiKwhcZGcw4c4aU4mLcNBqC3dzw0F69B9JLq6X0zn+J3U5qcTFzExN5PzWV8QYD9/v7M2bMGPz8/Jg5cybaazyXEK7q4u2F0ktTuc6fP8/48eNp3769HHcuVFUjwkB6SQmTTp3i+6wsFEWhnl6ProKHbei1WkL1euyKQrrFwviTJ5lz+jTeZjMfLVokI1qFuIqLpxfKnvfKU3rcuYeHB7Nnz8atnP1NQlQFp/9V+GxREUMOHeKrjAx8tNobCgIX02o0hOn1kJfHET8/CmNjsYeHV2LFQtQuERERgJw1UJkURWHWrFmcPHmS+fPnExQUpHZJwsU5dRhIKS5m+OHD/J6XR5i7O76VtO8/Pz+fC2lphLm5ka7XM/zQIU7+NRBECHGp0u2FEgYqzyeffMJ3333H5MmTadasmdrlCOG8YaDEbue5o0c5lJ9PmF6PeyXdzy+xWDh37hy+Pj7UCwnhFr2e00VFPHXkCLlWa6W8hhC1jQwsqjy7d+/mjTfeYOjQodx9991qlyME4MRhYHlyMr/k5hLi7o57JQ3jsNvtJJ09i06no379+gDoNBrC3N05mJ/PAvlhJ8QVyVkDlePi487/7//+T+1yhCjjlGHg97w8lp47h4dGc83dAhWVnJKCxWIhwmC4ZOeAu1aLr07H6vPn2SEDWYS4jMFg4OzZsyiKonYpNZYcdy6cmVOGgblnz5JjtVKnErtrMzMzyTWbCQ8Px0Ovv+zzATodhTYbM8+ckR94QvyNwWAgNzcXs9msdik1kqIoTJ8+ncTERObPny9bNIXTcbq9LEcLCvgpJwd/na7cs7qLk5JI/+ILik6dwpqTg1avx6N+fYL798fv9tvJy88nLS2NunXr4ufnd8Xn0Gg0BLm58Ud+Prtzc+kkWw2FKCPbC2/OBx98wMaNG+W4c+G0nG5l4LP0dApsNvwqsIRmyczEXlREQLduhA0dSt2BAwFIWriQ9Ph4R8Ogry8hISHXfB4vrZZiu511aWk38xaEqHVke+GN++WXX3jzzTd57LHH5Lhz4bScamXApih8np6Oh1Zb7lUBAN+2bfFt2/aSjwXFxHBq8mRSvvwSn9GjyxoGr0Wj0eCt1fJdZiZTGzYs95AjIWo72V54Y86dO8fLL79Mly5d+Pe//612OUJclVOtDJwuKiLLasW7EpoGNVotxR4e2AsKLmsYvBYfnY58u50jcu6AEJeIjIyUHQUVUFBQwJgxYwgICGDGjBly3Llwak71q++h/HyK7HYCb3COt72oCLvFgr2ggJQff6To4EEC77rrig2DV6PXaLAoCofy8+lwlf4CIVyRwWCQ6YXlpCgK06ZNIzk5mVWrVslx58LpOVUYOFJYiAZu+Ljh8x9/zIUtW7DZbFisVnxuv53IJ56o0HOU3p6QlQEhLmUwGNiyZQuKolToNp4rWrVqFQkJCcTFxdG4cWO1yxHiupwqDORYrXAT2/qC+/XDq317kg4fxuPIEbw9PVFstgo/j6IoXJDTCIW4RGRkJLm5ueTk5BAYGKh2OU5rx44dvPXWWzz55JNER0erXY4Q5eJUN7GsioL9Jr7eIzwc71atsLdqhdfw4RTk5JA4b16Fzw3QAMU3ECKEqM0MBgMgOwquJTExkYkTJ9KtWzeefvpptcsRotycKgy4aTTc7OKju5sbDRs0wM3dnZJGjcg5fJhTe/aQnZ2NtZwXeAXwkNPBhLiEbC+8toKCAmJjY6lTpw7Tp0+XhkFRozjVbYJgN7ebvhep0Wjw9/fH398fr7p1SdXrobiY1PPnST1/Hh9vb/z9/fHz90d3lW9WzV+1CCH+x9vbm7p160oYuAK73c6UKVNITU1lzZo1+Pr6ql2SEBXiVFe8Zt7eKDjOG6hIE6E1Jwe3vx3vqVit5O7YgZunJw07dEBxd3fc7zSbSUlJITU1FR8fH0cw8PMrS/GltxSae3tX2vsSoraQgUVXtnLlSrZu3cqCBQto2LCh2uUIUWFOFQZaeHvjpdVSZLfjU4Fl+tT338dWVIR3VBTuwcFYc3LI2bGDkpQUQh95BK2nJwCBgYEEBgZitVox5+ZizskhOTkZjUaDr58f/n5+uPv44K7V0kLCgBCXke2Fl9u+fTvLly/nmWeeoUePHmqXI8QNcaowEOnpSYi7OynFxRUKA/5dunBh61ayN2/GlpeHzssLzwYNCH34Yfxuv/2yx7u5uREcFERwUBAWqxWz2Yw5J4dz585h8/HBT6/n/J49lNx1F/oKnFEgRG1nMBjYvHmzbC/8y+nTp5k0aRK9evXiiQpuYxbCmThVGNBqNDwUGsrcxETsioK2nD9s/Lt0wb9Llxt6TXc3N+oEB1MnOJjikhISCwoI2b+fVz7+GF9fX3r16oXRaKRTp064SR+BcHGRkZHk5eXJ9kIgLy+PMWPGUK9ePV577TVpGBQ1mtNd3f4VEsKyc+fItdkIqOaLr0WnI8jHh4+feQa/++8nPj6ejRs38u233xIQEECfPn2IiYmhQ4cO8o0vXFLp9sLExESXDgN2u53JkyeTmZnJmjVr8JbbiqKGc7ow0MDTkz5BQXyVkYGfTlfu1YGbVXrQULeAANr4+KBp3JhnnnmGp59+mqNHj2IymTCZTGzYsIE6derQt29fjEYjt912mwQD4TJKtxcmJSXRpk0blatRzzvvvMNPP/3EokWLysY7C1GTOV0YABhrMPBjTg4ZFguh1XTPPstqxc/NjUkNGlxyL1Sj0dCsWTOaNWvGCy+8wMGDBzGZTMTHx/Ppp58SFhZGTEwMRqORFi1ayH1UUauVbi905R0FmzdvZsWKFTz//PPcddddapcjRKVwyjDQxNubWIOBSadOUWiz4VXFBwAV2+0UKQpjw8Npd43hRBqNhtatW9O6dWteeukl9u3bR3x8PN999x0ffPAB9evXp1+/fsTExNCkSRMJBqJWioyMdNmzBk6ePMnUqVPp06cPjz32mNrlCFFpNEo5zuo1m80EBASQk5NTbdO3rHY7ww8fZnN2NqHu7uiraCneqiiklpTQ0c+Pz1q1wvMGgofNZmPPnj1s3LiRLVu2YDabadSoETExMfTr148GDRpUQeVCqOO1117j+PHjrFmzRu1SqpXZbGbEiBF4eHiwcuVK6RMQNUJ5r99OGwYAsiwWhh86xK+5uYS4u+NRyYHAYrdz3mKhhY8PH7VowS0eHjf/nBYLv/zyCyaTia1bt1JQUEBUVBRGoxGj0Uh4eHglVC6EelatWsWqVavYsmWLy6x+2e12XnrpJf744w/Wrl1L/fr11S5JiHIp7/XbKW8TlAp2d2dV8+Y8deQI/zWb8dPp8NfpKuUHUK7NRo7VShtfX1Y2a1YpQQDA3d2dbt260a1bN4qLi9mxYwcmk4l3332XJUuW0KpVK4xGIzExMYSGhlbKawpRnQwGg8ttL1y2bBk7d+5k8eLFEgREreTUYQCgrl7P6hYteD0xkQ/PnyfZYiHUzQ33G1wlsCoK6RYLur/ONHi1YUPquLtXctUOHh4e9O7dm969e1NQUMBPP/3Exo0bWbJkCW+88Qbt27cnJiaGvn37EhwcXCU1CFHZXG17YXx8PO+//z6jRo2iyw2eZyKEs3Pq2wR/tzU7m8mnTnGiqAiAQJ0OL622XCsFhXY7F6xW7IDBw4OpDRtyT3CwKsuceXl5bN26FZPJxC+//IKiKHTs2BGj0Uh0dLSq/xsLcT2FhYV0796d1157jf79+6tdTpU6duwYjz/+OD179mTGjBkuc1tE1B61omfgSnKtVr7JzOTD8+f5Iz+fErsdAA+tFg+tFi2OqYN2/rdLABzjkZt5efFoWBgD69YlqIpWAyoqJyeHzZs3YzKZ2LNnDxqNhi5dumA0GunZs6dMPxNO6e6772bgwIE8++yzapdSZXJychg2bBi+vr6sXLkSz79mnAhRk9TaMFDKrijszs1lR04Ov+fnsy8vjxyrFQVQAC3gp9PRxteXNj4+dPL3p1tAQLUdYnQjMjMzSUhIYOPGjezfvx+9Xs9dd92F0Wike/fueHl5qV2iEAA8/fTT1K1bl1mzZqldSpWw2Wy8+OKLHD58mLVr10rjr6ixakUD4bVoNRo6+/vT+a83Z1cUMiwWii5aKQhxd3fqi//f1alTh4ceeoiHHnqI8+fPEx8fj8lkYuLEiXh6etKjRw+MRiN3yQAlobKIiIhaPb1wyZIl7N69m6VLl0oQEC6hxoaBv9NqNNV2WmF1CAsLY+jQoQwdOpSkpKSyYBAbG4uPj88lA5TcneSWh3AdkZGRtXZ64Q8//MDatWsZPXo0d9xxh9rlCFEtak0YqM0iIiJ4/PHHefzxxzl16lTZAKXvvvsOf39/oqOjMRqNdOzYUeYkiGpROr3wwoULBAUFqV1OpTly5EhZY+QjjzyidjlCVJsa2zPg6hRF4dixY2UDlJKTkwkODqZv377ExMTQtm1bCQaiyhw9epQhQ4awcuXKWjOwKDs7m2HDhhEUFMSKFSvwqKSzR4RQU63vGXB1Go2GqKgooqKieP755/nzzz/LBiitW7eO0NBQ+vbtS79+/WjZsmWtW8oV6io9a+Ds2bO1IgxYrVZefvlliouLmTdvngQB4XIkDNQCGo2GVq1a0apVK0aNGsWBAwcwmUz88MMPfPTRR4SHh5cdh9y0aVMJBuKmeXl5ERISUmsGFi1atIjffvuNZcuWERYWpnY5QlQ7CQO1jFarpV27drRr144xY8awZ88e4uPj2bBhA6tWraJBgwZlkxUbNWqkdrmiBjMYDLVilPF3333Hxx9/zLhx47j99tvVLkcIVUjPgIuwWCzs2rULk8nEli1bKCgooGnTpsTExGA0GomIiFC7RFHDTJ8+naNHj7J27Vq1S7lhf/75J08++SR33303kydPllUzUevU+kOHxI0rKSkpG6C0fft2ioqKaNmyZdkAJVkmFeVR06cXZmVlMXToUEJCQnj33Xfl7A5RK0kDobgqvV5Pr1696NWrF4WFhfz444/Ex8fz1ltvsXDhQtq2bUu/fv3o06cPderUUbtc4aRq8vZCi8XC+PHjsVqtzJ07V4KAcHkSBlycl5dXWXNhfn4+27ZtY+PGjcyfP5958+bRoUMHYmJiiI6OdokJdaL8Lt5RUNPCwBtvvMHvv//O22+/LaPEhcBxhL8QAPj4+NC/f38WLVpUdgyyRqNhzpw59OvXjxdffJFvv/2WvLw8tUsVTqC0z6Sm7Sj46quvWLduHePGjaNt27ZqlyOEU5CVAXFFAQEBDBw4kIEDB5KVlUVCQgImk4mpU6fi7u5+yQAlb2/vG3oNu92OxWKRPd01VOn2wpq0o+D3339nzpw5DBo0iEGDBqldjhBOQxoIRYWkpaWxadMmNm7cyMGDB/Hw8KBHjx7ExMTQtWvXCl3Yjx07xsKFC0lJSSE6OponnnhCJjPWMDVpemFGRgZDhw4lPDyc5cuXS5+AcAnSQCiqRGhoKEOGDGHIkCGcO3eubIDSuHHj8Pb2Lhug1Llz5+sOUMrOzqZu3bq4u7vz4osvAvDcc8+h0+mq462ISmAwGDh69KjaZVxXSUkJ48aNQ6PREBcXJ0FAiL+RngFxw+rXr89jjz3GRx99xOeff86wYcP4888/eemll+jXrx/bt2/nWgtPnTp1Ytq0afTp04eAgAC6dOkiQaCGiYyMJDEx8Zp/z85g3rx5HDp0iLlz51K3bl21yxHC6cjKgKgUDRo04KmnnuLJJ5/k+PHjxMfH07Rp02t+TUlJCXq9ntWrV9OhQweaNGlSTdWKymIwGMjPz3fq7YUbNmxgw4YNTJkyhdatW6tdjhBOScKAqFQajYamTZteNwgAZUu13333HfPmzbtuP8rx48dJSEhgx44dDBgwgAceeKBSahY3ztm3F+7fv5+4uDgeeughBgwYoHY5QjgtuU0gVGGz2QDHNi+dTke3bt2uOXJ5z5493H333bz99tvYbDZGjRrFM888Q2FhYXWVLK7AmbcXpqWlMXbsWNq0acPo0aPVLkcIpyYrA0JVb7/9Nj169KBhw4aXfU5RFDQaDRkZGUyaNImIiAi++uorAgIC2LVrF3369OHhhx8mOjq6+gsXgPNuLywpKWHs2LG4ubkxZ84c3NzkR50Q1yIrA6LaKYpS1iiYkJDA/ffff8VbBHa7HYDPP/+c1NRUXnrpJQICAgBo3rw5LVq0YP/+/dVXuLgig8HgVCsDiqIwZ84cjh07xrx58wgODla7JCGcnsRlUa0sFgtxcXH4+voC4OfnR/fu3S8bdGO328tuG3z22We0bNmSLl26lH3ebDbj5ubG+fPngf+tIojq52zbC9evX8/XX3/NtGnTaNmypdrlCFEjyMqAqFZarRZfX19mzJjBf/7zH7Kysvjiiy9ISkoCKOsB0Gq1aDQaUlJSSElJoWPHjtSrV6/seTIzM9m3bx8xMTGqvA/xP860vXDv3r3Mnz+fIUOG8I9//EPtcoSoMSQMiGql0+kYNWoU6enpnD59mldeeYWFCxfy+OOPY7VaWbVqFcOHD+fkyZMAnDx5Er1ef8lYZavVytatW9HpdPTp0wdAVgVUVLq9MDs7W9U6UlNTGT9+PO3bt2fUqFGq1iJETSNhQKgmMjKS6dOnc/78eT788EPc3Nw4fvw4+/fvL1sFaNmyJYmJiZecGHfixAk++eQT/vWvfwH/6y0Q6ijdXli6uqOG4uJiYmNj8fT0ZPbs2XJ4lRAVJGFAOIXSMbLz588nPj4eb29vFEUpO+L4m2++ITs7m3PnzjFx4kQKCgrKtotdvCpgs9k4e/YsBQUFqrwPV1QaBtTaUaAoCjNnzuTUqVPMmzfPKc87EMLZSQOhcDqlwUCj0eDh4cG4ceN49NFHadq0KY0aNSI7O5t33nmH2267rexxpXQ6HbNmzeLAgQN069aNfv36VXiAkqgYT09PQkNDVdtR8PHHH/P9998zc+ZMmjVrpkoNQtR0EgaE0+vUqRPHjh3jxx9/JCMjgzvvvPOSZsK/mzx5ctlkxdIBSj179iQmJoYuXbrIkJoqEBERoUoY2LVrFwsXLmTYsGH069ev2l9fiNpCRhiLWi0xMRGTyYTJZOLkyZP4+fnRu3dvjEYjd9xxh9xbriQzZszg8OHDfPDBB9X2msnJyQwbNozmzZuzePFi+bsU4grKe/2WMCBcxokTJ8qCwdmzZwkMDKRPnz4YjUbat29/zeOQxbWtXr2alStXsnXr1mrZ2VFUVMTIkSPJz89n7dq18nNJiKso7/VbbhMIl3Hrrbfy3HPP8eyzz3L48GHi4+MxmUx8/vnn1K1bl759+2I0Grnttttkq2IFXby9sKpP/FMUhddee43ExERWrVolQUCISiBhQLgcjUZDixYtaNGiBS+88AJ//PEHJpOJTZs28cknn1CvXj2MRiNGo5FmzZpJMCiHyMhIwLG9sKrDwNq1azGZTMyZM0fGXgtRSSQMCJem1Wpp06ZN2WS73377DZPJxNdff82aNWswGAxlweDWW29Vu1ynVTq9MDExkTZt2lTZ6+zcuZMlS5bw+OOP07dv3yp7HSFcjfQMCHEFVquV3bt3Ex8fz+bNm8nLy6Nx48ZlwaD0N2HxP/379+fee+/l3//+d5U8f1JSEsOHD6d169YsXLhQejyEKAdpIBSikpSUlLBz507i4+PZtm0bBQUFNG/eHKPRSN++fQkPD1e7RKfw9NNPU7duXWbNmlXpz11QUMDjjz9OSUkJa9aswc/Pr9JfQ4jaSBoIhagker2eHj160KNHD4qKivj5558xmUwsX76cxYsXc9ttt5UFg5CQELXLVU1kZCSHDx+u9OdVFIVp06aRkpLCqlWrJAgIUQUkDAhRAZ6envTp04c+ffpQUFDA9u3bMZlMLFq0iAULFtC+fXuMRiN9+vRxuWNxIyMjMZlMlT5OetWqVSQkJDB37lwaN25cac8rhPgfCQNC3CBvb2/uvvtu7r77bsxmM1u3biU+Pp64uDji4uK444476NevH7169XKJ22sREREUFBRU6vbCn3/+mbfeeounnnqK3r17V8pzCiEuJz0DQlSy7OxstmzZwsaNG9m7dy86nY4777yTmJgYevXqhbe3t9olVonjx48zePBg3nvvPdq2bXvTz5eYmMjw4cO5/fbbmTdvnjQMCnEDpIFQCCeQnp5OQkICJpOJAwcOoNfr6datG0ajkW7duuHp6al2iZWmqKiIbt26MXXqVO69996beq78/Hwee+wx7HY7q1evxtfXt5KqFMK1SAOhEE4gJCSEwYMHM3jwYFJSUoiPjyc+Pp4JEybg5eVFjx496NevX60YoFQ6vfBmRxnb7XZeffVV0tLSWLNmjQQBIaqBhAEhqsktt9zC8OHDGT58OImJiWWTFTdu3Iivry+9e/cmJiaGTp064eZWM781DQbDTU8vfO+999i2bRsLFiygQYMGlVSZEOJa5DaBECo7efJk2QClxMREAgICygYo3X777TXjXnleHhw6xFdz5qA5fJgBXbpAcTG4u0NwMDRvDi1aQMuWjv++iu3btzN69GieffZZnnzyyWp8A0LUTtIzIEQNoygKR48eZePGjcTHx5OSkkKdOnUuGaDkVMFAUeC332D9evjqK8jNpSA3l8KCAoLr1HFsL1QUxx+NBnQ68PKC6Gh4+GHo2dPxsb+cPn2a4cOH07lzZ15//XXneq9C1FASBoSowRRF4Y8//ijrMUhPTycsLIyYmBiMRiMtWrRQd4DSb7/B9Omwdy8UFYG3N/j4YC4uJuncOaKaNr30VoeigMUCBQWQnw9ubtCkCUyYAEYjefn5DB8+HDc3N1atWlVrd1wIUd0kDAhRS9jtdvbt24fJZCIhIYHs7GwiIiIuGaBUbcGgqAiWLoXlyyE3F4KCHEHgr9cvKi7m5MmTNGzYEG8vr2s/T1YWuLujDBrEKwUF/Pfo0bLhUEKIyiFhQIhayGaz8euvv2Iymdi8eTO5ubk0atSoLBhUacNdaio89RT8+it4ejru/f8thNgVhcOHDxMeHk5gQMD1n9NspiA1leN2O/Zly2g3bFgVFS+Ea5IwIEQtZ7FYygYobd26lYKCAqKiosqCQaUOUEpOhmHD4OBBCAkBD4+rPvTYsWMEBAYSWo45DebcXJLPniXS3R3vxo1h5Upo377y6hbCxUkYEMKFFBcXlw1Q+vHHHykuLqZVq1b069ePvn37EhoaeuNPnp0NQ4Y4+gTCwhw7BK7hzJkz6NzciKhf/5qPKyou5vTp0/j6+lL/llvQpKRAeDh8/DFERd14vUKIMhIGhHBRBQUF/Pjjj5hMJnbs2IHVaqVdu3ZlA5QqNDdAUWDsWPjgAwgNhXIcjJSSkkJhURGNGzW66mNsNhunTp1Co9XSqGFDx84Bu92xAtGlC6xbV67XEkJcm4QBIQS5ubls27YNk8nEzp07AejYsSNGo5Ho6Ojrfz+bTI4+AQ8PKOf3fkZmJhkZGTRr1owrtTUqwNnERAqLimjUqBH6i1caShsLX3kFnn++fG9SCHFVEgaEEJe4cOECmzdvJj4+nl9//RWtVkuXLl3o168fPXv2xMfH59IvyM0FoxHOnHEs35eTOTeXpKSky7cX/iUtLY3MzEwMkZH4/v01ATIyHOHjm2/kdoEQN0lmEwghLhEYGMigQYMYNGgQGRkZZQOUpkyZgl6vp2vXrsTExNC9e3e8vLwcF+MzZxwNgxVQOmOhxGK5LAyYzWYyMjMJCwu7chAAqFMHzp2Djz6CqVNv5K0KISpIVgaEcHGpqals2rQJk8nEn3/+iaenJz27d2f0li0EnzmD5jqNgBf7s7CQby5cYMv581xwd6eOXs9tXl78OzSUULud06dP4+fnR3j9+le8hVAmIwP8/OCnn6A8WxSFEFcktwmEEBWWlJSEyWTi5Cef8Py2bRTpdOgDAwnw98fHx+e6hxuNS0pif2Eh7YqLaeHnh83Hh0+zsiiw25mm0dBIr6dhw4Zor3dIktUKaWkwdy48+mglvkMhXIvcJhBCVFhERAQjR46EggKs+/aR7elJTm4uOTk56HQ6/P388Pf3x9vH54q/2Q8NDmamlxfJiYmO7YV169LX359Bhw7xuVbLwsaNrx8EwHFcsaLAzp0SBoSoBhIGhBCX++MP3LRaQkJDqRsaSnFREWazmRyzmewLF3DT6fD398ff3x8vb++yYNDmr5kCer2ewqIiADyzswlXFLI8PS/dOXA9er1j9kHpoCMhRJWRMCCEuFTpNMK/ThnUAJ6ennh6ehISGkpRYSE5ZjO5ZjNZ2dm4u7k5gkFAAJ6enmgAd72eHLOZnJwcMjIzKdLraXCNUwuvyNMTzp+H9HTHGQdCiCojYUAIcam8PMde/ytcvDWAl5cXXl5ehIWFUVhQ4FgxyMkhMysLvbs7/v7+aHU6rFYrycnJ7PH0JLu4GGNF+430erhwAc6elTAgRBWTMCCEuFRRkWN1QKe75sM0gLe3N97e3oTVq0dBfn7ZbQSrxUJJSQlmHx/es1ho4+XFvRXdFaDVOuooLr7x9yKEKBcJA0KIS5Xen7/+RqP/fQng4+ODj48P9nr1yM/PJ8tmY2paGr4aDa/Xr1++xsFr1SOEqDJatQsQQjgZLy/HBdhuv6Ev12o0aLy8eDkzkzxF4c3ISEIq0jhYym53rA54et5QHUKI8pMwIIS4lI8P1Kt3w8vzJXY7/0lKIrGkhIURETSuaONgqeJiR9/CNQYeCSEqh4QBIcTlbr8dSkoq/GV2RWHCuXMcKCjg9YiIsq2GN6SwEAwGCAy88ecQQpSL9AwIIS7XqpXjVkEF9/i/kZbG9rw8evj6kmOz8X1OziWf71+RJkKLBTp0KP/jhRA3TMKAEOJy3bo57tXn5TlmBJTTkb8OGtqel8f2vLzLPl/uMFBS4ugX6Nq13K8thLhxEgaEEJdr2RK6dIGtWysUBt5p0KByXv/CBahfH+6+u3KeTwhxTdIzIIS4siFDHLcIqnufv93uWBl45BHZSSBENZEwIIS4MqMRWrd2jBOuwJkDNy0tzbGbYfDg6ntNIVychAEhxJV5eMDs2Y6thtnZ1fOa+fmO//vyyxAeXj2vKYSQMCCEuIYOHeDppx3b/AoLq/a1LBZH6DAa4cEHq/a1hBCXkDAghLi2F1+EmBjIzHTMLagKVqtjQmGrVo7VCK38aBKiOsl3nBDi2jw9YelS6N3b0T9QupRfWYqLITUVmjeHlSshLKxyn18IcV0SBoQQ1+fnBytWwMCBkJvruHjf4OyCMoriCBcZGdCpE3z0EVTW1kQhRIVIGBBClI+PD7z1FrzxBoSEQHKy4x5/RUOBooDZDOfOOZoUX34ZPvtMGgaFUJEcOiSEKD+t1tHc17UrLFgA33wDKSmg0znCgqcnuLldfoSx1eroNygocJwh4OMD99wDY8Y4ti8KIVSlUZTrbyA2m80EBASQk5ODv79/ddQlhKgJ0tJgwwb49FM4e9ax46D0R8rf5xp4ekKdOvDAA45Aceut6tQshAsp7/VbwoAQ4uYpCqSnw6FDjj9ZWY4VAHd3R79B8+aOPxERslNAiGpU3uu33CYQQtw8jQZCQx1/evZUuxohRAVJRBdCCCFcnIQBIYQQwsVJGBBCCCFcnIQBIYQQwsVJGBBCCCFcnIQBIYQQwsVJGBBCCCFcnIQBIYQQwsVJGBBCCCFcnIQBIYQQwsVJGBBCCCFcnIQBIYQQwsWVa1BR6WBDs9lcpcUIIYQQovKUXrevN6C4XGEgNzcXAIPBcJNlCSGEEKK65ebmEhAQcNXPa5TrxQXAbreTnJyMn58fGo2mUgsUQgghRNVQFIXc3FzCw8PRaq/eGVCuMCCEEEKI2ksaCIUQQggXJ2FACCGEcHESBoQQQggXJ2FACCGEcHESBoQQQggXJ2FACCGEcHESBoQQQggX9/8Br6eE96jHoAgAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXjklEQVR4nO3dd3ib5dk3/u+tZXnJW3ZsKR7EziJ7L9uSQlqgwMPzUkZDG6CMllHKaqEt8ADtS8fT8rT8Ot5Cy9NBGaVAIbQUIjnDGWSSkEESMmx5b0u2LGvc9+8PWaod27Gc2Jbk+/s5jhyh0R3pEiXRV9d9XucpSJIkgYiIiGRLEekFEBERUWQxDBAREckcwwAREZHMMQwQERHJHMMAERGRzDEMEBERyRzDABERkcypwrlIFEXU1dUhOTkZgiCM95qIiIhoDEiSBKfTidzcXCgUw3//DysM1NXVwWg0jtniiIiIaOLY7XYYDIZhHw8rDCQnJ4eeTKfTjc3KiIiIaFw5HA4YjcbQ5/hwwgoDwVsDOp2OYYCIiCjGjHSLnwWEREREMscwQEREJHMMA0RERDLHMEBERCRzDANEREQyxzBAREQkcwwDREREMscwQEREJHMMA0RERDLHMEBERCRzDANEREQyF9ZsAiIiomglShJqe3vh9PvhkySoBQEZajWy1OoRe/JTAMMAERHFnGPd3fhXWxsOdXfj464udPh88EsSJAACALUgIFujwcKkJMxPTsaV6enIiYuL9LKjliBJkjTSRQ6HAykpKejs7OTUQiIiigifKOL9tjb8pakJuxwO9Pj9gCBAKwjQKhRQCgIEABIAryjCLUnw9H3E6ZRKXJGejpuys7FURp9j4X5+c2eAiIii3kmXC989cwbbOzshShJ0KhXSNJphbwNoFQok9/2zKEno9PvxSlMT3mppwfV6PR6bOhVpavXEvYEoxzBARERRS5QkvNTQgJ/a7WjzepGhViNeMbrad4UgIE2lQqpSCaffjz82NKCysxM/KCyEKS1tnFYeW3iagIiIopJPFPHkmTN48swZdPn9yNVoRh0E+hMEATqVCjkaDc709OCO48fxWlPTGK44djEMEBFR1BElCU+ePYvfNTQgQaGAXq2GYoxOBqgEAbkaDXpFEY+dPo3XGQgYBoiIKPr8tq4Of2hoQJJCAZ1q7O9oC4IAvVoNryjiO6dPY0dn55i/RixhGCAioqhytLsbz9XUQNm3rT9egoGg2+/Hd8+cQZfPN26vFe0YBoiIKGp4+r6pd/p8yBzHIBAUDATHurvxU7t93F8vWjEMEBFR1Hi7pQW7nU5kTmD3QLVCgUSlEn9sbMQJl2tCXjPa8GghERFFBUmS8OfGRgCBPgHhEt1utP7jH+g5dQru06fh7+7GlNtvR2ppadjPkapUotbjwRvNzfhOfv6o1x7ruDNARERRYX9XFw52dSFFqRzV7/M5nWh5+2146uoQZzRe0GsLgoA4hQKvNTXJsnaAYYCIiKLCe62t6BVFJIyyl4AqNRXFv/gFpj33HPQ33njBr5+mUqHZ64Wto+OCnyNWMQwQEVFU2Od0BuYLjLJWQKFWQ5WaetGvr+p73aPd3Rf9XLGGYYCIiCKux+/HCZdrVLUC40KS8HFXV2TXEAEMA0REFHGf9fTAJYoX1W54LGgVChxxueAfeaDvpMIwQEREEdfp88EnSaGt+gshSRKki/wQVwkC3KIItyhe1PPEGh4tJCKiiPNKEiQAo40CkiShq6sLDqcTTocDqpaWiwoEAgJzETyiiMRRnmqIZQwDREQUcRqFIvBBDGCkj2BRFEMBoKurC5IoIk6rRUpqKlrtdggXEQYkBI4ZaiJduzDBGAaIiCjiUlUqqAQBPkmCeohbBX5RRJfTCYfTie6uLkiSBG18PLIyM5Gs00GjVkOUJLQdPnxROwNeSUKyUhnx2oWJxjBAREQRNy0+HglKJdz9igj9fj+cwQDQ3Q1IEuLj46HX65GcnAy1Wj3gORSCAKVSCe9F3O93iyJWJSaO2bjkWMEwQEREERenUGBGQgJ2dXQATiecTie6++YEJMTHIyc7G8nJyVANM7yo7cMPIbpckM6cgShJ6Pr4Y/ja2wEAaZddBmVCQngLEQTMTUoai7cUUxgGiIgoohoaGmCz2WBvbETLJZdA7XAgKSEBU3JykJScDFUYhXxt//gHvK2t8Hq9kCQJzr174dy7FwCgW7kyrDDgFUUIAC5NTLzYtxRzGAaIiGjC1dTUwGazwWq14siRI1Cr1Zixbh3sSUlIycqC7pxbACOZ9txzAICW1la0tbaipKRk1Gtq9/uRo9GgfAy6GcYahgEiIpoQZ86cCQWAEydOIC4uDqtWrcJNN92ENWvWICEhAV88cgTbHQ7oLvA1NBoN/H4//KII5SiKAKW+44Q36vVIkNGRwiCGASIiGheSJOGzzz6D1WqFzWbD6dOnkZCQgNWrV+OrX/0qVq5cifj4+AG/Z312NnY5HOi5wG6EGo0GAODxeBCv1Yb9+9p9PiQrlbguK2vUrzkZMAwQEdGYkSQJx44dCwUAu92OpKQklJWV4d5778Xy5ctDH9hDuSojA682NWFLRwdyNZpRV/Vr+m4veEcRBjyiiB5RxDcNBhSdE07kgmGAiIguiiiKOHz4MDZt2oSKigrU19cjJSUFJpMJjzzyCJYsWTLoGOBwVAoFflBYiKsPH0aL1wv9eYLDUBQKBZQqFTweT1jXS5KEZq8Xc5KScJ/BMKrXmkwYBoiIaNREUcSBAwdgtVpRUVGB5uZmZGRkwGQywWKxYOHChVBe4L33aQkJ+JbRiO+dOYMOnw+pwxwnHI5GrQ4rDEiShEavFzqVCs8WFcmyViCIYYCIiMLi8/mwd+9e2Gw2VFRUoL29HXq9HmvXroXFYsHcuXOhGKPOfRtyclDb24tf1dUBowwEGo1mxDAgSRIavF7EKxT42bRpWJScfLFLjmkMA0RENCyPx4OPPvoINpsNW7ZsgcPhQF5eHq666iqYzWbMmjVrzAJAf4Ig4LH8fCgEAb+qq0ODxwO9Wh1WDYFGo0FXd/ewj3tFEU19OwI/veQSXJmRMZZLj0kMA0RENIDb7caOHTtgs9mwbds2dHd3Iz8/H9dddx0sFgtKSkogTEC7XoUg4NGpU1EUH4//W1WFOo8HaSrViNMENRoN/D4fRFEcEFQkSUKH349uvx+zEhPxbFERluku9BDj5MIwQEREcLlcqKyshNVqxfbt2+F2u1FcXIybb74ZFosFhYWFExIAziUIAm7Q67FSp8MTZ8/C2t6ODr8fSQoFkpXKIXcK1MHjhV4vtHFx8EkSOn0+9PSNJb4nLw8PGAxIGmUtwmTGfxNERDLldDqxdetWWK1W7Nq1Cx6PB7NmzcLtt98Os9mMqVOnRnqJIUatFr+bPh1bOzrwalMTNrW3o97jgQRAIwjQKhRQ9QUDv1IJv1aLRo8HKkGAACBDrcaXMzNxg16P2TJsNzwShgEiIhnp6OjAli1bYLVasXv3bvh8PsydOxf33HMPTCYTcnNzI73EYSkEAeVpaShPS0O1241/tbXhSHc39nd1ob63F25JgihJUAgCFAoFcnp6cFV+PuYlJeFzaWlIHWWLYzlhGCAimuRaW1tRUVEBq9WKffv2AQDmz5+PBx98EOXl5dDr9RFe4ehN1WpxR7/g0ub1osvvh1eSoBEEfOu3v8XMggI8ccUVEVxl7GAYICKahBobG0NzAA4ePAhBELBkyRI8+uijKC8vR3p6eqSXOKbS1Wqk9/vmXzRlCmpqaiK4otjCMEBENEnU1taG2gAfPnwYarUay5Ytw+OPP46ysjKkpKREeokTxmg0Yv/+/ZFeRsxgGCAiimFnz54N7QAcP34cGo0Gq1atwjPPPIM1a9YgKSkp0kuMCKPRiObmZvT09AwahkSDMQwQEcUQSZJw6tQpWK1WWK1WnD59GvHx8VizZg1uvfVWrFy5EgkJCZFeZsQZjUYAgd2SadOmRXg10Y9hgIgoykmShE8//TR0C6C6uhpJSUkoLS3FPffcg+XLlyMuLi7Sy4wqhr6hQ3a7nWEgDAwDRERRKDgJMDgIqK6uDikpKSgvL8fDDz88qkmAcpSWloaEhATY7fZILyUmMAwQEUUJURTx8ccfhwJAU1MT0tPTYTabYTabsWjRogueBCg3giDAaDTyREGYGAaIiCLI5/Nh3759sFqt2Lx5M9ra2qDX62GxWGA2mzFv3rxxGQQkB0ajkTsDYWIYICKaYB6PB7t374bNZsPmzZvhcDiQm5uLK6+8EhaLZdwmAcqNwWDA4cOHI72MmMAwQEQ0AXp7e0OTALdu3RqxSYByYjQa0djYCI/HA03f8CIaGsMAEdE4CU4CtNlsqKyshNvtxrRp07B+/XqsXbs2YpMA5cJoNEKSJNTV1aGgoCDSy4lqDANERGPI6XRi27ZtsFqt2LlzJzweD2bOnImvfvWrsFgsUTUJcLLrf7yQYeD8GAaIiC7ScJMA7777bpjN5qieBDiZZWZmIi4ujkWEYWAYICK6AK2trdi8eTOsViv27t0LSZKwYMECPPDAAzCZTDE5CXCyUSgUMBgMPF4YBoYBIqIwNTU1heYAfPzxxxAEAYsXL560kwAnAx4vDA/DABHRedTV1YXaAH/yySdQqVSynQQYi4xGIyoqKiK9jKjHMEBEdI6qqqpQAPj000+h0WiwcuVKPP3001izZg2Sk5MjvUQKk9FoRF1dHXw+H1QqfuQNh/9miEj2JEnC6dOnQ5MAT506hfj4eKxevRobNmzAqlWrOAkwRhkMBoiiiPr6+tAkQxqMYYCIZCk4CTBYA1BdXY3ExESUlZXh61//OlasWMFJgJNAMADY7XaGgfNgGCAi2QhOArTZbLDZbKirq4NOp0N5eTkeeughLFmyhJ3qJpns7Gyo1WqeKBgBwwARTWrDTQI0mUywWCxYuHAh7yVPYgqFAnl5eTxRMAL+CSCiScfn82H//v3YtGnTgEmAwVHA8+fP5yAgGeHxwpExDBDRpODxeLBnz57QKODgJMArrrgCFosFs2fPZgCQKaPRiO3bt0d6GVGNYYCIYlZvby927twJm82GLVu2oLu7G1OnTsX/+T//BxaLBdOnT+cgIILBYEBtbS1EUWQgHAbDABHFFJfLhe3bt4cmAfb09OCSSy7B+vXrYbFYUFRUxABAAxiNRvh8PjQ0NHBOxDAYBogo6nV1dWHr1q2w2WzYsWMHPB4PZsyYgVtvvRUWiwX5+fmRXiJFseCRwpqaGoaBYTAMEFFU6uzsDE0C/Oijj+Dz+TBnzhx8/etfh9lsRl5eXqSXSDEiJycHCoUCdrsdS5cujfRyohLDABFFjba2NmzevBmbNm0aMAnwm9/8JkwmE7KzsyO9RIpBKpUKubm57DVwHgwDRBRRwUmANpsNBw4cCE0C/Pa3v43y8nJkZGREeok0CfB44fkxDBDRhKurqwu1AQ5OAly6dCkef/xxlJaWIjU1NdJLpEnGaDRi3759kV5G1GIYIKIJUV1dHRoEFJwEuGLFCk4CpAlhMBjw97//nccLh8EwQETjYqhJgFqtlpMAKSKMRiN6e3vR0tICvV4f6eVEHYYBIhozkiTh+PHjoVsAVVVVSExMRGlpKb72ta9hxYoV0Gq1kV4myVD/44UMA4MxDBDRRRFFEUeOHAkFgP6TAB944AEsXbqUkwAp4nJzcyEIAux2OxYuXBjp5UQdhgEiGjVRFHHw4EFYrVbYbLbQJMDy8nJYLBYsWrSIkwApqmg0GuTk5PBEwTD4p5WIwuL3+7Fv377QKOC2tjZkZWXBbDbDYrFwEiBFPR4vHB7DABENy+v1DpgE2NnZiSlTpuDyyy+HxWLBpZdeygBAMcNgMODw4cORXkZUYhggmsQkScJrr72GgwcPwmKxwGw2j/jh3dvbi127dsFqtWLr1q3o6urC1KlTce2118JisWDGjBkcBEQxyWg04v3334ckSfxv+BwMA0STVENDA/7zP/8TdXV1WLhwIZ5//nncfffdePjhh6HX6wf9hShJEp599ln885//RE9PD4qKinDTTTfBYrHgkksu4V+eFPOMRiNcLhfa29uRnp4e6eVEFYYBoknqpz/9KbxeL3bt2oWcnBy8+OKL+OUvfwmlUolnn312yDCQk5ODW2+9FWazGQUFBZFbPNE4CB4vtNvtDAPnYBggmoREUcRnn32G2bNnIycnBwDwla98BfX19fj5z3+OZ599dtDtAkEQcNttt0ViuUQTIjjp0m63Y968eRFeTXRh5Q9RDGlvb8fzzz+PZ555Bk1NTcNe19XVhZ6engE9/jUaDa6++mp0dXXhX//6F4DAbkAQbwPQZKfVaqHX63miYAgMA0QxQBRFvP3221i3bh2eeuopPPPMM8OOY5UkCTqdDvHx8WhqakJjY2Posfz8fCxZsgR//etfQ89LJCcGg4FhYAgMA0QxQKFQwO1244orrsCePXug1Wqxc+fOIT/Mg79mMplw+PBhHD9+PPSYVqvFokWLcOzYMQCAUqmcmDdAFCWMRuOwQVrOGAaIYsQXvvAFfOc730FhYSHMZjPeffddOJ3OQdcFawGuvfZaiKKIDz/8MPSYVqvF2bNnMWvWLHg8nglbO1G04M7A0BgGiGJEUlJSqMf/rbfeisrKSlRVVQ24RpKkUB2A0WjE1Vdfjddeey10W6CqqgqHDx/GvHnzoNFoBtQMEMmB0WiE0+mEw+GI9FKiCsMAUQwJFvldc801oWOD/W8VCIIw4JTAt771LVx22WV44IEHUFpaigULFmD27Nm44YYbBjwfkVz0P15I/8YwQBRjfD4fAMBsNuOdd95Bd3d36LGenh784Q9/wPPPPw8ASE1NxXPPPYe33noLl19+Od599138/e9/R1ZWVkTWThRpBoMBAMPAuRgGiKKEKIr4+OOP8fzzz4c+8IcS/DZ/2223Ydu2baitrQUAdHR0QK1W4/XXX8fvfvc79Pb2AggcKVyyZAkee+wxrFq1avzfCFEUS0xMRHp6OsPAOdh0iCiCgpMAbTYbKioq0NraiqysLFxxxRUoKioachs/eALgP/7jP7B+/Xo8/vjjqKqqQmpqKt566y08/fTTSE9PR1xc3ES/HaKYwCLCwRgGiCbYUJMAc3Jy8PnPfz6sSYA+nw+/+93v8OKLL8Ln8+HYsWNYt24d7r77biQmJmLRokUT+G6IYg9HGQ/GMEA0ATweD3bt2oVNmzaFJgEajUZce+21MJvNmDlzZtjFfJIkwW63Y/Xq1XjjjTeQn58/zqsnmlyMRiN27NgR6WVEFYYBonHS09ODHTt2wGq1orKyEi6XKzQJ0Gw2Y9q0aRdUza9Wq/H9739/HFZMJA9GoxHt7e3o6upCUlJSpJcTFRgGiMZQd3c3tm3bBpvNhu3bt6O3txclJSXYsGEDzGYzCgsLI71EItkLHi+sqanBjBkzIrya6MAwQHSRHA4HtmzZApvNhl27dsHr9WL27Nm46667YDabQ0eZiCg69D9eyDAQwDBAdAHa2tqwefNm2Gw27NmzB6IoYt68ebjvvvtgNptDY4OJKProdDrodDoWEfbDMEAUpubmZlRUVMBqteLAgQMAgEWLFuHhhx+GyWRCZmZmhFdIROGaM2fOeU/tyI0ghdGc3OFwICUlBZ2dndDpdBOxLqKoUF9fD5vNBqvVikOHDkGpVGLp0qWwWCwoKytDWlpapJdIRDSscD+/uTNAdA673R4KAEePHoVGo8Hy5cvx1FNPYc2aNQzERDTpMAwQATh9+nQoAJw8eRJarRarVq3CzTffjNWrVyMhISHSSyQiGjcMAyRLkiTh5MmTsFqtsFqtOHv2LBISErBmzRrccccdWLlyJbRabaSXSUQ0IRgGSDYkScLRo0dDAaC2thbJyckoKyvD/fffj2XLlkGj0UR6mUREE45hgCY1URRx6NCh0C2AxsZGpKWloby8HBaLBYsXL4ZKxT8GRDSQx+OBKIqy2SHk34I06fj9fuzfvz80CbClpQWZmZkwm80wm81YsGBBaPIfEdFQ/vCHP6C1tRWPPPKILP6+YBigScHr9WLv3r2hSYAdHR3IycnBunXrYLFYeKaYiAb4/e9/j9WrV2PatGkQRRGCIEChUITmhej1ejz//PO4/vrrUVRUFOHVjj+GAYpZwUmAVqsVW7duhdPphMFgwDXXXAOLxTKqSYBEJC+PPPIIfvzjH6OkpGTAFwWPxwO73Y6mpiYcPnwYhw4dYhggijY9PT3YuXMnNm3aFJoEWFhYiBtuuAFmsxnFxcUMAEQ0ohUrVuDVV19FTU0NDh48iOPHj6O2thYOhwOCIECv12PmzJmyOVbMMEBRr7u7G5WVlbBarQMmAX7lK1+B2WyWRWonorG1bNkyPPnkk2hvb4fBYMDnPvc5TJs2DVOnTkV2djbS09Oh1Wpl02WUYYCiksPhwNatW2Gz2bBz5054vV7MmjULd955J8xmc2gEKRHRhTAajZgyZQreeecdpKamQqVSQa1Wy3ZnkWGAokZ7e3toEuDu3bshiiLmzp2L++67DyaTCVOmTIn0Eolokrj00ksBAMnJybK5FXA+DAMUUcFJgDabDfv37wcALFy4EA899BBMJhOysrIivEIimozmzJmDZ555BklJSZFeSlTg1EKacA0NDQMmASoUCixduhRmsxnl5eWyuUdHRJHV1taG6upqzJkzZ9L2EuDUQooq504CVKvVWLFiBZ588kmUlpYyZBLRhHvggQdw5MgRvPnmm5g6dWqklxNRDAM0bs6cOQOr1QqbzYYTJ04gLi4Oq1atwvr167F69WokJiZGeolEJGOlpaWYNm1aaCaJKIqDmpNJkiSLokLeJqAxE5wEGNwBOHPmDBISErB69WqsXbsWK1asQHx8fKSXSUR0Xl1dXWhra0NqamrMf+bxNgFNCEmScOzYsdAkwJqaGiQnJ6O0tBT33Xcfli9fzkmARBTVurq68Oc//xkffvghTpw4AY/Hg9TUVOTl5cFkMuFrX/sa1Gp1pJc5rhgGaNREUcQnn3wSugXQ0NCA1NRUlJeX49vf/jYWL1486f/gENHkUFNTg/vvvx+ffvop5s2bh2uuuQZZWVno7e3F/v378ZOf/ASNjY34/ve/H+mljiuGAQqL3+/HgQMHYLPZYLPZ0NLSgoyMjNAkwIULF07aalwimpxEUcSLL76IQ4cO4de//jXmzZuHtLS0AWPNN27ciJtuugnPPPPMpK4dYBigYfl8PuzZswc2mw2bN29Ge3s7srOzsW7dOpjNZsydO5eTAIkoZikUCrz44ov4+c9/jrVr1w55zZIlS6BUKlFdXY38/PwJXuHEYRigATweDz766KPQJECHwwGDwYCrrroKFosFs2bNmtTpmIjkRalUoru7e9Cve71etLS04MEHH8SiRYsmfe0TwwDB7XZjx44dsFqt2LZtG1wuFwoKCvDFL34RFouFkwCJaNK67bbb8OMf/xh79+7FlVdeieTkZLS1teHo0aPYsmULTp8+jWeffXbSt0NnGJApl8uFyspKbNq0CTt27IDb7UZxcTEnARKRrDz88MPQarXYuHEj3n77bdTX10MURej1eqxZswa/+c1vUFZWFulljjv2GZARh8OBbdu2wWq1YteuXfB4PJg1axYsFgsnARKRrNntdjQ1NSErKwt6vR5arTbSSxoT7DNAAAKTALds2QKr1Yrdu3fD7/dj7ty5uPfeezkJkIioj9FoHPCFSJKkUPdBOdwmZRiYhFpaWkKTAPft2wcAWLBgAR566CGUl5dDr9dHeIVERNFNLiEgiGFgkghOArTZbDh48CAUCgWWLFmCRx99FOXl5UhPT4/0EomIKEoxDMSwmpqa0ByAI0eOQK1WY/ny5XjiiSdQVlbG+g4iIgoLw0CMOXv2bGgOQP9JgDfddBPWrFnDSYBERDRqkysM+HyAxwNIEhAXB6hi/+1JkoTPPvsstANw+vTp0CTAr371q1i5ciUnARIRXaQTJ07gRz/6EX74wx8iKysr0suZcLH9afnZZ8COHcCxY8CBA8CZM4AoBh5TKACjEViwAJg1C1i2LPBzDAhOAgwGALvdjqSkJJSWluLee+/lJEAiojEWFxeHgwcPorq6mmEgJni9gM0GvPIKsG0b4HIFfl2lCuwGBHvl+/3A8ePAkSOB/63VBgLBl74EfO5zgWujiCiKOHz4cGgSYH19PVJSUlBeXo5HHnkES5Ys4SRAIqJxMmXKFCgUCtjtdixatCjSy5lwsRUGDh4EvvOdwM9+P5CcDOTmAiMd/5AkoKsL2LIlECBmzAB+8ANg+fKJWfcwRFHEgQMHYLVaUVFRgebmZmRkZMBkMsFisXASIBHRBNFoNMjJyYHdbo/0UiIiNsJAby/wq18FfjidQGZm4Jt+uAQhEBySkwM1BUePBnYIbr0VePBBYAKL7nw+H/bu3QubzYaKigq0t7dDr9dj7dq1sFgsnARIRBQhBoOBYSBqdXUB994LfPBBYGs/L2/knYDz0WgCuwkdHYFwcfAg8NvfAuN4Dj84CdBms2HLli1wOBzIy8vDVVddBbPZjFmzZjEAEBFFmNFoxCeffBLpZUREdIcBlwu44w6gogLIyADGqmpeEIC0NCAhAaisBDZsAP74x8CvjZHgJECbzYZt27ahu7sb+fn5uO6662CxWFBSUiKr7lZERNHOaDTiH//4R6gNsZxEbxgQxcAWfkXF6G8LhCsuDtDrgT17gLvvBv70p4s6jhicBGi1WrF9+3a43W5MmzYNN998MywWCwoLC2X3HxgRUawwGo3o6elBW1sbMjIyIr2cCRW9YeCNN4CNG4HU1PEJAkEaTWDXYcsW4Pe/B+68c1S/3el0Ytu2bdi0aVNoEuDMmTNx++23w2w2Y+rUqeO0cCIiGkvBQUV2u51hICrU1gLPPhv456Sk8X+9+PhAbcJzzwHl5UBJyXkv7+joGDAJ0OfzYe7cubjnnntgMpmQm5s7/msmIqIxlZeXByAQBubPnx/ZxUyw6AwDP/0pUF8fKPSbKJmZgRDy/e8H6gfO0draGpoEuHfvXgDA/Pnz8cADD8BkMnESIBFRjIuLi4Ner5fliYLoCwP19cB77wWO+4VZYX+0pwcbOzux1+VCnceDFKUSc+Ljcbdej6nhduoTBCAlJVBQePw4MH06GhsbQ5MAP/74YwiCwEmARESTmMFgQE1NTaSXMeGiLwy8+SbQ2TmqXYH/bW3FwZ4erE1ORnF6Olp9PrzW1ob1Z87gfwsKcEm43QaTkuCvrsah73wHP09OxuHDh6FWq7Fs2TI8/vjjKCsrQ0pKygW+MSIiinZGoxEnT56M9DImXHSFAUkKtBlWqcLeFQCAm9PT8YP4eKj7VepfptPhxtOn8b8tLXim7z7QcHo9HjgdDjicTmi7upD0/vvIufNO3PDMM1izZg2SJqJugYiIIs5oNMJqtcrueGF0hYHa2sBtglF++M5NSBj0a1M1GhTFxeGMxzPoMQlAb29vKAD09vZCoVAgKSkJupwc5EgSfvjVrwKXXnqh74SIiGKQ0WhEV1cXHA6HrHaCoysMHDsG9PQE2gZfJEmS0ObzoajvFoGEQCOgYADweDxQKhRISk6GPisLiUlJUAhCoL9BfX1gLQwDRESy0v94IcNApHz6aeDni2j8E/RPhwNNPh9uTUlBY2MjHE4nvF4vlEolkpOTkZOdjYTExEAA6C94e+LYsYteAxERxRaDwQAgEAYuldEXwugKAy0tgbqBiyABONbRgWfsdhRIEma2tKBTpUKyTgddcjISEhMx4l0gSQqshYiIZCUhIQHp6emyO14YXWHA673op7A7HLj71CmoBAEPxMdDl5SExIQEaDQaqFSq8IpCBAFwuy96LUREFHuMRqPsjhdGVxi4yNsDXX4/vllbix6FAs/r9ZgiSfB6PGhubobYb8dBrVJBrdFAo9FAo1ZDo9GE/rdSoQjsDKjVF/tuiIgoBhmNRlRVVUV6GRMqusJAUtIFjyf2iCIeqKlBnSjiUY0Gi3NzQ/UAEgC/zwePxwOP1xv42eNBr9sNp9MJv98feh6lUolsnw8HP/4Yx3/7WxgMBhgMBhiNRqSmpsrqqAkRkRwZjUZUVlZGehkTKrrCQElJ4Fu5KI6qz4AoSXi0thaHXC7835wcTGlqgqe3F9q+AUcCAJVKBZVKhcGHEAG/3//vkNDbC2VrK04plfjb3/6G1tbW0HUJCQkwGo2hcBD82Wg0IjMzE4pRrJmIiKKT0WhER0cHnE4nksfgdFssiK4wMHNmYKyw2w0M0TtgOM81NWFrVxdKk5LgUiiw1e/H0fZ2JPQ9xxUjHA9RKpWIVyoRr9UCHg8girjtJz/BbcuWweVyoba2Fna7HTU1NaEf//rXv9DQ0ACp7/aDRqMJ7SKcGxZycnKgGoMTEkRENP6CJwpqamowc+bMCK9mYkTXJ1RREaDTAQ7HqMLA8b5iv61dXdja1QW31wtVS0voA3ikMDCAyxWYYjhjBoDAbkBxcTGKi4sHXerxeFBfXx8KCna7HXa7HZWVlairq4PP5wMAKBQK5ObmDthJCIaGvLw8xIXbLpmIiMZd/+OFDAORoFYDV18NvPhi4HZBmPfnf5ufP+B/n62qglqlCo2jHJXubuDaawNDi0ag0WiQn5+P/HNeHwBEUURDQ0MoJAR/PnDgAN555x309vaGrtXr9YOCQvDnxMTE0b8HIiK6YDqdDikpKbI6URBdYQAArr8eePnlwIfyBc4E0Gg0cF/I0cCensCJhhtvvKDX7S+4G5Cbm4ulS5cOeEySJLS2toZ2EoK3Hk6ePAmbzQan0xm6Ni0tbcBOQv/QkJKSwoJGIqJxYDQaZdVrIPrCwJw5wKJFgVHCiYkXdLogTqOBw+GABIzcYKi/tjZg9mxg9epRv+ZoCIKAzMxMZGZmYsGCBYMedzgcA4JC8Oddu3ahra0tdF1iYuKQBY0Gg4EFjUREF4FhINIEAXjkEWD/fqCjA0hLG/VTaOLiIIoifD4f1OEW7jkcgEYTeO0If4jqdDrMnj0bs2fPHvSYy+UaUMgYDA2HDx9GY2PjkAWN5558yMnJgVKpnOi3RUQUM4xGI3bv3h3pZUyY6AsDALBsGXDbbcAvfxnYHdBoRvXbNX3Xe3p7wwsDPl8gDKxfD6xbdyErnjAJCQkoKSlBSUnJoMc8Hg/q6uoG7Shs27YNtbW1oX4KSqVyQEFj/9CQl5cX+vdHRCRXBoMBra2tcLlcoZNpk1l0hgEAeOABYPNm4PBhYMoUYBTfZDUaDQRBQK/HM3IBnigCjY1AYSHw3e9ecNOjaKDRaFBQUICCgoJBj/n9fjQ2Ng66/bBv3z78/e9/DxU0CoJw3oJGOfyhICLqf7xwqC9fk030hoHEROD//b/At/WzZ0cVCAQAGrUaHo/n/BeKIlBXB+TkBF4rPf2ilx2tgrsBubm5WLZs2YDHJElCS0vLgGJGu92O48ePY9OmTejq6gpdm56ePuztB51Ox4JGIpoUgqOMGQaiwSWXAP/7v4FbBqdOAZmZgR4AYdDExcHT7/jeIL29QHMzkJsLvPACMHfu2Kw5BgmCgKysLGRlZWHhwoUDHpMkKeyCxqSkpEE7CcF/zszMZFAgopiRmpqKxMRE2RwvjO4wAASa/7zyCvDww8D27UBXF5CRMWKRn6bvRMEgkhQ4NeB2B04t/PSnoQZDNJggCEhJSUFKSsqQs72DBY3nBoVDhw6hsbExdF1cXNywOwrZ2dksaCSiqCIIgqxOFER/GACA/PxAIHjpJeBnPwts7Wu1QGrqsJMO4zQaeL1eiJIUGFjk9wOdnYEOg8nJwKOPAl/7WqD9MV2wkQoaz23lbLfbsWXLFtTV1Q0oaMzLyxsyLOTm5rKgkYgigmEgGqlUwB13ABYL8Kc/AW+8ESj8k6TAB3p8fODnvh0DjVKJeL8f/oYGKEQx8BxpaYGGQjffDMyaFcE3Iw8ajQaFhYUoLCwc9Jjf70dDQ8OgVs579+7F22+/Har3EAQB2dnZQ7ZyZkEjEY0no9GIQ4cORXoZEyJ2wkBQURHw5JOB0wbvvANs2wYcOAC0tgZuIfR98GsBaCQJPYmJUK9ZA6xaBVxzTeAWA0VccDdgqJbRoiiipaVl0O2HY8eO4YMPPkB3d3fo2vT09GEnSep0uol8S0Q0yRgMBjQ2NqK3t3fSz5CJvTAQpNMFvuHffHNgd6C+PnDqwO0GJAmKuDg88thjMN18M+64665Ir5ZGQaFQQK/XQ6/XD1nQ2NnZOaiVs91ux44dO9De3h66Njk5edhWzhkZGSxoJKLzCp4oqK2tRVFRUYRXM75iNwz0JwiBUwG5uQN+OWH6dFTJ5H6PXAiCgNTUVKSmpmLOnDmDHu/u7h6yoPHjjz9GU1NT6DqtVjtkjYLBYEBOTg5bORPRgOOFDAMxLD8/HydOnIj0MmgCJSYmYvr06Zg+ffqgx3p7e1FbWzuolXNFRQXq6uog9t1iUqlUgzo0BncUpkyZwoJGIpnIyMiAVquVRRHhpA4DBQUF+PDDDyFJEreECXFxcSgqKhoy4ft8vkEFjTU1NdizZw/eeuutAQWNOTk5Q/ZSMBgMiA+zDwYRRT85HS+c1GEgPz8fLpcLzc3N0Ov1kV4ORTGVShX6YD9XsKDx3JMPR44cwfvvvw+XyxW6NiMjY9hJkpEqaHS5XHjttddw8OBBJCUl4eqrr8aiRYvY24EoDAwDk0CwR39VVRXDAF2w/gWNixYtGvCYJEno6OgYVMxYVVWFyspKdHR0hK7V6XTDNl5KT08ft92rpqYm7N27F729vfjFL36BM2fO4De/+Q2Sk5PH5fWIJhODwYBNmzZFehnjblKHgby8PKhUKpw9exZLliyJ9HJoEhIEAWlpaUhLS8PcIVpad3V1hVXQGB8fPygoBP85Ozv7ogoajUYjHnvsMRgMBmzevBkzZswY9nZG8JbakSNH8LOf/QwVFRUoLi7Go48+CpPJdMFrIIpVRqMRDQ0N8Hq9UKvVkV7OuJnUYUCpVMJgMKCqqirSSyGZSkpKwowZMzBjiJbXbrd70Mhpu90Oq9WK+vr6UEGjWq0+b0HjSH9BBf8cAIEjUlOnToVqmM6dgiCgtrYWa9euxdKlS/H000+jsrIS3/zmN/Hyyy8P2ZKaaDIzGo0QRRH19fWYOnVqpJczbiZ1GAACtwrOnj0b6WUQDaLVas9b0FhfXz/o9sNHH32EN998M1TQqFAokJOTg8cffxyLFi067w5CZ2cnent7kXvOEdxz/eAHP0B2djZeeeUVJCQk4Oqrr8aCBQvwxhtvYNasWTx2SbISPF5ot9sZBmJZfn4+Pvjgg0gvg2hUVCpV6Nv/uURRRHNz84Adhdzc3GE/pINb/5999hnUavV562daWlqwfft2XH/99aFWzzqdDjfccAM2btyI//qv/xqT90cUK7KysqDRaCZ9EaEswkBDQwPcbje0Wm2kl0N00RQKBbKzs5GdnY3FixePeL0oilAqlThy5AjS09ORmpo66JpgYDh9+jQcDgdmz54deszn80Gr1YaKIUVR5O4AyYZCoUBeXt6kDwOT/k90QUEBJElCdXV1pJdCFFGHDx+GwWAYdIpAFMXQBMmzZ88iMTERGf1meEiShJqaGmRnZ0/oeomihRyOF8oiDABgESHJUvDoIwCcOHEC06ZNQ1JS0oBrFApFqKCwu7sbiYmJA775d3Z24sSJE8MWDzocDuzYsQPV1dXwer3j80aIIshgMKCmpibSyxhXk/42gU6nQ1paGosISZZqa2uxbt069PT0oKqqCsXFxXjuueewevVqrFq1Cu+88w4OHTqE22+/HTk5OZg5cyaam5sHTIY8dOgQ6urqcFffwK/+/RBEUcT+/fvx8MMPA/h3QeO5I6eNRiPy8vJ4q45iktFoRF1dHfx+/6Rt1jXpwwAQqBvgzgDJUV5eHl555RUcOnQI9fX12L17N1544QXs2bMHy5cvR0VFBV577TXcdtttAIDly5cjOzsbv/nNbzBnzhx4PB584xvfwJw5c1BWVgZgYBhQKBQoKyvDxo0bB/VS+OSTT/CPf/wDPT09oeuzsrKGnCQ51O0LomhhNBrh8/nQ2Ng44mmcWCWbMMCBRSRHgiBg3rx5mDdv3pCPf/e738X69esH/AX3xz/+EbfccgtKSkqQlZWFGTNm4Jlnnhn2L8HgvIacnJxBzb0kSUJ7e/ugXgqnTp3C5s2b4XA4QtempKQM28o5LS2N80UoYvofL2QYiGEcWEQ0tMzMTGRmZg74teLiYmzfvh1nz55FfX09iouLB10TLkEQkJ6ejvT09CEDicPhCPVR6L+rsHfvXrS0tISuS0hIGLaVc1ZWFk830LjKycmBUqmE3W7HsmXLIr2ccSGLMMCBRUSjV1BQECrAHS86nQ6zZs3CrFmzBj3W09OD2traQbcfPvzwQzQ0NIQ6NGo0GuTl5Q3ZynnKlCnDdlskCpdSqZz0xwtl8aeEA4uIYk98fDymTZuGadOmDXrM6/UO6NAYvP2wfft21NbWwufzAQjUNEyZMmXYgsa4uLiJflsUowwGA8NArOPAIqLJRa1WY+rUqUO2hxVFEY2NjYNaOR88eBAbN26E2+0OXavX64e8/WAwGAYdwSR5MxqN2LNnT6SXMW5kEQY4sIhIPoK7AVOmTMHSpUsHPCZJEtra2kI7CcGg8Nlnnw0qaExNTR0UEII/WNAoP0ajEW+99dak7cApizAAcGAREQUKGjMyMpCRkYH58+cPejxY0HhuncLu3bvR2toaui4hIWHYkw8saJycjEYjPB4PmqurkZ2SAggCoNUGfkwCsgkDHFhERCM5X0Gjy+UaUNAY/PGvf/0LDQ0NkCQJQKCgsf8uQv96hZycHBY0xhJJAj75BNi1C3N27cILx48jpbQU0GgCjysUQF4esGgRMGsWsHIlMMS48lggm/8qCwoKOLCIiC5YQkICiouLUVxcPOgxj8czqKCxpqYGlZWVqKurG1DQmJubO6ig0WAwsKAxmrhcwPvvAy+/DOzbB/T2IlmSMKW3F16vF9r4+MB1ogicOgV8+mngf8fHAytWADfdBKxb9+/QEANkEwby8/NDA4tKSkoivRwimkQ0Gg3y8/ORn58/6DFRFNHQ0DCgmNFut+PAgQN455130NvbG7o2WNB47skHg8GAxMTEiXxL8rVtG/C97wEnTwb+d0oKkJEBQRDgdLshqNVDd8uUJKCrC7DZgM2bgdmzgR/+EFi4cEKXf6FkEwb6Hy9kGCCiiRLcDcjNzR2yoLG1tXXQjsLJkydhs9ngdDpD16alpQ3byjk1NZUFjRfL6QR+8hPgT38C3G4gK2vQN3uNRgOvxzP07xcEIDk58KO3N3B74frrgTvvBO67L7BrEMVkEwY4sIiIoo0gCKEukAsWLBj0uMPhGHTyoaamBrt27UJbW1vousTExGELGjMzM1nQOJKmpsCH9kcfAYmJQG5u4MP9HBqNBj0u18jPFxcXeI72duC554BDh4Bf/QrQ6cZh8WNDNmEA4MAiIootOp0Os2fPxuzZswc95nK5hmzlfPjwYTQ2Ng5Z0HhuK+dgm11Za20FbrkF2L8/sBtwnroNjUaDzo4OSABG3IcRBCA9HejpATZtAu64A/jd74Ao7V8huzDAgUVENBkkJCSgpKRkyNueHo8HdXV1g3YUtm3bhtraWvj9fgCBHiz9Cxr7h4a8vDxoYqgA7oJ4PMDXvhYIAnr9iAV/GrUaoiTB5/NBHe6pkPh4IDMT2LIFePBB4De/CZxCiDKyCgMcWEREcqDRaIadLeH3+wd0aAzehti3bx/+/ve/hwoaBUE4b0FjQkLCBL+rcfDii8D27YEP6zCCTzAceT2e8MMAEOhFkJYGvPce8PrrwI03XuiKx42swgAHFhGR3AV3A3JzcwdN4JMkCS0tLYNaOR8/fhybNm1CV1dX6Nr09PRhWzmnpKRE/xeuY8eAn/88EALCPG6u7gsDHq8Xo45CiYmBIsVnnwVWrQL6xiJHC1mFgWBKPnv2LMMAEdE5BEFAVlYWsrKysPCcI3GSJIVd0JiUlDRsK+eoKWj8/veBzs5A06AwKQQBapUKnuFOFIxErwfq6oD//u9AEIkisgoDwYFFVVVVg474EBHR8ARBQEpKClJSUnDppZcOejxY0HhuUDh06BCamppCBY1xcXHDFjRmZ2dPTEHj0aPAzp2BHgKj2MHwiCJe9vuxuaEBntZWFMfF4W69HsvC7QGhUAQKCP/5T+Db3w6cOIgSsgoDHFhERDQ+RipoHKqV85YtW1BXVzegoDEvL2/IsJCbmzt2BY1//Wugy+AodgUA4L/q6/G+x4Mr1WosyM7Gxs5OfKO6Gv8vPx/zw62h0OkCuwN/+1ug/0CUkFUYADiwiIhoomk0GhQWFqKwsHDQY36/Hw0NDYN2FPbu3Yu33347tCUvCAKys7OHbOU8qoJGtzvwQazVjmpX4EhPDz5wOHB7SgosbjdK0tLwhZQUXH/6NH7R1ITfD1GsOSSFAlCrgVdfBe69d1RrGE+yCwMcWEREFD2CuwF5Q3xLF0URLS0tg1o5Hzt2DB988AG6u7tD1wYLGoc6+aDT6f5d0HjiRKBWYKiWwudhdTqhAHBtaira+3YzNEolrklNxS+bm9Ho9SJbrQ7vyRITgYYGoLYWMBhGtY7xIrswwIFFRESxQaFQQK/XQ6/XD1nQ2NnZOaCgMRgYduzYgfb29tC1ycnJoWBQ1tiIMocDYkIC1D4fVCrVyA2EAHzqdiNfo0FaXBzaEbj1oYqPx+y+NsPH3e7ww4BWCzgcgRMNDAORwYFFRESxTxAEpKamIjU1FXPmzBn0eHd395AFjU1bt8LZ1YXm6moAfScENBpogj/Uamg0Gqg1GqjV6lBQaPH5kKlShY4Xej0eID4emX39Blr6JlOGJdij4Ngx4LLLLvjfwViSXRjgwCIioskvMTER06dPx/Tp0wc+cN99kF5/HTq9Hh6vFx6PBx6PB16PB06HA16vF1LfpYIgQN0XDhw9PUjVaOByuaBQKEK1DHF9tx/ckoRR63ccM9JkFwY4sIiISMZ6eyEoFIiLi0PcEHMIJEmC1+sdFBQUfj86u7tx+tQp+EURU3JyAk/XFwK0oy0ElKRAO+QoIbswAHBgERGRbKnVgQ/iYQiCELpl4I+PR5fTCa/XixRJQhuAxKQkJMTHI7mvADF4eyBzNO2Jgy7k94yT6FnJBOLAIiIimRqh0ZDP74fT6YTT6UR3dzckSUJ8fDwu1enwdk8PphQUILFfY6TDPT0AgOmjLUgXhFGfaBhPUdATcuIVFBSgqqoq1BGLiIhkIlgr1u/vf6/Ph7b2dlRVVeHkiRNoqK+HJIrIzs5GcXExCgsKcE1ODiRBwJsdHaHf5xFFvNvZiUvj48M/SQAAohh4/XPrGSJItjsDHFhERCRDM2cCKhU8LhecbjccTid6enogCAISExORM2UKkpOSoDpnC//S+HisTU7G/9fUhHa/Hwa1Ghs7O1Hn8eDx/PzRrcHtDhwvnDFjDN/YxZFlGODAIiIi+Tl9+jQq9+zB2s5O+Jua0KVWIykpCXm5uUhKToZyhAFKT+fm4tfNzXivsxNOvx/T4uLwP0YjFo52nLPLFbhdUVR0Ee9mbMkyDHBgERHR5CdJEo4fPw6bzQabzYazZ88iISEBxcXFWHjmDPIKCkY1QVGjUOD+7Gzcn519MYsK7Axs2MACwkjjwCIioslJFEUcPnwYVqsVFRUVqKurg06nQ1lZGe6//34sW7YMmo8+AtavB3p7gb4OghOmuzvwmtdfP7GvOwJZhgGAA4uIiCYLv9+P/fv3w2azoaKiAi0tLcjIyIDJZILZbMbChQsH1gCsWhUo3jt8ODBGeKKGBUkS0NEBlJUBs2dPzGuGSbZhgAOLiIhil8fjwe7du2Gz2bBlyxZ0dnYiJycH69atg9lsxty5c4e/BaBQAN/+NvDVrwJOZ2Cs8ERobw8MKXrkkYl5vVGQbRjgwCIiotjS09ODnTt3wmazYdu2beju7sbUqVPxn//5nzCbzZgxY8a/pxOOZO3awFb9n/4EJCSM//17jwfo6QHuvx9YvHh8X+sCyDYMcGAREVH06+rqwrZt22Cz2bBjxw709vaipKQEN998MywWCwoLC8MPAOd67DFg507gs88CtwtGUUw4Kn4/0NQEzJ0LfOMb4/MaF0m2YYADi4iIolN7ezu2bt0Kq9WK3bt3w+fz4dJLL8Vdd90Fk8kEo9E4Ni+Ung789rfAzTcDdXXjEwh8PqChAbjkEuCFFwK7EFFItmGAA4uIiKJHU1MTNm/eDJvNhv379wMA5s+fjwceeADl5eXIvpjjfOczaxbw0kuB+oGaGiAzM9AQaCz09ACtrUBxMfD73wOjbU40gWQbBgAOLCIiiqS6urrQEcBDhw5BqVRi6dKleOyxx1BWVob09PSJWci8ecArrwQK+3bvBjQaICPjwk8ZiCLQ3Bz42WwGfvQjYKx2M8aJrMNAQUEBjh8/HullEBHJxpkzZ0JNgI4fPw6NRoMVK1bg6aefxurVq6GbqMr+cxUXA6+/HtjK/8UvgNraQD+AlJTwiwu93sDRwd7ewA7DI48EbkH0G2wUrWQdBoLHCyVJuvACFCIiGpYkSThx4gSsVuuALoCrV6/GrbfeipUrVyIhWu6jazTAPfcAl10GvPwy8OabgcI/UQTi4gK3D+Li/l1XIIqBD/6ensBpAUEAcnKAL34x0NQoim8LnEv2YcDlcqGlpQVZWVmRXg4R0aQQ7AIY3AHo3wXwG9/4BpYvXw6NRhPpZQ6vpAR46ingwQeBd94JnDjYvz+w9e9yBUIAEAgFcXGBWwCLFgGrVwNXXhnoJRBjBCmMOb4OhwMpKSno7OyM3BbOOHC73XC5XBN3X4qIaJIKdgGsqKhARUUFmpubkZ6eDpPJBIvFMrgLYKyRpMCpgOrqwG4AENgpKCgAsrImrovhKIX7+R3D/89cvLi4ODYcIiK6QB6PB3v27IHVah3QBfCyyy4buQtgrBEEYMqUwI9JSNZhgHUCRESj43a7sWPHjkFdAK+99lqYzWbMnDmTf7fGIFmHASIiGllXVxcqKyths9mwfft29Pb2ori4GDfffDPMZjOKiooYAGIcwwAREQ3S0dGBLVu2wGazYffu3fB6vZg9e/bYdwGkqMAwMAKn0wlRFJGSkhLppRARjavm5uZQAeC+ffsgSRIWLFiA+++/HyaTafy6AFLEMQyM4KWXXkJNTQ1+8IMfQK1WR3o5RERjqq6uLnQEsH8XwEcffRTl5eU8bSUTsg8DL7zwAlavXo2SkpJQ8yFlv25R8+fPx29/+1ts2LABs2fPjuBKiYjGxpkzZ1BRUQGr1TqgC+BTTz2FNWvWTKoj5BQe2YeBxx9/HI8//jhmzpw54NftdjuOHz+OzZs34+jRo9i/fz/DABHFpGAXwOAOwJkzZ0JdAG+55RasWrUqeroAUkTIPgyUlpbiz3/+M86cOYP9+/fjxIkTaGxshN/vR1JSEgoKCvC5z30OeXl5kV4qEVHYhusCWFpaivvuuy/6uwDShJJ9GFizZg3uv/9+KJVKFBYWwmQyobi4GAaDAVlZWUhNTUVcXBwSY7C9JBHJi9/vx4EDB2Cz2QZ0ASwvL4fFYsGiRYtiuwsgjRvZ/1dRWFgInU6HV199FZmZmVCpVPzDQkQxw+PxYO/evaEugB0dHcjOzsbatWthNpsxb968ydMFkMaN7D/15syZA5VKBY1Gw9bERBQTgl0AKyoqsHXr1lAXwP/4j/9gF0C6ILIPA/n5+fjZz37G4zNEFNW6u7uxbdu2AV0Ap02bhvXr18NsNuOSSy5hAKALJvswAABf+MIXsG/fPsyZM4cVtUQUNTo7O7FlyxZYrdZQF8BZs2bhzjvvhMlkwtSpUyO9RJokGAYAPPvss3j77bfx6quvYtGiRaF+AwAG/DMR0Xhrbm7G5s2bYbPZQl0A58+fj2984xswmUzIycmJ9BJpEmIYAFBeXo7U1FRkZmYOeoyhgIjGW11dXagJ0CeffAKFQoElS5awCyBNGEGSJGmkixwOB1JSUtDZ2SmbzlSiKMJut6OpqQkZGRkoKiqK9JKIaBI5e/ZsqAfAp59+Co1Gg+XLl8NisbALII2ZcD+/uTPQj9frxUsvvYR3330Xn376Kfx+P1JSUqDRaFBcXIwf//jHyM3NjfQyiSgGSZKEkydPwmq1hroAxsfHY/Xq1diwYQO7AFJEcWegT2dnJ+6++27s3r0by5Ytw5w5c5CTkwOFQoGGhga8+uqrmDJlCv72t78hLi4u0sslohggiiKOHDkS2gGora1FcnIySktLYbFYsGzZMv59QuOKOwOj9Prrr+Ojjz7C//zP/6C8vBxJSUkDHr/hhhuwcOFCfPLJJ1i8eHGEVklE0a5/F8DNmzejqakp1AXQbDZj8eLFbGxGUYf/Rfb54x//iPXr1+MLX/jCkI/n5OQgJycHp06dYhggogG8Xi/27NkTCgDBLoAWiwUmkwnz589nF0CKagwDffR6PRoaGgb9em9vLxoaGvC9730PSqUSc+bMicDqiCjauN1u7Ny5EzabDdu2bUNXVxeMRiOuueYaWCwWdgGkmMIw0GfDhg148sknsXbtWmzYsAGZmZlobm7GkSNHsGfPHnR2duKxxx7DrFmzIr1UIoqQ7u5uVFZWwmq1YseOHXC73Zg2bRq+9KUvsQsgxTQWEPYRRRH//Oc/8bvf/Q5HjhxBVVUVFAoFpk6ditLSUtx0000wmUyRXiYRTbBgF0CbzYaPPvoo1AXQbDbDbDazCyBFtXA/vxkGztHV1YXGxkbo9XokJydHejlEFAEtLS2oqKhARUUF9u7dG+oCaDKZYDab2QWQYgZPE1ygpKSkAScJRFGEJElQKBTc/iOaxIJdAG02Gw4dOgSFQoHFixfj0UcfRVlZGTIyMiK9RKJxwzAwAlYAE01eVVVVoSZA/bsAPvnkkygtLZ30O6FEQQwDRCQbwS6AwSZAp0+fRnx8PFatWoWvfOUrWL16NbsAkiwxDBDRpBbsAhgcBNS/C+A999yD5cuXswsgyR7DwDn8fj8EQeDtAaIYJooiDhw4AKvVOqgLoMlkwuLFi6FWqyO9TKKowTBwDrvdjr/+9a+4//77odFoIr0cIgpT/y6AW7ZsQXt7O/R6fegIILsAEg2PYeAcDocDr732Gq655hqUlJREejlEdB5utxu7du2CzWbD1q1b0dXVBYPBgKuuugoWiwWzZs3iKSCiMDAMnKOgoABAoMqYYYAo+gS7ANpsNmzfvh1utxuXXHIJbrrpJpjNZkybNo0BgGiUGAbOodPpkJaWhrNnz0Z6KUTUJ9gFsKKiArt27Qp1Abz99tvZBZBoDDAMDCE/Px9VVVWRXgaRrLW2toaaAAW7AM6bNw/33XcfTCYTpkyZEuklEk0aDANDKCgowKeffhrpZRDJTl1dHTZv3gyr1YpDhw5BEAQsWbIE3/72t1FeXs4ugETjhGFgCPn5+fjggw8gSRLvPRKF6R//+Ad2796NsrIylJWVhV25H+wCWFFRgWPHjoW6AD7xxBMoKytjF0CiCcAwMIT8/Hy4XC40NzdDr9dHejlEUa2lpQXXX389jh07hoULF+K5557DXXfdhYcffhh6vX5QqJYkCV1dXXj55ZcHdQH88pe/zC6ARBHAMDCE4ImCs2fPMgwQjeCXv/wlWltbsWvXLuTn5+OFF17Ar3/9awiCgB/96EeDwoAgCIiLi8Nbb72FZcuWsQsgURRgGBhCXl4eVCoVqqqqsHTp0kgvhyiqHTt2DNOnT0d+fj4A4NZbb0VzczP++7//Gz/60Y+GvF2g0Wjw3nvvQaXiX0FE0YDtuIagVCphNBp5ooBkq6OjA7/85S/x1FNPoaGhYdjruru70dXVhczMTEiSBABQqVS46qqr4Ha78d577wFA6LH+GASIogfDwDDy8/PZa4BkRxRFbNy4EevWrcNTTz2Fp556CtXV1UNeK0kSEhMTkZCQgNbW1gGhIT8/H8uWLcPrr78eel4iil4MA8NgrwGSI4VCAbfbjc9//vPYs2cPUlJSsH379iE/zIO/Vl5ejiNHjuDEiROhxzQaDRYvXhw6oqtUKifmDRDRBWEYGEZBQQHq6+vhdrsjvRSiCXX55Zfju9/9LvLz87Fu3Tps3LgRDodj0HXBWoBrrrkGALBp06bQY1qtFna7HdOnT+efIaIYwDAwjGAx1HBbpESTVWJiYmhi5y233IKdO3cOumUmSVLoR15eHq6++mq8/vrrePPNNwEA9fX12L9/P+bMmQOtVjtkzQARRQ+GgWH0H1hEJDfBo4CXX345AGDnzp0DbhUIggCFQhG67uGHH4bZbMa9996Lyy67DAsWLEBRURG+/OUvD3g+IopODAPD4MAikjufzwcAsFgsePfdd9HV1RV6zO124y9/+Qt+9atfAQDS09Px3HPP4Y033sDy5cvx0ksv4f3330dOTk5E1k5Eo8OzPefBIkKarCRJwsmTJ9HS0oLly5cP2Qsg+G3+tttuw4YNG1BXVwedTgeHw4HExET85S9/QXV1NW677TZotVpotVqsXLkSK1eunOi3Q0QXiWHgPDiwiCYTSZJw5MgR2Gw22Gw21NTUoKioKHT871zBEwBXXXUVent78cQTT6CmpgZJSUl466238OSTTyIlJQVarXYi3wYRjQOGgfPgwCKKdaIo4uOPPw4FgKamJqSlpaG8vBzf+ta3sGTJkmF/r8/nw+9//3u8+OKL8Hq9+OSTT3DZZZfh7rvvRmJi4nl/LxHFFoaB8+DAIopFXq8Xe/fuhc1mw+bNm9He3g69Xg+TyQSz2Yz58+eHde5fkiRUV1dj5cqVeO2111BYWDgBqyeiSGAYOA8OLKJY0dvbi127dsFqtWLbtm1wOp3Iy8vDVVddBZPJhNmzZ4c9UjhIrVbj+9///jitmIiiCcPAeXBgEUUzl8uFyspK2Gw2bN++HT09PSgqKsINN9wAs9mM4uJi3t4iorAwDJwHBxZRtHE4HNiyZQsqKiqwa9cueDwezJw5E7feeivMZnNoN4uIaDQYBkbAgUUUaa2trdi8eTNsNhv27t0LURQxd+5c3HvvvSgvL0dubm6kl0hEMY5hYATBEwVEE6mhoSF0AuDgwYMQBAGLFy/GI488gvLycmRmZkZ6iUQ0iTAMjKD/wCKep6bxVF1dHQoAR48ehVqtxrJly/D444+jtLQUqampkV4iEU1SDAMj6D+wqKSkJMKroclEkiR89tlnqKiogNVqxalTp0Jd/NavX4/Vq1cjMTEx0sskIhlgGBhB/4FFDAN0sSRJwtGjR2G1WlFRUQG73Y6kpCSUlpbia1/7GlasWMEdKCKacAwDI+DAIrpYQ3UBTE1NRXl5OR555BEsWbIEarU60sskIhljGAgDBxbRaPl8vgFdANva2pCVlQWTyQSLxRJ2F0AioonAMBAGDiyicAS7ANpsNmzduhVOpxO5ubm48sorYTabL6gLIBHRRGAYCAMHFtFwgl0AKyoqUFlZGeoCeP3118NisbALIBHFBIaBMHBgEfXncDiwdetW2Gy2UBfAGTNmsAsgEcUshoEwcGARtba2YsuWLbBardi7dy/8fj/mzp2Le+65ByaTiV0AiSimMQyEgQOL5CnYBbCiogIff/wxBEHAokWL8PDDD6O8vBxZWVmRXiIR0ZhgGAgDBxbJB7sAEpEcMQyEiQOLJidJknDq1KlQAPjss89CXQC/9KUvYfXq1UhKSor0MomIxhXDQJg4sGjykCQJx44dg9Vqhc1mg91uR2JiIkpLS3HXXXexCyARyQ7DQJg4sCi2BbsAVlRUwGazobGxESkpKaEugIsXL4ZGo4n0MomIIoJhIEwcWBR7ztcF0Gw2Y8GCBewCSEQEhoGwcWBRbPB4PNi1axesVuugLoAmkwmXXnopuwASEZ2DYSBMHFgUvVwuF7Zv3w6bzYbt27fD5XKhsLAQ119/PcxmM0pKStgFkIjoPBgGRoEDi6KHw+HAtm3bYLVaQ10Ap0+fjltuuQUmkwmFhYWRXiIRUcxgGBgFDiyKrLa2NmzevBk2mw179uwJdQG8++67YTab2QWQiOgCMQyMAgcWTbzGxsZQD4D+XQAfeughmEwmdgEkIhoDDAOjwIFFE6O6uhoVFRWwWq04evQoVCoVuwASEY0jhoFR4MCi8TFUF8C4uDisWrWKXQCJiCYAw8AocGDR2Al2AQwGgOrqaiQmJmLNmjW48847sXLlSjZ3IiKaIAwDoxAcWMTjhRdGFEUcPHgwFAD6dwF86KGHsGTJEnYBJCKKAIaBUeLxwtHx+XzYt28frFZrqAtgZmYmzGYzTCYTFi5cyC6AREQRxjAwShxYNLJgF0CbzYatW7fC4XAgNzcXV1xxBcxmM7sAEhFFGYaBUeLAoqEFuwBWVFSgsrISLpcLBQUFuO6662CxWNgFkIgoijEMjBIHFv1bsAugzWbDzp07Q10AN2zYALPZzC6AREQxgmFglOQ+sGi4LoBf//rXYTabkZeXF+klEhHRKDEMjJIcBxY1NjaioqIi1AUQABYuXIiHHnoI5eXl7LlARBTjGAYugBxOFNjt9lAXwCNHjkClUmHp0qX47ne/i9LSUqSlpUV6iURENEYYBkahVxRxwuWCc/Fi7O7uRtOnn6JHFKEUBOhUKhTHx2NmQgJmJSZiikYTUwVzkiTh9OnTsFqtqKiowMmTJxEXF4eVK1fixhtvxJo1a9gFkIhokmIYCMPpnh680dyMV5ua0Or1orO4GK7ubjS3tiL4cS8CUPR9+McrFFiQlIT12dn4fHo64qP0HP1QXQATEhJQWlqKO+64AytWrEB8fHykl0lEROOMYeA8qt1u/KCqCpva29Ht9yNOoUCSUgmtUomazk5k6/VQqQb+K/RJEnr8fmx3OLDD4UCuRoN78vLwlZwcKKNgpyDYBTBYA9DQ0ICUlBSUlZXhwQcfxNKlS9kFkIhIZhgGhiBKEl5tasIPq6vR5PFAp1Qir9+2v6fvw7LX4xkUBlSCgGSVCskAvKKIRo8H3ztzBh+0teEHRUUoisA37WAXQJvNhoqKilAXQJPJBLPZzC6AREQyxzBwDpffjwc/+wzv9t0CyNVoQtv/QZq+YODp7UViQsKwz6VWKJCt0aDH70dFRweu/uQT/Pcll+DzGRnj/C7+3QWwoqICW7ZsgcPhwJQpU3D55ZfDYrGwCyAREYUwDPTj8vtx1/Hj+LC9HWkqFRLP821Zo9Gg1+MJ63njlUrkKhRo9Hpx38mT+Kkk4erMzLFadojL5cKOHTtgs9lCXQDz8/Nx3XXXwWw2Y/r06TFV1EhERBODYaCPTxTxzZMn8WF7OzLUasSP8K1Zo9HA09sb9vMrBAE5ajUavV48dOoUkpRKmMfgeJ7D4UBlZSWsVmuoC2BJSQk2bNgAk8mEoqKii34NIiKa3BgG+vyhsREb29qQrlKNGASAQBhwOByjeg1BEJCtVqPO68W3T53Ce3PnQn8BxXrBLoAVFRXYvXs3/H4/5syZg69//eswmUwwGAyjfk4iIpIvhgEAJ10u/NRuh0oQkBBmIV1cXBy8Xi8kSRrV1rvQt0Ng7+3F02fP4vni4rB+f1NTU+gIYLAL4IIFC9gFkIiILprsw4AkSXjizBm0eb3IHcW3dE2/EwXauLhRvaZSEJCiUuGd1lZ8ISNj2ILCmpqaUAA4fPhwqAvgd77zHZSVlbELIBERjQnZh4F9Tid2OBxIU6kGnRo4H01fAPD09o46DABAslIJh9+PF+vr8bn0dAiCAEmScObMGVitVthstgFdAJ9++mmsWbMGycnJo34tIiKi85F9GHituRm9oohMVfj/KnpratD81lvoPXwY1W43NAkJiMvLQ/oVVyB54cKwnydFqcQ+pxN//+QT1G7bBqvVGuoCuGbNGnYBJCKiCSHrMNDq9eLdlhYkKBSjuu/vbW2F6HYjfskSqNLSkJaUBOeePaj5n/9Bzi23IM1sHvE5XD096HI40Azg6xs3YubOnSgvL2cXQCIimnCCJEnSSBc5HA6kpKSgs7MTOp1uItY1IT5oa8Mtn34KvVoN1QWcv6+vr4fb7UZhYSEkUcSZJ56A5PHgkh//eNC1EgJ9AJwOB5xOJ3w+H1QqFYT0dBTGx2PvqlXsAkhERGMq3M9vWe8MfOpyAcAFBQEgUDcQPF4oKBRQp6ej5/Tp0OOSJKG7uxsOpxNdTif8fj/UajV0Oh10Oh3i4+Ph8PngBNAhishgGCAiogiQdRg43NWFMDZGhqWWJPidTrjq6uA+dAhdBw8iedkyOJ1OOBwOdHV1QRRFaDQapKWlITk5GVqtdsBzaBUKtPl8ONbdjdWpqRf5joiIiEZP1mHgZE8P1BfRn9/x5pvo/eADnNZoAEGActYsOFesgLOmBlqtFhkZGUjW6RB3nvv/akGAT5JgH0U3QyIiorEk6zDgFkVczKierCuvRMeUKfB3dgJHj0Lw+ZCVlobUvDxo1OqwnkMQBAiCgF5RvIiVEBERXThZj6272KE9cbm5mHnFFZh6xRWY/dRTSI6LQ/dLL0E9imOKY7UWIiKiCyXrMJCgUEC8iJoBAFAqFEhLS4NKpULykiVwnzkDT0ND2L9fkiRIkgQtxwkTEVGEyPoTaEZCArxj+HySN/BsYt8phXB4JAlqhQKF5xQWEhERTRRZh4HZiYlA3zfz0fB1dg76NcnnQ2dlJQS1GnF5eWE/l1sUEa9QYEZCwqjWQERENFZkXUA4KzERir5qfvUo7tk3vPQS/G43EkpKoE5Ph6+zE507dsBTXw/9TTdBMYpv+T2iiJmJidBdQJ0BERHRWJD1J9DCpCRkqNXo9PmQOYp79rrly9GxeTPabTb4u7qgjI+HNj8f+htuGNVsAkmS4JMkXMbpg0REFEGyDgPJKhW+mJWFX9bWQpKksCv6dcuXQ7d8+UW/vtPvR6JSieuysi76uYiIiC6UrGsGAOCLWVlIUCrh9Psn9HUlSYLD70d5aiqKOJWQiIgiSPZhYEZiIi5PT4fD74f/Io8ZjkaH348EpRJ35uZO2GsSERENRfZhAACeKChAXlwcmrxjedBweF5RRLffj1tycrBsEk2BJCKi2MQwACBbo8Hj+flQCgI6fb5xfS1RktDo9WJmYiIeNBjG9bWIiIjCwTDQ55rMTNyak4NuUYRznAKBKEmo93qRrdHg59OmIYnHCYmIKAowDPQRBAFPFBTgy9nZcIoi2n2+ixpvfC5fXxDQq9V4Yfp0zE1KGrPnJiIiuhgMA/0oBQHPFhXhG3l5EAHUeb3wXuQ0QUmS0OnzocHjQZFWiz/MmIGlrBMgIqIowjBwDoUg4NH8fPxpxgxMj49Ho9eLFq8XvlHuEkiShG6/PxAoJAkbcnKwcc4czE9OHqeVExERXRjetB7G6tRUvDtnDn5dV4eXGxvR5PVCApCkUCBeoYBaEAY1KRIlCW5RRE/fD61CgaXJybjfYICZXQaJiChKCVIYN8YdDgdSUlLQ2dkJnQy3uJ0+H95rbcUrTU046nLBLYrwiiIUggAJQDASSJKEOIUCOpUKn09Px416PRYkJYXd2ZCIiGgshfv5zZ2BMCSrVLgxOxs3Zmej0+fDse5uHHO50ODxoFcUoRQEJCqVmBYfjxkJCSjSaqEaxawDIiKiSGIYGKUUlQrLU1KwPCUl0kshIiIaE/z6SkREJHMMA0RERDLHMEBERCRzDANEREQyxzBAREQkcwwDREREMscwQEREJHMMA0RERDLHMEBERCRzDANEREQyxzBAREQkcwwDREREMhfWoKLglGOHwzGuiyEiIqKxE/zcDn6ODyesMOB0OgEARqPxIpdFREREE83pdCLlPNN2BWmkuABAFEXU1dUhOTkZgiCM6QKJiIhofEiSBKfTidzcXCgUw1cGhBUGiIiIaPJiASEREZHMMQwQERHJHMMAERGRzDEMEBERyRzDABERkcwxDBAREckcwwAREZHM/f+TtMc0Tjh/0AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -559,10 +559,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:48.856200Z", - "iopub.status.busy": "2024-02-09T16:52:48.855797Z", - "iopub.status.idle": "2024-02-09T16:52:52.144777Z", - "shell.execute_reply": "2024-02-09T16:52:52.144121Z" + "iopub.execute_input": "2024-02-14T16:07:42.616100Z", + "iopub.status.busy": "2024-02-14T16:07:42.615696Z", + "iopub.status.idle": "2024-02-14T16:07:45.836270Z", + "shell.execute_reply": "2024-02-14T16:07:45.835555Z" } }, "outputs": [ @@ -577,7 +577,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABh+klEQVR4nO3dd3yT5frH8U+SNt27tFjassteMpVdaFCOchQ3MhT30SMeKEP2kCHrCIIgIjKcqCiun6SADOEgCOJA9iptKXTvNknz/P6IraCMFtI+SXO9Xy9e59Dx5IpQ8s39XNd9axRFURBCCCGEy9KqXYAQQggh1CVhQAghhHBxEgaEEEIIFydhQAghhHBxEgaEEEIIFydhQAghhHBxEgaEEEIIF+dWkS+yWq2kpKTg5+eHRqOp6pqEEEIIYQeKopCXl0dERARa7dXf/1coDKSkpBAVFWW34oQQQghRfc6dO0dkZORVP1+hMODn51d+MX9/f/tUJoQQQogqlZubS1RUVPnr+NVUKAyU3Rrw9/eXMCCEEEI4mevd4pcGQiGEEMLFSRgQQgghXJyEASGEEMLFSRgQQgghXJyEASGEEMLFSRgQQgghXJyEASGEEMLFSRgQQgghXJyEASGEEMLFSRgQQgghXJyEASGEEMLFVehsAiGEevItFlJMJoqtVjSAt05HlIcH+mscRyqEEJUhYUAIB1NUWooxK4u9ubkcyMvjZHExJqsVK6DBtpznpdPRzNubtr6+dA8IoHtgILrrHEQihBBXI2FACAeRWFzM+osX+fDiRVJMJhRAB3hqtfhotWg1GhTAqiiUWK3syc1ld24uK1JSaOTtzaNhYdxXqxZB7u4qPxMhhLORMCCEykoVhTWpqSw4d44Msxm9RkOom9s1bwN4X/L/i61WjhUWMunMGVaeP8+0+vUxBAVd98hSIYQoI2FACBWdLS5m3MmT7MjJQQdE6PVoK/ki7qnVcotej0VRSCwp4emjR3mgVi0m1atHgJv8iAshrk86kIRQyaGCAh46dIit2dkE6nSE3UAQuJSbRkOEXo+HRsO7Fy4w9PBhLppMdqxYCFFTSRgQQgVHCgoYdvgwZ4qLidDr8dLp7HZtfzc3wtzd+SE3l8ePHCHTbLbbtYUQNZOEASGqWZbZzFNHj5JUUkKEXl8lUwB6rZYwd3f25+Xx4vHjlCqK3R9DCFFzSBgQoprNTkzkeFERtW/ytsD16LVaQtzc+C47m3cvXKiyxxFCOD8JA0JUo82ZmXx08SL+Oh1u1dDt76XToQPmJSZyqqioyh9PCOGcJAwIUU1KFYWZiYmYrVb87NgjcD2h7u6km838Nymp2h5TCOFcZO5IiGqyIzubE4WFBLu7V2oPAKvZTPqnn5KzaxelBQV4REcTdv/9+LRsWaHv12o0+Op0bMrMJKWkhAgPjxt9CkKIGkpWBoSoJh9evIhFUfCs5JkC51esIOPbb/G//XbCBw9Go9WSOH8+hUePVvga/joduRYLn6alVbZsIYQLkDAgRDVIN5nYmp2NTyVvDxSdPEnuDz8Q9uCDhD/yCEGxsUS//DLuoaFc/OijCl9Hq9HgptHwcVoaikwWCCH+QsKAENXg98JCCktL8ankqkDevn2g0RDYu3f5x7Tu7gT26EHRiROYMzIqfC0frZaUkhLSZN8BIcRfSBgQohocLizECpWeICg+cwb9Lbeg8/K67ONeDRvaPn/2bIWv5anVUmS1criwsFI1CCFqPgkDQlSDwwUFAJU+PMiSk4NbYODfPu4WEGD7fHZ2ha/lptFgBY5IGBBC/IWEASGqQbrZzI3sKmA1mdBcctiQ1WoFQKPXA6BU4uwBjUaDFsixWG6gEiFETSajhUJUA5Oi3FAY0Or1KBYLFouFU6dPU1JSQkBAAF75+SiKUh4KKkoBzNJAKIT4C1kZEKIa6DUabuQl2C0gAEtWFklJSZSUlKDX61GsVi6cPElJSQmZZjM5OTnlKwYV4V4NOx8KIZyLhAEhqkGYXo/1Bt6Re9StS8G5cxRlZxMSHIxWo6Fu3brUMptxc3NDEx5OSkoKx44dIykpidzc3Ks+jqIoKECQmywICiEuJ2FAiGrQzNsbDVR+xr9JE0rNZnxPnMDHxweLxYLFZCJ/9278YmJo0LYtjRo3JiwsDLPFQnJyMseOHSM5OZm8vLzLHs+sKOiApt7edn1uQgjnJ28RhKgGzby90Wk0mBUFfQWX6QsLC8n09sanQwfyv/oKTVERFkXh7IcfYkpLo+4TTwDg7uZGcHAwwcHBmMxmcnNzycvNJSkpCa1Wi5+fH/7+/lg9PfHUamkmYUAI8RcSBoSoBs19fPDW6Si0WtFXYOMhs8VCUnIy3l5eRI4cSfonn5CzaxeWjAxK69cnauRIvJs2/dv36d3dCQ0JITQkBJPJRG5uLrm5ueTk5GAJCKBOaSknDhwgqGNHdNV4WJIQwrFplAqsW+bm5hIQEEBOTg7+/v7VUZcQNc4Lx47xSVoadfT6a+43oCgKZ86epdRioX79+pe9aB89epTQ0FBCQkIq9dhFxcUkFRVRf+dO3L75hsDAQGJjYzEYDNx6661oK7kzohDCOVT09VtWBoSoJg+HhfFFRgbFVite13hXfj41lZLiYurVq/e3d+96vR5TJfYWKFPs5kZtf382TZhA1qBBGI1GEhIS2LBhAyEhIfTp04d+/frRqlUrCQZCuCAJA0JUk9sDAmjq7c2vBQVEaLVXXB3IysoiJzubiDp18PT0/NvnbyQMWBWFgtJSHg0PJ9zDg/CmTWnatCn//ve/OXToEEajkc2bN7N+/XrCwsKIi4vDYDDQvHnzSu+YKIRwTnKbQIhq9H12NkOOHEEHBP5lxK+wsJCziYkEBwcTHhZ2xe9PS0sjOzubxo0bV/gxU00mQtzd+apVK6KuEDDAtrPhzz//TEJCAps3byYzM5OIiIjyYBATEyPBQAgnVNHXbwkDQlSzyadPsyIlhXB3d9z/WJI3WyycPnUKT09PoqOjr/q9OTk5pKSk0KRpU7QVeHEuKC0lt7SUBQ0b8nB4eIXqs1qt7N+/n4SEBLZs2UJOTg7R0dEYDAYMBgMNGjSo2BMVQqhOwoAQDirXYuHe337jUEEBt+j1aIEzZ85QWlr6t4bBvyoqKuLMmTM0aNAADw+Paz5OidVKmtnMP0JCeKtJkwqFh7+yWCzs27cPo9HId999R35+Pg0aNCgPBtcKLkII9UkYEMKBnS4qYtDhw5wuKoKMDPLz8qhXrx6e13mBLy0t5dixY0RGRuLn53fVryu2Wkk3m+kaEMA7TZvib4ddB00mE3v27CEhIYHt27dTWFhITEwM/fr1Iy4ujoiIiJt+DCGEfUkYEMLBnSgs5K6dOzlpMnGLjw9hFfzZOnrsGKEhIVccL1QUhZzSUgqsVnoEBLA8JoYgd3d7l05JSQm7du0iISGBHTt2UFJSQosWLTAYDMTFxRF2lZ4HIUT1kjAghIP78ccfeXLsWDz/9S+SbrkFgFru7uius5x/+vRpPD09ueWP7yljtlq5aLHgpdUyNDyc0dHR+FTDxkKFhYV8//33GI1Gdu/ejclkok2bNhgMBvr27VvpPRGEEPYjYUAIB5aSksKQIUNo2rQpry1axGeZmcw6e5YLZjM6bIcJeVxl3j85ORmLxULdunVRFIUiq5Ws0lI0QIyXFzMbNKBrQEC1Pp8yBQUFbN++HaPRyP/+9z+sViu33nor/fr1IzY2lsDAQFXqEsJVSRgQwkEVFxczfPhw8vPzeffdd8t/pi6aTGxIS+PdCxc4U1yMFUBR8NRq8dBqKVsvyMzOJqeoiMCwMFAU9FotrXx8GBwezt2hodWyGlARubm5fPfddxiNRvbt2wdAp06dMBgM9OrVS/4tEaIaSBgQwgEpisKkSZPYtm0b77zzzhX3CzBbrWzPzmZfXh4/5+fzW0EBhVYrZT+oxYWF5KSkcH/btrQNCKB7QAAd/Pwceh+ArKwstm7ditFo5MCBA+h0Orp06YLBYKBnz574+PioXaIQNZKEASEc0Hvvvcd///tfZs+eTVxcXIW+x2y1ctFspsRqRQOcPnqU0U89xQfvvUdMTEzVFlwF0tLS2LJlC0ajkV9++QW9Xk/Xrl2Ji4uje/fueHl5qV2iEDWGnE0ghIPZu3cvixYtYtiwYRUOAgDuWi11Lhk5DKxbF42ikJSU5JRhoFatWjz88MM8/PDDpKamsnnzZoxGI+PHj8fT05Pu3bsTFxdH165dr7uXghDCPmRlQIhqkJKSwuDBg2nRogWLFi26qcOAFEWhd+/ePPbYYzz22GP2K1JlycnJJCQkYDQaOXbsGN7e3vTq1Yu4uDi6dOmCexWMSApR08nKgBAOoqioiPj4ePz9/Zk5c+ZNnwqo0WiIjo7m3LlzdqrQMdSpU6c84Jw9e7b8ZMVvvvkGPz8/evfuTVxcHB07dsTNDpsoCSH+JD9RQlQhRVGYMWMG586dY/Xq1XZbWYuMjKxxYeBSdevW5amnnuKpp57i5MmT5cHgiy++ICAggD59+hAXF0f79u3lyGUh7EDCgBBVaN26dRiNRl599VUaNmxot+tGR0dz4MABu13PkTVs2JDnnnuOZ599lmPHjpUHgw0bNhASEkKfPn0wGAy0bt1agoEQN0jCgBBVZM+ePSxZsoThw4fTp08fu147KiqK9PR0ioqKXKb7XqPR0KRJE5o0acILL7zAoUOHMBqNbN68mfXr1xMWFkbfvn0xGAy0aNHCoUcthXA00kAoRBVISkpi6NChtGzZktdee83u71h/+eUXhg8fzvvvv++UEwX2ZLVa+eWXX8qDQWZmJhEREcTFxWEwGIiJiZFgIFyW7DMghEoKCwsZPnw4JSUlrF279pqnC96o7Oxs+vbty9y5c4mNjbX79Z2V1Wpl//79JCQksGXLFnJycoiOji4PBva8VSOEM5BpAiFUoCgK06ZNIyUlhdWrV1dJEAAICAjA19eXxMTEKrm+s9JqtXTs2JGOHTsyZswY9u3bR0JCAuvXr+ftt9+mQYMG5cGgbt26apcrhMOQMCCEHa1Zs4YtW7Ywb948GjRoUGWPUzZeKGHg6tzc3Ljtttu47bbbGDduHHv27CEhIYF169bx5ptvEhMTU37kcp06ddQuVwhVSRgQwk52797N0qVLeeKJJ+jdu3eVP15UVBRJSUlV/jg1gV6vp0ePHvTo0YOSkhJ27dpFQkICb731FkuWLKF58+blwSA8PFztcoWodtIzIIQdnDt3jqFDh9K2bVsWLFhQLSNuy5cv5/PPP+fbb7+t8seqqYqKiti5cydGo5Hdu3djMplo3bo1BoOBvn37EhoaekPXtVqtmM1m2U5ZqE4aCIWoJoWFhTz22GNYLBbWrl2Lr69vtTzuN998w+TJk9mxYwfe3t7V8pg1WUFBAdu3b8doNLJnzx5KS0u59dZbMRgMxMbGEhQUVOFrHT16lNdee43U1FRiY2N54okn5M9IqEIaCIWoBoqiMHXqVFJTU1mzZk21BQGw7UIIOO2BRY7Gx8eH/v37079/f3Jzc9m2bVv5hlGvvvoqHTt2xGAw0Lt37+u+KcrOziY8PBwPDw9GjBiBm5sbTz/9NDqdrpqejRCVI9t1CXET3nnnHbZu3cqMGTOoX79+tT52dHQ0QI3ellgt/v7+DBgwgCVLlrBp0ybGjRuHxWLhlVdewWAw8PHHH3OtRdXOnTszdepUevXqRVBQEF26dJEgIByarAwIcYO+//57li1bxtNPP03Pnj2r/fEDAgLw8/OTMFDFgoKCGDhwIAMHDiQ9PZ0tW7bQrl07rFbrVV/gTSYTer2ed955hw4dOlR7UBSismRlQIgbkJiYyMSJE+nevTtPPvmkKjVoNBqioqJkvLAahYaG8tBDD9GoUaNrvtPX6/UAbNq0iXvvvfe6txWOHDnC66+/zsMPP8z7779/zVUHIaqChAEhKqmgoIBRo0YRGhrKjBkzVD0cJyoqSlYGHExpaSkAn376Ke7u7nTt2vWaf0d++OEH7rjjDtatW4e3tzfjx4/nmWeeobCwsLpKFkJuEwhRGVarlSlTpnDx4kXWrl2Lj4+PqvVERUWxf/9+VWsQV7Zy5Up69uxZ3ttxKUVR0Gg0pKWlMXnyZBo1asTGjRvx8fHhxx9/pGfPnjz88MOy1bSoNrIyIEQlrFq1im3btjFjxgyH2M42Ojqa9PR0eRfpIBRFQafToSgKW7ZsueotAqvVCsBHH31EWloaL774YnmwbNy4MS1btuTgwYPVWbpwcbIyIEQF7dixg+XLl/Pss8/So0cPtcsBbCsDIOOFjsBsNvPqq6/i6+uLoigEBATQrVu3v52YaLVay28bfPbZZ7Ro0YLOnTuXfz4vLw+tVkt6ejrw5yqCEFVJVgaEqICzZ88yadIkevXqxfDhw9Uup1xZGJC+AfVptVr8/PyYNWsWo0aNIiMjg08++aS8wbOoqKj86zQaDcnJyVy4cIH27dtftgVyeno6Bw8exGAwqPI8hGuSMCDEdeTn5zNy5EjCwsKYPn26qg2Df1U2XigTBerT6XSMGDGCixcvlofHJUuW8MQTT2CxWFi1ahWDBw/m5MmTgC1g6vX6y4KAxWJh69at6PV6evXqBSCrAqJaOM6/akI4IKvVyuTJk8nIyGDBggUOt6Vs2XihrAw4lqioKKZNm8b58+f54IMPcHNz48yZMxw6dIhbbrkFgObNm5OYmHjZiOKJEydYv349DzzwAPBnb4EQVU16BoS4hpUrV7Jz505ee+21K3aFOwIJA46t7LCjefPmkZ6ejre3N4qi4OXlRd++ffnyyy/p06cPBQUFjB07lpKSEv7zn/8Al68KlJaWlp9S6QjNq6JmkTAgxFVs376dFStW8K9//YuuXbuqXc5VRUdH8+OPP6pdhqiAsmCg0Wjw8PAgPj6ewYMH06hRIxo2bEheXh5vvfUWLVq0KP+6MjqdjrVr17Jx40ZiYmKIi4vDYDBQp04dVZ6LqFnk1EIhruD06dMMGzaMLl268Oqrrzr0fVs5vdD57d27l4sXL9K5c2dq1ap11a8rKSlh9+7dJCQksGPHDoqLi2nevDlxcXHExcVRu3btaqxaOAM5wliIG5Sfn8/QoUNxc3Nj9erVDv8C++uvv/L444/z/vvvy3ihCykqKmLnzp0kJCSwa9cuTCYTrVu3xmAw0Ldv3/JVCOHa5AhjIW6A1Wpl4sSJZGVlsXbtWocPAnD56YUSBlyHl5cXBoMBg8FAQUEB27dvJyEhgddee40FCxbQrl07DAYDsbGxBAcHq12ucHASBoS4xJtvvsmuXbtYtGhR+Qy/o/P395fxQhfn4+ND//796d+/P7m5uWzbtg2j0cjcuXOZO3cuHTt2xGAw0Lt3b1ndFVckYUCIP2zdupW3336bF154gdtvv13tcipMxgvFpfz9/RkwYAADBgwgKyuL7777DqPRyCuvvMKsWbPo0qULBoOBnj174uvrq3a5wkFIGBACOHXqFFOnTqVv374MGzZM7XIqTcKAuJKgoCAGDhzIwIEDSU9PZ8uWLRiNRqZMmYJer+e2227DYDDQvXt3p7glJqqONBAKl5ebm8uwYcPw8PBg1apVTvmP4ptvvsmGDRvYtGmT2qUIJ3DhwgU2b96M0Wjk0KFDeHh40L17dwwGA127dsXDw0PtEoWdSAOhEBVQ1jCYk5NTfp68M4qKiiIjI4PCwkKnfQ6i+oSHh/Poo4/y6KOPkpKSQkJCAkajkTFjxuDt7U2PHj0wGAx06dIFvV6vdrmiGkgYEC5t+fLl7Nmzh8WLFzv15i1yeqG4UREREQwbNoxhw4aRmJiI0WjEaDTy7bff4uvrS69evTAYDHTq1Ak3N3nJqKnkT1a4rC1btrBq1SpefPFFunTponY5N6VsvDAxMVHCgLhh0dHRPPnkkzz55JOcOnWqPBh89dVXBAQEEBsbS1xcHB06dHCoA7vEzZMwIFzSyZMnmTp1KgaDgSFDhqhdzk0LCAjA399fmgiF3TRo0IBnn32WZ555huPHj5cHg88++4zg4GD69OlDXFwcbdu2lWBQA0gYEC4nNzeXkSNHEhkZyaRJkxx6q+HKiIyMlDAg7E6j0RATE0NMTAzPP/88v//+O0ajkYSEBD7++GPCwsLo27cvcXFxtGzZssb8PLkaCQPCpVitVsaPH09eXh7Lli3Dy8tL7ZLsJjo6WjYeElVKo9HQokULWrRowYgRI/j1118xGo1s2rSJ999/n1tuuaX8nISmTZtKMHAiEgaES1m6dCl79+5lyZIlREREqF2OXUVFRbFv3z61yxAuQqvV0qZNG9q0acOoUaM4cOAARqORL774grVr1xIVFVUeDBo1aiTBwMFJGBAuIyEhgTVr1vDSSy/RqVMntcuxOxkvFGrRarV06NCBDh06MHbsWPbt24fRaOTjjz9m1apV1K9fv/zI5Xr16qldrrgC2XRIuIRjx44xfPhwevXqxYwZM2rku5TffvuNxx57TE4vFA7DbDazZ88eEhIS2LZtG4WFhTRu3Lg8GERGRqpd4vWlpcGPP8Lhw/Dbb3D8OBQVgUYD3t7QpAm0bAlNm0LHjhAUpHbFl5EjjIX4Q05ODkOGDMHX15dVq1bh6empdklVIicnhz59+jBnzhz69u2rdjlCXMZkMrFr1y4SEhLYsWMHxcXFNG/evPxWQu3atdUu8U+KAvv2wfr18NVXkJtr+xiAXg9l0xNWK5SU2IKBRmMLAvfeCw8+CK1a2T6mMgkDQgClpaW8+OKLHDlyhHXr1tW4PoG/io2NZfDgwQwfPlztUoS4qqKiIr7//nsSEhL4/vvvMZlMtG7dmri4OPr27UutWrXUK+74cZg4Efbssb3Q+/iAvz/odNf+PosFcnJsqwZeXtC7N0ybBiqffiphQAhg0aJFvPfeeyxdupSOHTuqXU6VGzZsGA0bNmTy5MlqlyJEhRQUFLB9+3YSEhL43//+R2lpKe3atcNgMBAbG0twcHD1FGKxwOrVsHAhZGba3uV7e1f+3b2iQEEBZGdDeDiMGwcPPfTnakI1kzAgXN6mTZuYMGECI0eOZNCgQWqXUy0mTpxIamoqK1euVLsUISotNzeXbdu2kZCQwA8//ABAhw4dyoNBlb3+FBbCf/4DX34Jbm4QGnrzL95WK1y8aPv/jzwCs2aBu/vN11pJEgaESzt27BiPP/44ffr0Ydq0aTWyYfBKVqxYwSeffILRaFS7FCFuSnZ2Nlu3bsVoNHLgwAE0Gg2dO3fGYDDQq1cvfH197fNARUXw7LOwaZNtNcDHxz7XLZOXZ+s5eOAB26pDNZ/vIKcWCpeVnZ3NqFGjqF+/PhMmTHCZIAC2XQgzMzNlvFA4vcDAQAYOHMjAgQPJyMhgy5YtGI1Gpk6diru7O7fddhv9+vWje/fuN/533WqF+HgwGiEkxHav3978/Gy3Gj7+GAICYMYM+z+GHUgYEDVKaWkpL7/8MsXFxbz11lsudy572YFF586do0mTJipXI4R9hISE8OCDD/Lggw9y8eJFNm/ejNFoZMKECXh4eNCtWzcMBgNdu3at3LTQJ5/Axo22F+mq3I3U1xdKS2HtWujRA+Liqu6xbpCEAVGjLF68mP3797Ns2TLHGlWqJhIGRE0XFhbGoEGDGDRoECkpKSQkJGA0Ghk7dixeXl706NEDg8HAbbfdhl6vv/qFkpNt9/HB9mJd1fz94fx5mDIF2reH6mqMrCAJA6LG+Oabb3jvvfcYPXo07du3V7scVfj7++Pv7y9nFAiXEBERwbBhwxg2bBiJiYnlwWDTpk34+vrSq1cvDAYDnTp1wu2v9+pnz4bUVKiucWONBsLC4NQpWLwYpk6tnsetIGkgFDXCkSNHGD58OAaDgSlTprhUn8BfDRs2jAYNGjBlyhS1SxFCFadOnSo/cjkxMRF/f39iY2MxGAy0b98eXVIS9Olje4EOCKjwdQutVtZlZPBbURGHiovJLS1lyi23cHdgYMWLy8iwjSzu3FktqwPSQChcRlZWFvHx8TRq1Ijx48e7dBAA2xkFcpSxcGUNGjTg2Wef5ZlnnuH48ePlweDzzz8nODiYcXo93bOzcYuOpjL/WmRbLLyVnk5td3cae3iwv7Cw8sUFBtpWJDZuhMcfr/z3VxF1dkEQwk4sFgvjxo3DZDIxb968a98jdBFylLEQNhqNhpiYGF544QU2btzI2rVruatfPyK//5703FyOnzxJ6oULFBYVcd0lciDUzY1NjRvzVaNGjAgLu7GidDrbHgYffPDnFscOQFYGhFNbtGgRBw8eZPny5YSHh6tdjkOIioqS8UIh/kKj0dC8eXOaa7Uor79OcUgImpIScnNzyczMxN3dvbznxtPT84orBnqtlhB77CTo62vrHUhLs/UROAAJA8Jpff3113zwwQeMGTOGdu3aqV2Ow4j6Yy90mSgQ4goOH0ZTUoLXLbfgpdUSXrs2hYWF5Obmkp2dTUZGBnp3d/wDAvD398fDw6NStxIqxNMT0tNtJyE6SBiQ2wTCKf3+++/MnDmTAQMG8MADD6hdjkMpGy+UWwVCXMHhw7bGwT/e4WsAH29vbqldm5iYGKKjo/H28SErM5NTp05x6uRJ0tLSKCkpsV8Nbm62WwSHD9vvmjdJVgaE08nMzCQ+Pp7GjRszbtw4l28Y/KuypU5pIhTiClJTbRsAXYEG8PXxwdfHB2vt2hQUFJCbm0tGZiZp6el4eHgQ8MfP103RaGxh4MKFm7uOHUkYEE6lrGHQYrFIw+A1yESBEFdRXFyhQ4i0Gg1+vr74+fpiVRQK8vPJyc0lPT2d86mpKPXq3Xwt9lxtuEkSBoRTWbhwIb/88gtvvvkmYQ5yr80RyUSBEFeh1Va6i1+r0eDn54efnx+pFy6QkZ5OscVy87VU86FF1yI9A8JpfPnll6xfv57Ro0fTpk0btctxaLIyIMRV3MQSf84fkwe1b7kFr5s990SjsW0+5CAkDAincOjQIWbPns0999zDwIED1S7H4ZWNFxYUFKhdihCOpVGjP+/ZV0JxcTHnU1IICAgg+GZ3DrRabb8aNbq569iR46xRCHEVGRkZjB49miZNmjBmzBhpGKyAsomCpKQkGS8U4lLNmtk2/rFYwN29Qt9iKS3lXFISeg8Pdnp6UpCeTtoftwl25udz8Y///1BQEL463fUvWFICHh62WhyEhAHh0MxmM2PHjqW0tJS5c+dKw2AFle01kJiYKGFAiEs1b247rriwsELnEihAcnIyVquVunXrMuLsWc6bzeWf35qXx9a8PADu9PevWBgoKgIfH2jc+Eafhd1JGBAObeHChfz222+sWLGCWrVqqV2O05DxQiGuIiQEunSBzZsrFAYuXrhAYUEB0XXrond358ubXdpXFFsQuececKA3N9IzIBzWxo0b+fjjjxk7diytW7dWuxynI02EQlzFoEG2qYLrjPbl5OSQkZlJeHg4PvZq9isqst0ieOgh+1zPTiQMCIf066+/MmfOHAYOHMi9996rdjlOScYLhbiKPn2gbl3IzLzqlxQVF5Ny/jyBAQEE2fOo4awsaNkSOna03zXtQMKAcDjp6emMGTOGZs2aMXr0aLXLcVqyMiDEVej1MGKEbargChM3FouFpHPn8PTwoPYtt9jvbILc3D8f2x4HHtmRY1UjXJ7ZbGbMmDEAzJ07F/cKdvuKv5PxQiGu4YEHwGCwvVO3Wss/rCgKScnJKIpCZFQUWntNL1kstjDwwAMQF2efa9qRhAHhUObNm8fhw4eZN28eoaGhapfj1MrGC2V1QIgr0Gph+nSoXdt2XsEf+w5cuHCBosJCIiMjcbfXDoFWq+0cgvr1Yfx424qEg5EwIBzGhg0b2LBhA+PGjaNly5Zql+P0Lj3KWAhxBZGRsGgR+PlBairZ2dlkZmURXrs23vZqGLRa4fx5CA2FpUvBnv0HdiRhQDiEX375hblz5/LAAw/wz3/+U+1yagQZLxSiAnr2hNdfp8TDA0tiIkH+/gQFBdnn2mYzpKRAWBi89Rbceqt9rlsFJAwI1aWlpTF69GhatmzJyJEj1S6nRpGJAiGuL6N9e8aHh5MVGEhtqxVNbm6ltyu+jKLYehEuXLBtcrR2rW1vAwcmYUCoymQyMWbMGHQ6nTQMVgGZKBDi2sqaln/z9ydo1y40w4aByWR7R1/ZUGC1Qk4OJCfbvu/55+GLL8AJDlaTHQiFahRFYe7cuRw9epSVK1fe/OEf4m+ioqL44Ycf1C5DCIe1YMECDh06xIoVKwht3BjmzoX+/eHtt2HXLtsLu7s7eHrafun1fzYAKootOBQVQXGxbWLA1xfuvhueego6dVL3yVWChAGhmg0bNvD5558zZcoUmjdvrnY5NVJ0dHT5eKGPj4/a5QjhUD777DM++eQTJk6cePkup7162X4dOwaffALffQdnz0J2tq0P4NIwoNfbQkKrVrbNjO6/H+rVq/4nc5MkDAhVHDx4kHnz5vHggw9y9913q11OjXXpREHTpk1VrkYIx/HLL7/w6quvct9993HPPfdc+YtiYmyjgOPH224ZHDkCiYm2VQCt1ratcP360KSJ7eAhJyZhQFS7ixcvMmbMGFq3bi0Ng1Xs0tMLJQwIYZOWlsaYMWNo0aIF8fHxFfsmf3/bsr8TLf1XhjQQimplMpkYPXo0bm5uzJkzBzd7beohrqhsvDApKUntUoRwCGVNy1qtVpqWLyH/EotqoygKc+bM4fjx49IwWI1kvFAIG0VRePXVVzl69ChvvfUWISEhapfkMGRlQFSbjz/+mC+++IIJEyZIw2A1kjAghM2nn37Kxo0bGTduHC1atFC7HIciYUBUiwMHDrBgwQIeeeQR/vGPf6hdjkuJjIyU2wTC5f3000/MmzePhx56iAEDBqhdjsORMCCqXFFREZMmTaJt27aMGDFC7XJczqXjhUK4oosXLzJ27FjatGnDf/7zH7XLcUjSMyCqnIeHB4sXLyYkJEQaBlVw6emFMlEgXI3JZCI+Ph53d3dpWr4GWRkQVU6r1dKgQQMCAwPVLsUlRUZGAkjfgHA5iqIwa9YsTpw4wfz586Vp+RokDIhqoXHA87tdhb+/PwEBAXJGgXA569ev56uvvmLixIk0a9ZM7XIcmoQBYVdWq1XtEsQVyIFFwtXs37+fBQsW8Oijj9K/f3+1y3F4cvNE3JTjx49z/vx5goKCiImJwcPDA6vVilYrOdORyHihcCXnz59n7NixdOjQgRdffFHtcpyC/Istbti0adN44IEH6NOnD4MHD6Z79+7s3bu3PAgoN3MeuLCrqKgoGS8ULqG4uJj4+Hi8vb2ZNWsWOp1O7ZKcgoQBcUO+/fZb5s6dy8yZM/n555+ZPHkydevW5bbbbmPx4sWArU9AAoFjiIqKkvFCUeMpisLMmTM5c+YM8+fPl6blSpDbBOKG/PTTT9x5553lGwg1b96cHj160LZtW+Lj40lNTWXWrFnSOOggysYLExMTpZFK1Fjvv/8+//d//8esWbOIiYlRuxynIisD4oZYLBZ27dp12cdq1arFiBEjmD9/Pp999hlbtmxRqTrxV2XjhdJEKGqqvXv3smjRIoYOHYrBYFC7HKcjYUDckEcffZRatWoxZcoUMjMzyz/u6+vL4MGD0el0fPnllypWKC4l44WiJktJSWHcuHF06tSJF154Qe1ynJKEAXFDIiMj6d+/P59//jkrV6687EUmODiYO++8k8LCQkpLS1WsUlxKJgpETVRUVMSoUaPw9/dn1qxZMsl0g6RnQFSaoijo9XrmzJmDxWJh6dKlnDp1igEDBtC/f39Onz7NF198wcMPPyydvA5E9hoQNY2iKEyfPp2kpCRWr16Nv7+/2iU5LQkDotI0Gg2lpaXodDrmz59Py5Yteeedd9iyZQtDhw4lMjKSOnXqMG3aNLVLFZeIiorif//7n9plCGE3a9euJSEhgblz59KwYUO1y3FqEgbEDdHpdOWbCz322GP06tWL1NRUfvrpJ1q2bEnnzp3VLlH8RXR0NFlZWeTn5+Pr66t2OULclN27d7NkyRKGDx9ObGys2uU4PQkD4prOnTtHnTp1rngfTqvVlgeCevXqUa9ePbp06aJClaIioqKiANufqYwXCmd27tw5JkyYQNeuXXn22WfVLqdGkE4LcVVTpkzhvvvu4/vvv8dsNv/t84qioNVqOXXqFEeOHFGhQlEZMl4oaoLCwkJGjRpFUFAQM2bMkIZBO5H/iuKKEhISeOONNzh//jwPPfQQH3/8Mfn5+Zd9jUajoaSkhDlz5nD33XdLIHBwMl4onJ2iKEydOpXU1FQWLFiAn5+f2iXVGBIGxN+UlJSwZcsW7rvvPo4fP84999zD0KFDWbBgARcuXLjsaz08PLjrrrt45JFHaNq0qUoVi4qS8ULhzN555x22bt3KjBkzqF+/vtrl1CjSMyD+Rq/Xc9ddd5GTk4OnpyfLli2jTZs2/Otf/+Lo0aNMnTq1fKvPr7/+mtjYWAYMGKBy1aIiZLxQOKudO3eybNkynn76aXr27Kl2OTWOhAHxNxqNhm7dupX/3mq18uyzz9KuXTvuuusujh8/zuLFi9m7dy8zZszgxx9/lO50JyHjhcIZnT17lokTJ9KjRw+efPJJtcupkSQMiOvSaDRYrVY6d+7MyZMnueOOO+jXrx/5+fksX76cevXqqV2iqCAZLxTOpqCggFGjRlGrVi2mT58uDYNVRP6riuvSaDRotVpKS0vx9/fns88+Iz8/n4kTJ/L000+rXZ6ohEvHC4VwdFarlUmTJpGWlsbChQvx8fFRu6QaS8KAqDCdTkdeXh7//Oc/adu2LdOnT1e7JFFJEgaEM1m5ciU7d+5k5syZ5cdwi6ohYUBckaIoV/3cgAED5L6zk/Lz8yMwMFAmCoTD27ZtGytWrOC55567rIdJVA0JA+JvkpOTOXr0KFar9W+f8/Pz4+WXX8bDw0OFyoQ9yESBcHSnTp1i8uTJxMbG8vjjj6tdjkuQBkJxmcLCQv7zn/8A8O6776LX6//2NRqNprrLEnYkYUA4sry8POLj47nllluYOnWq/HtTTSQMiHKX7u61Zs2aKwYB4fyio6PlNo9wSFarlQkTJpCVlcW6devw9vZWuySXIWFAlCvb3WvBggWyu1cNFhUVJeOFwiEtX76cPXv2sGjRovKzNET1kJ4BAcD3338vu3u5iLKJAmkiFI5ky5YtrFq1ihdeeIHbbrtN7XJcjoQBQWJiIhMnTqR79+6yu5cLKAsDSUlJKlcihM2JEyeYOnUqBoOBIUOGqF2OS5Iw4OLKdvcKCQmR40BdhIwXCkeSm5vLqFGjiIyMZNKkSdIwqBLpGXBhVquVKVOmcPHiRdauXSu7e7kQOb1QOAKr1cr48ePJy8tj2bJleHl5qV2Sy5Iw4MJWrVrFtm3bWLhwIXXr1lW7HFGNIiMj5TaBUN2SJUvYu3cvS5YsISIiQu1yXJqsCbuoHTt2sHz5cp555hl69OihdjmimsnKgFCb0Whk7dq1vPTSS3Tq1EntclyehAEXdPbsWSZNmkSvXr144okn1C5HqCA6Oprs7Gzy8vLULkW4oGPHjjFt2jTuvPNOHnnkEbXLEUgYcDn5+fmMHDmSsLAwOQ7UhbVo0YKnn376iltOC1GVsrOziY+Pp379+kycOFEaBh2E9Ay4EKvVyuTJk8nIyGDt2rWyu5cLq1OnDsOHD5cwKKpVaWkpL7/8MkVFRaxYsULOOHEgEgZcSNlxoP/973/lOFCBm5v8+IvqtWjRIvbv38+yZcuoXbu22uWIS8jbAhexfft2OQ5UCKGab775hvfff59Ro0bRvn17tcsRfyFhwAWcPn2aSZMmyXGgQghVHD58mFdeeYW7776bBx98UO1yxBVoFEVRrvdFubm5BAQEkJOTg7+/f3XUJewkPz+foUOH4ubmxurVq6VPQFRYSUkJVqtVNoIRNyUzM5MhQ4YQEhLCypUr5TTUalbR129ZGajBrFYrEydOJCsriwULFkgQEJWyZs0aFi5cSGlpqdqlCCdlsVgYN24cZrOZ+fPnSxBwYBIGarA333yTXbt2MXPmzPLDaYQo8/bbb3Ps2DFKS0uxWCyUlpZy6UJhREQEH374IWfOnFGvSOHUFi5cyM8//8zcuXMJCwtTuxxxDRIGaqitW7fy9ttv8/zzz3P77berXY5wQGPHjmXbtm3odDrc3NzQ6XRoNBoKCws5fPgwiYmJHDp0iIMHD6pdqnBCX3zxBevXr2fMmDG0bdtW7XLEdchsUQ106tQppk6dSt++fRk2bJja5QgHddttt/HRRx+RnJzMTz/9xLFjx0hOTqagoACdTkft2rVp3bo1fn5+apcqnMxvv/3G7Nmzuffeexk4cKDa5YgKkDBQw5QdBxoREcHkyZNldy9xVbfffjsTJkwgNzeXqKgo7r77bho2bEjdunUJDw8nODgYDw8PAgMD1S5VOJGMjAxGjx5Ns2bNGD16tPwb5CQkDNQgZQ2DOTk5ssOguK6oqCjCwsLYuHEjgYGBuLu74+7urnZZwomZzWbGjBmDoii8+uqr0jDoRCQM1CDLly9nz549LF68mMjISLXLEQ6uRYsWaDQafH19JTgKu5g/fz6///47K1asoFatWmqXIypBGghriC1btrBq1SpeeOEFunTponY5wgm0bNmSWbNm4evrq3YpogbYsGEDn376KWPHjqVVq1ZqlyMqScJADXDy5EmmTp2KwWBgyJAhapcjnIS7uzv//Oc/+fnnn7FYLGqXI5zYL7/8wty5c7n//vu555571C5H3AAJA04uNzeXkSNHEhkZyaRJk6RZR1TK6NGjefzxx0lMTASgAhuSCnGZtLQ0Ro8eTcuWLRk1apTa5YgbJD0DTsxqtTJ+/Hjy8vJYtmyZbBsrKq1nz57Uq1ev/O+Ooih/C5RX+pgQACaTidGjR6PT6Zg7d640oDoxCQNObOnSpezdu5clS5YQERGhdjnCCQ0dOvSy32u1tsXC7OxsMjMzCQoKIigoSI3ShINTFIU5c+Zw7NgxVq5cSXBwsNoliZsgYcBJJSQksGbNGl566SU6deqkdjnCyRUUFLBu3TqMRiNHjx7FZDIRFBREWFgY3bt3Z8SIEXh6eqpdpnAgn3zyCV988QVTpkyhefPmapcjbpKEASd07Ngxpk2bxh133MGjjz6qdjnCyZ0/f54XX3yRQ4cO0bZtW+677z7CwsIwm838+uuvLFu2jAsXLrBw4UK1SxUO4qeffmL+/Pk8/PDD3H333WqXI+xAjjB2Mjk5OQwZMgRfX19WrVol79bETVEUhdmzZ/POO++wbNky2rZtS1BQEDqdrvxrtm7dyoABA0hLS5O+FMGFCxcYMmQI9evXZ+nSpbi5yXtKRyZHGNdApaWljB8/noKCAubPny9BQNw0jUbDW2+9xeTJk+nbty+hoaGXBQGANm3a4OnpKacXCkpKSoiPj0ev1zNnzhwJAjWI/Ek6kSVLlrBv3z6WLl0qDYPCbjw8PMjLy/vbx00mE+np6cTHx9OyZUs5sMjFKYrCrFmzOHnyJKtWrZLG0hpGwoCT2LRpE+vWrWPkyJF07NhR7XJEDTJ8+HDeeOMNDh48yD333IO/vz8ZGRkcPnyYHTt2kJiYyLRp02SLaxf30Ucf8fXXXzNjxgyaNm2qdjnCziQMOIFjx44xffp0+vfvzyOPPKJ2OaKG+fe//42npycbNmzgueee4/z581itVsLDw+nevTuvv/46vXv3VrtMoaIff/yRhQsXMnjwYO688061yxFVQBoIHVx2djZDhgwhICCAt99+Gw8PD7VLEjVUSkoKFy9epFatWoSFhckGMgKwTZsMGTKEmJgYXn/99b/1lAjHVtHXb1kZcGClpaW8/PLLFBcX89Zbb0kQEFUqIiLisl4URVHKdx+UHQhdU3FxMfHx8Xh7ezN79mwJAjWYhAEHtnjxYvbv38+yZcuoXbu22uUIFyMhwLUpisIrr7zC2bNnWbVqFQEBAWqXJKqQhAEH9c033/Dee+8RHx9P+/bt1S5HCOFi3nvvPb799ltmz55NTEyM2uWIKib7DDigI0eO8Morr3DXXXfx0EMPqV2OEMLF/PDDDyxevJhhw4YRFxendjmiGkgYcDBZWVnEx8fTqFEjxo8fL8u0QohqlZyczMsvv0znzp15/vnn1S5HVBMJAw7EYrEwbtw4TCYT8+bNQ6/Xq12ScCFms5n09HS1yxAqKioqYtSoUfj7+zNz5szyUyxFzSc9Aw5k0aJFHDx4kGXLlhEeHq52OcLFzJo1i9OnT7N69Wq1SxEqUBSFadOmkZyczOrVq2WM3MVI7HMQX3/9NR988AGjRo3i1ltvVbsc4YKioqI4d+6c2mUIlaxZs4bNmzczbdo0GjZsqHY5oppJGHAAv//+OzNnzmTAgAE88MADapcjXFRkZCQ5OTnk5uaqXYqoZrt372bp0qU88cQTxMbGql2OUIGEAZVlZmYSHx9P48aNGTdunDQMCtVER0cDyOqAi0lMTGTChAl069aNZ555Ru1yhEokDKiorGHQYrFIw6BQXVRUFCBhwJUUFhYSHx9PUFAQM2bMkIZBFyYNhCpauHAhP//8M2+++SZhYWFqlyNcnI+PD8HBwSQmJqpdiqgGVquVKVOmkJqaypo1a/D19VW7JKEiCQMq+fLLL1m/fj0vv/wybdu2VbscIQDb6kBSUpLaZYhq8M477/Ddd9+xcOFC6tevr3Y5QmWyJqSCQ4cOMXv2bO655x4GDhyodjlClIuKipKVARewY8cOli9fztNPP02PHj3ULkc4AAkD1SwjI4PRo0fTpEkTxowZIw2DwqFER0dLGKjhzp49y6RJk+jRowdPPvmk2uUIByFhoBqZzWbGjh1LaWkpc+fOlYZB4XAiIyPJzc2V8cIaqqCggJEjRxIWFsb06dOlYVCUk78J1WjhwoX89ttvzJs3j1q1aqldjhB/I+OFNZeiKLi7uxMTE8OCBQvw8fFRuyThQCQMVJONGzfy8ccfM2bMGFq3bq12OUJcUdl4odwqqHk0Gg1ubm7Mnj27PPQJUUbCQDX49ddfmTNnDgMHDpSGQeHQysYLZWWgZpLbAuJq5G9GFUtPT2fMmDE0a9aM0aNHq12OENclZxQI4XokDFQhs9nMmDFjAJg7dy7u7u4qVyTE9UVHR0sYqAGsVqvaJQgnIpsOVaF58+Zx+PBhVqxYQWhoqNrlCFEhUVFRbN++Xe0yRCWdOHGC1NRUAgMDadSoEZ6enlitVrk1ICpE/pZUkQ0bNrBhwwbGjRtHq1at1C5HiAqLioqS8UInM3PmTO6//35iY2MZNGgQ3bt3Z8+ePeVBQFEUlSsUjk7CQBX45ZdfmDt3Lvfffz///Oc/1S5HiEqRA4ucy5YtW5g5cybTp0/n4MGDTJkyhfr163P77bezaNEiwDZJIIFAXIvcJrCztLQ0Ro8eTcuWLRk1apTa5QhRaWVjZ4mJibRo0ULlasT1HDhwAIPBwIABAwBo3rw5PXr0oF27dowZM4bz588zZ84c2e1UXJOEATsymUyMGTMGnU4nDYPCaXl7e8t4oROxWCz873//Q1GU8hf8WrVq8eKLL+Ln58fSpUvp06cPcXFxKlcqHJncJrATRVGYO3cuR48eZd68eQQHB6tdkhA3TMYLnccjjzxC7dq1mTRpEhkZGeUf9/Hx4dFHH0Wv1/Pll1+qWKFwBhIG7GTDhg18/vnnjBs3TpZWhdOTA4ucR0REBP/4xz/48ssvWbly5WV/bkFBQdxxxx0UFBRgsVhUrFI4OgkDdnDw4EHmzZvHgw8+WH7fTghnJisDzkFRFPR6PbNmzcJgMPDGG28we/ZsvvnmG8B2QuGXX35JeHg4bm5yV1hcnfztuEkXL14sP29g5MiRapcjhF1cOl7o7++vdjniKjQaDaWlpeh0OubNm0fLli1ZtWoVmzdvZtiwYURGRhIaGsqsWbPULlU4OAkDN8FkMjF69Gjc3NyYM2eOJG9RY1w6UdCyZUuVqxHXotPpyjcXGjZsGD179iQlJYWffvqJli1b0rlzZ7VLFE5AXr1ukKIozJkzh+PHj7Ny5UppGBQ1yqV7DUgYcAyJiYlERkZecUdBrVZbHgjq1atHvXr1uP3221WoUjgr6Rm4QR9//DFffPEFEyZMoHnz5mqXI4RdyXihY5k6dSr33nsvO3fuxGw2/+3ziqKg1Wo5ffo0R44cUaFC4ewkDNyAAwcOsGDBAh555BH+8Y9/qF2OEFVCDixyDFu2bOGNN94gLS2Nhx56iI8++oj8/PzLvkaj0VBSUsKrr77K3XffzeHDh1WqVjgrCQOVdOHCBcaNG0fbtm0ZMWKE2uUIUWWioqJkvFBlJSUlJCQkcO+993Ls2DEGDhzIsGHDmD9/PhcuXLjsaz08POjfvz8PP/wwzZo1U6li4aykZ6ASSkpKGD16NHq9XhoGRY0npxeqT6/Xc/fdd5OdnY2npydvvPEGbdq04bnnnuPo0aNMnTqVJk2aAPDNN98QGxsr483ihsirWQUpisLs2bM5ceIEq1atIigoSO2ShKhSMl6oPo1GQ9euXct/b7VaeeaZZ2jbti133XUXx48f5/XXX+fHH39k2rRp7N27F19fXxUrFs5KwkAFrV+/nq+++ooZM2bQtGlTtcsRosrJeKHjKdtXoHPnzpw6dYp+/frRr18/8vPzeeONN2jQoIHaJQonJT0DFbB//34WLFjAoEGDuPPOO9UuR4hqUTZeKH0DjkOj0aDT6SgtLcXPz4/PP/+c/Px8xo8fz7PPPqt2ecKJSRi4jtTUVMaOHUv79u2lYVC4lLLxwqSkJLVLEX+h0+nIy8vjnnvuoXXr1rzyyitqlyScnISBaygpKSE+Ph4vLy9mz56NTqdTuyQhqpUcWKSuoqIiwNYr8FcajYa77rqLPXv2VHdZogaSMHAViqIwc+ZMTp8+zYIFCwgMDFS7JCGqnew1oB6z2czzzz/PzJkz0Wg0f/u8r68vL7/8Mp6enipUJ2oaCQNX8cEHH/DNN98wefJkYmJi1C5HCFVERkZKGFDJvHnzOHz4MAMGDLhiGACu+nEhKkvCwBXs27eP1157jSFDhtCvXz+1yxFCNdHR0eTm5pKTk6N2KS5lw4YNbNiwgXHjxtGqVSu1yxEuQMLAX6SkpDBu3Dg6dOjACy+8oHY5Qqjq0gOLRPX4+eefmTt3Lg888AD//Oc/1S5HuAgJA5coLi4mPj4eHx8faRgUAhkvrG4XL15kzJgxtGrVipEjR6pdjnAhsunQHxRF4ZVXXiExMZF33nmHgIAAtUsSQnXe3t6EhITIeGE1MJlMjB49Gp1Ox6uvvoq7u7vaJQkXUnPCQGEhnDsHxcWgKODhAVFRUMGtOd977z2+/fZbZs+eTePGjau4WCGchxxYVPUURWHOnDkcP36clStXEhwcrHZJwsU4bxgwmWDrVti9Gw4cgBMnbEGgbB5Xo7EFgoYNoW1buO02MBjgCmM4e/fuZfHixQwbNoy4uLjqfR5COLjo6GhOnDihdhk12scff8wXX3zBtGnTaN68udrlCBfkfGHg4kVYvx4++ADOnLG9+Ot0thd5Hx/Q/tEGYbXaAsOvv8LBg7BmDURGwsMPw0MPQZ06wJ8Ng507d+b5559X7WkJ4agiIyPZtm2b2mXUWAcOHGDBggU88sgj/OMf/1C7HOGinCcMKAp89hm88gqcPw9ubhAcbHv3fzVeXlB2799kgtRUmDcP3nkHxo6l6N57GTVqFH5+fsycOROtVvophfirS8cLpZfGvi5cuMDYsWNp166dbHcuVOUcYSAtDSZOhG++sYWC2rVtqwGVoddDWJhtxSAtDWXsWI7MmUOJtzcL3n9fjmgV4iouPb1QZt7tp2y7cw8PD2bPno2bm3P8cyxqJsd/K3zuHAwaBBs32m4D3EgQuJRWC+HhZAPRR4+yqqiIRlfY91sIYRMZGQnIXgP2pCgKs2bN4tSpUyxYsICgoCC1SxIuzrHDwPnzMHSo7b5/eHiFJwOuJ7+ggNTsbKzh4QSmpdke49Qpu1xbiJqmbLxQwoD9fPjhh3z99ddMmjSJJk2aqF2OEA4cBkwmeO45OHzYFgTsNHNrMplITk7Gx9eX0Nq14ZZbbI2ITz0FeXl2eQwhaho5sMh+9u3bx3//+18GDx7MHXfcoXY5QgCOHAaWL4cffoBatewWBEqtVs4lJaHT6ahTpw4asN1yCA+HQ4dg4UK7PI4QNY3sNWAfl253/u9//1vtcoQo55hh4NdfYelS26TAtaYFKkEBzqekYDabiYqMRHfp5IC7u+0WxJo1tn0LhBCXiYqK4ty5cyiKonYpTku2OxeOzDHDwLx5kJMDISF2u2RGRga5eXlERETgcaWAERAARUUwc6ZtYkEIUS4qKoq8vDxyc3PVLsUpKYrCjBkzSExMZMGCBTKiKRyO482yHDsG338P/v62XQQr4FRJCW+mpXG4uJgMiwVPrZYGHh4MCQ6mh58f+fn5XLx4kdDQUPz9/K58EY0GgoLgt99g3z7o1MmOT0oI5ybjhTfn3XffZdOmTbLduXBYjrcy8MkntnMGrvaifQXnzWYKrVbuCgggPjycJ0NDARiZlMT6tDSSk5Px9fWlVq1a176QlxeUlNh2OBRClJPxwhv3ww8/8Prrr/PYY4/JdufCYTnWykBpKXz6qa1PoIKrAgBdfX3p+pexw4eCgnj09GlWnT/PEh+fPxsGr0WjAW9v+PprmDrVbqOMQjg7GS+8McnJybz88st06dKFf/3rX2qXI8RVOdbKwJkzkJlpe0G+SRqNBp+SEvKs1r83DF6Ljw8UFMDRozddgxA1SXR0tEwUVEJhYSGjRo0iICCAV155RbY7Fw7Nsf52Hj5sO3nwCicLVkSR1Uq2xUKSycSKs2f5obiY2wMCrtwweDV6PZjNtlqEEOXKJgrE9SmKwrRp00hJSWHBggWy3blweI51m+DoUdtS/Q2O3Pz3wgU2ZGdjLS3FbDbTy8eHSX80PlVY2e0JWRkQ4jJRUVF89913KIqCphK38VzR6tWr2bJlC3PnzqVBgwZqlyPEdTlWGMjJualvHxQcTA8vL35LSmKfhwce3t5YbmRMUFEgO/umahGipomOjiYvL4+cnBwCAwPVLsdh7d69mzfeeIMnn3yS2NhYtcsRokIc6zaBxWI7VfAG1fPwoJO3N7dbrUzw8iKrsJAXExMrv1GKRmObKhBClIuKigJkouBaEhMTGT9+PN26dePpp59WuxwhKsyxwoCbW6WmCK54CXd36tarh7ubG21MJg7m5LDr9Gkys7KwWCwVu4ii2G3nQyFqChkvvLbCwkLi4+MJCQlhxowZ0jAonIpj3SYIDr7pMKDVaAjw9yfA358QLy/cU1MpBi6kpnIhNRVvHx8C/P3x8/O7+nagGo2tFiFEOW9vb0JDQyUMXIHVamXy5Mmkpqaydu1afGUsWTgZxwoDTZrY3pWXllaqiTDTYiHY7fKnYlEU/i8vD283N26vVw+9oti2U83JIeX8eTSpqfj8EQx8/fz+HD0su6XQtKm9npUQNYYcWHRlq1atYtu2bSxcuJB69eqpXY4QleZYYaBZM9sugMXFtnn/CpqVmkpBaSntvL0Jc3cnw2Lh/3JyOGMy8Z+wMLz/eKEPCgwkKDAQs8VCXm4uubm5JKekoNFo8PP1xd/fH193d7Tu7rZahBCXiYqK4sSJE2qX4VB27NjB8uXLeeaZZ+jRo4fa5QhxQxwrDERH244sPn++UmHA4O/P59nZfJKVRU5pKT46HU09PXkxLIweV9jW2N3NjeDgYIKDgzGbzeTm5pKTm0tScjKBpaXo/Pw4duECnU0m9Hq9PZ+hEE4tKiqKrVu3ynjhH86cOcPEiRPp1asXTzzxhNrlCHHDHCsMaLXw4IO2UwutVtvvK8Dg74/hBjf1cHd3JyQkhJCQEEwlJVgSE9lUqxYzJ0zA19eXXr16YTAY6NSpE25ujvWfS4jqFh0dTX5+vowXAvn5+YwaNYratWszffp0aRgUTs3xXt3uvx+WLYO8PNuxwtVIbzajDwri3g8+oI2fHwkJCWzatImvvvqKgIAA+vTpQ1xcHO3bt5cffOGSysYLExMTXToMWK1WJk2aREZGBmvXrsXbDluoC6EmxwsDdetCnz6wcaPt5MLqetEt22ioWzdo3ZoGGg3PPPMMTz/9NMeOHcNoNGI0GtmwYQMhISH07dsXg8FAq1atJBgIl1E2XpiUlETr1q1VrkY9K1as4Pvvv2fRokXlxzsL4cwcLwwAjB4NO3dCejqEhVXPY2Zm2sLHxImXjTdqNBqaNGlCkyZNeOGFFzh06BBGo5GEhAQ++ugjwsPDiYuLw2Aw0KxZM7mPKmq0svFCV54o2Lp1KytXruT555/n9ttvV7scIezCMcNAo0YQH297YS4qsk0YVKWSEtsEw+jR0LbtVb9Mo9HQsmVLWrZsyUsvvcTBgwdJSEjg66+/5t1336VOnTr069ePuLg4GjVqJMFA1EjR0dEuu9fAqVOnmDp1Kn369OGxxx5Tuxwh7EajVGCv3tzcXAICAsjJyam+07csFhg6FLZuta0OVFVXv8UCqanQoQN88skNnZhYWlrK/v372bRpE9999x25ubnUr1+fuLg4+vXrR926daugcCHUMX36dE6cOMHatWvVLqVa5ebmMmzYMDw8PFi1apX0CQinUNHXb8cNA2Bbuh86FH780TZyaO8tgs1muHDBtqfA++/DLbfY4ZJmfvjhB4xGI9u2baOwsJCYmBgMBgMGg4GIiAg7FC6EelavXs3q1av57rvvXGb1y2q18tJLL/Hbb7+xbt066tSpo3ZJQlRIRV+/HfM2QZngYFi9Gp56Cv73P9s9fX//m96yGLBNK+TkQOvWsGqVXYIA2EYVu3XrRrdu3SgpKWH37t0YjUbeeustlixZQosWLTAYDMTFxRFWXf0QQthRVFSUy40XLlu2jD179rB48WIJAqJGcvw2+NBQWLMGnnjC9k4+JcX2vzfKYrFtalRUZNvT4IMP4I8OaXvz8PCgd+/ezJ49m4SEBGbNmkVoaChLliyhf//+PPXUU6xfv57MzMwqeXwhqsKl44WuICEhgXfeeYd///vfdOnSRe1yhKgSjn2b4K+2bYNJk+DkSdvvAwNtzYUVWSkoKrKNDlqtEBUFU6fCnXfaZ5WhkvLz89m2bRtGo5EffvgBRVHo0KEDBoOB2NhYdf8bC3EdRUVFdO/enenTp9O/f3+1y6lSx48f5/HHH6dnz5688sorLnNbRNQcNaNn4Ery8uDLL+G99+C338Bksn3cw8P2S6u1vcBbrX9OCYDteOQmTeDRR+GeeyAoSLWncKmcnBy2bt2K0Whk//79aDQaunTpgsFgoGfPnnL6mXBId9xxB/fccw/PPvus2qVUmZycHIYMGYKvry+rVq3C8waai4VQW80NA2WsVti3D3bvhl9/hYMHbT0AimL7pdXaegxat7b96tTJtqGQA28QlJGRwZYtW9i0aRM///wzer2e22+/HYPBQPfu3fGq6hFLISro6aefJjQ0lFmzZqldSpUoLS3lxRdf5MiRI6xbt04af4XTqhkNhNei1ULnzrZfYAsH6el/rgR4eNgmEBz4xf+vQkJCePDBB3nwwQe5cOECCQkJGI1Gxo8fj6enJz169MBgMHD77bfLAUpCVZGRkTX69MIlS5awb98+li5dKkFAuATnDQN/pdVW326F1SA8PJzBgwczePBgkpKSyoNBfHw8Pj4+lx2g5O7urna5wsVER0fX2NMLv/32W9atW8fIkSPp2LGj2uUIUS1qThiowSIjI3n88cd5/PHHOX36dPkBSl9//TX+/v7ExsZiMBjo0KGDnJMgqkXZ6YXZ2dkEOUj/jT0cPXq0vDHykUceUbscIaqN8/YMuDhFUTh+/Hj5AUopKSkEBwfTt29f4uLiaNOmjQQDUWWOHTvGoEGDWLVqVY05sCgrK4shQ4YQFBTEypUr8bD3JmdCqKDm9wy4OI1GQ0xMDDExMTz//PP8/vvv5QcorV+/nrCwMPr27Uu/fv1o3rx5jVvKFeoq22vg3LlzNSIMWCwWXn75ZUpKSpg/f74EAeFyJAzUABqNhhYtWtCiRQtGjBjBL7/8gtFo5Ntvv+X9998nIiKifDvkxo0bSzAQN83Ly4tatWrVmAOLFi1axE8//cSyZcsIDw9Xuxwhqp2EgRpGq9XStm1b2rZty6hRo9i/fz8JCQls2LCB1atXU7du3fKTFevXr692ucKJRUVF1YhdCL/++ms++OADxowZw6233qp2OUKoQnoGXITZbGbv3r0YjUa+++47CgsLady4MXFxcRgMBiKraEtmUXPNmDGDY8eOsW7dOrVLuWG///47Tz75JHfccQeTJk2SVTNR49T8TYfEDTOZTOUHKO3YsYPi4mKaN29efoCSLJOKinD20wszMzMZPHgwtWrV4q233pK9O0SNJA2E4qr0ej29evWiV69eFBUVsXPnThISEnjjjTd47bXXaNOmDf369aNPnz6EhISoXa5wUM48Xmg2mxk7diwWi4V58+ZJEBAuT8KAi/Py8ipvLiwoKGD79u1s2rSJBQsWMH/+fNq3b09cXByxsbEuc1ytqJhLJwqcLQz897//5ddff+XNN9+Uo8SFwBmOMBbVxsfHh/79+7No0aLybZA1Gg1z5syhX79+vPjii3z11Vfk5+erXapwAGV9Js42UbBx40bWr1/PmDFjaNOmjdrlCOEQZGVAXFFAQAD33HMP99xzD5mZmWzZsgWj0cjUqVNxd3e/7AAlb2/vG3oMq9WK2WyWmW4nVTZe6EwTBb/++itz5sxh4MCBDBw4UO1yhHAY0kAoKuXixYts3ryZTZs2cejQITw8POjRowdxcXF07dq1Ui/sx48f57XXXuP8+fPExsbyxBNPyMmMTsaZTi9MT09n8ODBREREsHz5cukTEC5BGghFlQgLC2PQoEEMGjSI5OTk8gOUxowZg7e3d/kBSp07d77uAUpZWVmEhobi7u7Oiy++CMBzzz2HTqerjqci7CAqKopjx46pXcZ1mUwmxowZg0ajYe7cuRIEhPgL6RkQN6xOnTo89thjvP/++3z66acMGTKE33//nZdeeol+/fqxY8cOrrXw1KlTJ6ZNm0afPn0ICAigS5cuEgScTHR0NImJidf8c3YE8+fP5/Dhw8ybN4/Q0FC1yxHC4cjKgLCLunXr8tRTT/Hkk09y4sQJEhISaNy48TW/x2QyodfrWbNmDe3bt6dRo0bVVK2wl6ioKAoKChx6vHDDhg1s2LCByZMn07JlS7XLEcIhSRgQdqXRaGjcuPF1gwBQvlT79ddfM3/+/Ov2o5w4cYItW7awe/duBgwYwH333WeXmsWNc/Txwp9//pm5c+fy4IMPMmDAALXLEcJhyW0CoYrS0lLANual0+no1q3bNY9c3r9/P3fccQdvvvkmpaWljBgxgmeeeYaioqLqKllcgSOPF168eJHRo0fTunVrRo4cqXY5Qjg0WRkQqnrzzTfp0aMH9erV+9vnFEVBo9GQnp7OxIkTiYyMZOPGjQQEBLB371769OnDQw89RGxsbPUXLgDHHS80mUyMHj0aNzc35syZg5ub/FMnxLXIyoCodoqilDcKbtmyhXvvvfeKtwisVisAn376Kampqbz00ksEBAQA0LRpU5o1a8bPP/9cfYWLK4qKinKolQFFUZgzZw7Hjx9n/vz5BAcHq12SEA5P4rKoVmazmblz5+Lr6wuAn58f3bt3/9tBN1artfy2wSeffELz5s3p0qVL+edzc3Nxc3PjwoULwJ+rCKL6Odp44ccff8wXX3zBtGnTaN68udrlCOEUZGVAVCutVouvry+vvPIK//nPf8jMzOSzzz4jKSkJoLwHQKvVotFoOH/+POfPn6dDhw7Url27/DoZGRkcPHiQuLg4VZ6H+JMjjRceOHCABQsWMGjQIP7xj3+oXY4QTkPCgKhWOp2OESNGkJaWxpkzZ5gwYQKvvfYajz/+OBaLhdWrVzN06FBOnToFwKlTp9Dr9Zcdq2yxWNi2bRs6nY4+ffoAyKqAisrGC7OyslStIzU1lbFjx9KuXTtGjBihai1COBsJA0I10dHRzJgxgwsXLvDee+/h5ubGiRMn+Pnnn8tXAZo3b05iYuJlO8adPHmSDz/8kPvvvx/4s7dAqKNsvLBsdUcNJSUlxMfH4+npyezZs2XzKiEqScKAcAhlx8guWLCAhIQEvL29URSlfIvjL7/8kqysLJKTkxk/fjyFhYXl42KXrgqUlpZy7tw5CgsLVXkerqgsDKg1UaAoCjNnzuT06dPMnz/fIfc7EMLRSQOhcDhlwUCj0eDh4cGYMWN49NFHady4MfXr1ycrK4sVK1bQqlWr8q8ro9PpmDVrFr/88gvdunWjX79+lT5ASVSOp6cnYWFhqk0UfPDBB3zzzTfMnDmTJk2aqFKDEM5OwoBweJ06deL48ePs3LmT9PR0brvttsuaCf9q0qRJ5Scrlh2g1LNnT+Li4ujSpYscUlMFIiMjVQkDe/fu5bXXXmPIkCH069ev2h9fiJpCjjAWNVpiYiJGoxGj0cipU6fw8/Ojd+/eGAwGOnbsKPeW7eSVV17hyJEjvPvuu9X2mCkpKQwZMoSmTZuyePFi+bMU4goq+votYUC4jJMnT5YHg3PnzhEYGEifPn0wGAy0a9fumtshi2tbs2YNq1atYtu2bdUy2VFcXMzw4cMpKChg3bp18u+SEFdR0ddvuU0gXEbDhg157rnnePbZZzly5AgJCQkYjUY+/fRTQkND6du3LwaDgVatWsmoYiVdOl5Y1Tv+KYrC9OnTSUxMZPXq1RIEhLADCQPC5Wg0Gpo1a0azZs144YUX+O233zAajWzevJkPP/yQ2rVrYzAYMBgMNGnSRIJBBURHRwO28cKqDgPr1q3DaDQyZ84cOfZaCDuRMCBcmlarpXXr1uUn2/30008YjUa++OIL1q5dS1RUVHkwaNiwodrlOqyy0wsTExNp3bp1lT3Onj17WLJkCY8//jh9+/atsscRwtVIz4AQV2CxWNi3bx8JCQls3bqV/Px8GjRoUB4Myt4Jiz/179+fu+66i3/9619Vcv2kpCSGDh1Ky5Ytee2116THQ4gKkAZCIezEZDKxZ88eEhIS2L59O4WFhTRt2hSDwUDfvn2JiIhQu0SH8PTTTxMaGsqsWbPsfu3CwkIef/xxTCYTa9euxc/Pz+6PIURNJA2EQtiJXq+nR48e9OjRg+LiYnbt2oXRaGT58uUsXryYVq1alQeDWrVqqV2uaqKjozly5Ijdr6soCtOmTeP8+fOsXr1agoAQVUDCgBCV4OnpSZ8+fejTpw+FhYXs2LEDo9HIokWLWLhwIe3atcNgMNCnTx+X2xY3Ojoao9Fo9+OkV69ezZYtW5g3bx4NGjSw23WFEH+SMCDEDfL29uaOO+7gjjvuIDc3l23btpGQkMDcuXOZO3cuHTt2pF+/fvTq1cslbq9FRkZSWFho1/HCXbt28cYbb/DUU0/Ru3dvu1xTCPF30jMghJ1lZWXx3XffsWnTJg4cOIBOp+O2224jLi6OXr164e3trXaJVeLEiRM8/PDDvP3227Rp0+amr5eYmMjQoUO59dZbmT9/vjQMCnEDpIFQCAeQlpbGli1bMBqN/PLLL+j1erp164bBYKBbt254enqqXaLdFBcX061bN6ZOncpdd911U9cqKCjgsccew2q1smbNGnx9fe1UpRCuRRoIhXAAtWrV4uGHH+bhhx/m/PnzJCQkkJCQwLhx4/Dy8qJHjx7069evRhygVHZ64c0eZWy1WpkyZQoXL15k7dq1EgSEqAYSBoSoJrfccgtDhw5l6NChJCYmlp+suGnTJnx9fenduzdxcXF06tQJNzfn/NGMioq66dML3377bbZv387ChQupW7eunSoTQlyL3CYQQmWnTp0qP0ApMTGRgICA8gOUbr31Vqe4V55vsXC4sJA5H37IkcJCutxxByVWK+5aLcFubjT19qaZtzfNfXwIdne/6nV27NjByJEjefbZZ3nyySer8RkIUTNJz4AQTkZRFI4dO8amTZtISEjg/PnzhISEXHaAkiMFA0VR+Ck/n48vXmRjRgZ5paXkFRRQWFRESHAwGo0GRVFQAA2g02jw0umIDQzkobAwegYGortkBPHMmTMMHTqUzp078+qrrzrUcxXCWUkYEMKJKYrCb7/9Vt5jkJaWRnh4OHFxcRgMBpo1a6bqAUo/5eUx4+xZDuTlUWy14q3V4qPTUVJQQHJSEo1jYnDT6S57PmZFodBqpaC0FDeNhkbe3oyLjsYQFERBQQFDhw7Fzc2N1atX19iJCyGqm4QBIWoIq9XKwYMHMRqNbNmyhaysLCIjIy87QKm6gkFxaSlLU1JYnpxMXmkpQW5ueGu15Y9fUlLCqVOnqFevHl5eXle/jtVKpsWCu0bDwNBQCles4NiPP5YfDiWEsA8JA0LUQKWlpfz4448YjUa2bt1KXl4e9evXLw8GVdlwl1pSwlNHj/Jjfj6eGg3Bbm5/CyGKonDkyBEiIiIICAi47jVzLRZS8/KwJiezrFEjhnTrVlXlC+GSJAwIUcOZzebyA5S2bdtGYWEhMTEx5cHAngcopZSUMOTwYQ4VFFDL3R2Pa9zPP37iBIEBARU6pyEvL49zycm4165Ng8BAVjVpQjs5e0AIu5EwIIQLKSkpKT9AaefOnZSUlNCiRQv69etH3759CQsLu+FrZ5nNDDp8mJ/y8gh3d8f9Oo19Z8+exc3NjTp16ly35jNnzuDr68stERGcN5uJ0Ov5oHlzYqRnQAi7kDAghIsqLCxk586dGI1Gdu/ejcVioW3btuUHKFXm3ABFURh98iTvXrhAmLs7+gp0+J9PTaW4qIj69etf9WtKrVZOnz6NVqOhXv36aDUarIpCislEF39/1rdoUaHHEkJcm4QBIQR5eXls374do9HInj17AOjQoQMGg4HY2Njr/jwbMzN56uhRPDQa/Cu4EVJGRgbp6ek0adLkql+TeO5ceWBwv2TfgbLGwgl16/L8dVYWhBDXJ2FACHGZ7Oxstm7dSkJCAj/++CNarZYuXbrQr18/evbsiY+Pz2Vfn2exYPjlF84WFxNRia2S8/LySLrCeGGZi2lpZGRkEB0V9bfHBEg3m/HQavmyVSu5XSDETZIwIIS4qvT09PIDlH7++Wf0ej1du3YlLi6O7t274+XlxfsXLhB/8iS13N1xr8To4rXGC3Nzc0lOTiY8PPyqtysURSHZZOLZiAimXuNWgxDi+iQMCCEqJDU1lc2bN2M0Gvn999/x9PSke48efGcwcNbdnToeHhW+VtGpU2Tv3MmFvXtxLyhAHxiIV8OGhD3wANagIM6cOYOfnx91rjPpkG424+fmxvft2hHgpOc0COEIJAwIISotKSkJo9HIhwcPsr13b3RmM4GenvgHBODj48P11geSFi+m6PhxSho0wK9BA3yAzIQErMXFaB5/HH1EBPXq1bvuJkkWReGi2cy8hg15NDzcbs9PCFcjYUAIccOWJCUx/dQpPAsLycvJwWQyodPp8PP3x9/fH5+r3MsvPH4cr/r1SUxOLh8vNKWmcjg+Hm2zZjQdM+ayhsFrSTaZuD80lNdjYuz51IRwKRV9/Zb1NyHE3/xWUIBWpyMsNJSw0FCKS0rIzc0lNyeH7KwsdG5u+P8RDLwv6QvwbtwYAL2HB8VFRQBkabUoISF4FhRUOAgA6DUaDuTnoyiKqucwCOEKJAwIIS5TdhrhpbsMenp44FmrFmG1alFUXExuTg65eXlkZWbi5u6Ov78/Af7+eHp6AqB3dyc3J4ecnBwy0tPRm814BAZWqg5PjYYLJhNpZjNhlZhmEEJUnoQBIcRl8ktLybRY8LjKu3EvT0+8PD0JDw+nsKiI3NxccnJyyMzIwF2vx9/fH51Wi8ViIeX8eTxPnKAkPx//zp0rVYdeqyW7tJRzJSUSBoSoYhIGhBCXKbZaURQFXQWW5r29vPD28qJ2eDgFhYXltxHMFgsmkwmf4mLMX32FV6NGBHTvXqk6tNhWKUqs1ht8JkKIipIwIIS4TFkEuG5n8V/4eHvj4+1N7dq1KSgooDQ3l4vz56Px9qbOv/+N5ga3F5ZuASGqnmz+LYS4jJdOh+aPswJuhEajwUurJeONN1CKioiOj8c9KKjS17ECWo0GTzmjQIgqJz9lQojL+Oh01Nbrb3h53mo2k7RwIabUVCJHjsQjMvKGrlNiteKh1VL/j6ZEIUTVkTAghPibW319Md3AyoBitZK8ZAmFJ04Q+e9/l48a3ogiq5UoDw8CKzGOKIS4MdIzIIT4mxZ/7DZY2Rn/i++/T/5PP+Hbrh2l+fnk7Np12ecDunat8LXMikJ7X98Kf70Q4sZJGBBC/E23gAA8dTryrVb8rnDy4NUUnz0LQP5PP5H/009/+3xFw4DJakWr0dA1IKDCjy2EuHESBoQQf9Pcx4cufn5sy8mpVBioO2GCXR4/22Khjl7PHVc52VAIYV/SMyCEuKJB4eFooNrn/K2KgklReCQ8HM9KBBEhxI2TMCCEuCJDcDAtfXxIN5upwHlmdnPRbKa2Xs/DYWHV9phCuDoJA0KIK/LQapndoAE+Oh1ZFku1PGZBaSkAL9etS4SHR7U8phBCwoAQ4hra+/nxdEQERYpCURXfLjBbrWRZLBiCg3mgVq0qfSwhxOUkDAghrunFOnWICwoiw2ymuIoCgUVRuGA208LHh9kNGqCVI4uFqFYSBoQQ1+Sp07G0cWN6BwaSbjaXL+XbS4nVSqrJRFNvb1Y1bUq4nFAoRLWTMCCEuC4/NzdWNm3KPaGh5JWWkmoy3fDZBWUURSHdbCbdYqGTvz/vN29OXdl6WAhVSBgQQlSIj07HGzEx/LdRI2rp9aSYTGRZLJUOBYqikGuxkGwy4aHV8nJ0NJ+0aCENg0KoSDYdEkJUmFaj4YGwMLoGBLDw3Dm+zMjgvNmMDvDRavHUanHTaP62hbFFUSi2Wim0WjFZrfjodNwZEsKoyEhaypbDQqhOo1RggDg3N5eAgABycnLw9/evjrqEEE7gosnEhrQ0Prp4kXMlJRRZrZT9g6IAl0YCT62WEHd37gsN5YGwMBp6ealQsRCupaKv37IyIIS4YWF6Pc/WqcMzERGkmc0cLizkcEEBmRYLJqsVd60WP52Opt7eNPX2JtLDQyYFhHBAEgaEEDdNo9EQptcTptfTMzBQ7XKEEJUkDYRCCCGEi5MwIIQQQrg4CQNCCCGEi5MwIIQQQrg4CQNCCCGEi5MwIIQQQrg4CQNCCCGEi5MwIIQQQrg4CQNCCCGEi5MwIIQQQrg4CQNCCCGEi5MwIIQQQri4Ch1UVHbKcW5ubpUWI4QQQgj7KXvdLnsdv5oKhYG8vDwAoqKibrIsIYQQQlS3vLw8AgICrvp5jXK9uABYrVZSUlLw8/NDI2eRCyGEEE5BURTy8vKIiIhAq716Z0CFwoAQQgghai5pIBRCCCFcnIQBIYQQwsVJGBBCCCFcnIQBIYQQwsVJGBBCCCFcnIQBIYQQwsVJGBBCCCFc3P8Dt0KI6xKCrg4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXUklEQVR4nO3deXib5Zkv/u+r3ZYlebdjW3ESYmcj+0oW25JCWmiBYQ6F0tAGKIWylbK1QAscoD1MO205HU6XKdD+2ukCDFMohC4QSXHiLGQlIYnJHlved0u2rPV9f38oUuPYTqTEtiTr+7kuX4FIlh4FYn31vPdz34IkSRKIiIgoZcnivQAiIiKKL4YBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcQwDREREKU4RzZ1EUURTUxN0Oh0EQRjrNREREdEokCQJLpcLRUVFkMlG/vwfVRhoamqC0WgctcURERHR+HE4HCgpKRnx9qjCgE6nizyYXq8fnZURERHRmHI6nTAajZH38ZFEFQbClwb0ej3DABERUZK52CV+FhASERGlOIYBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcQwDREREKY5hgIiIKMUxDBAREaU4hgEiIqIUxzBARESU4qKaTUBERJSwRBFobARcLiAQAJRKICcHyMsDLtKTn0IYBoiIKPnU1gL/+Adw8CDw8cdATw8QDAKSFAoASiVQUAAsWgQsWAB87nNAYWGcF524BEmSpIvdyel0wmAwoLe3l1MLiYgoPgIB4O9/B/74R2DnTmBgIPT7Gk3oSy4PBQFJAvx+wOMBfL7QffR64NprgVtvBZYti99rGGfRvn8zDBARUeI7fhz4zneAbdtClwX0eiAjI7rLAKII9PYC/f2h0HDzzcCTTwJZWWO/7jiL9v2bBYRERJS4RBF47TXghhuALVuAzEyguBjQ6aKvB5DJQm/8xcWASgX87nehywZ2+5guPZkwDBARUWIKBIBnnw199fUBRUVAWtqlP54ghHYUCguB06eBr30NeOON0VtvEmMYICKixCOKoRDw2mtAejqQnx/6hD8aFIpQsPB6Q5cL3nxzdB43iTEMEBFR4vnVr4Df/jZUFzAWtWqCEAoYfj/w1FPA9u2j/xxJhGGAiIgSy5EjwEsvhU4HjGXRejgQ9PeHihP7+sbuuRIcwwARESUOny/0Sb23F8jNHfvnCweC2lrgxz8e++dLUAwDRESUON55B9i1KxQExqt7oFIJaLWhUwbHjo3PcyYYhgEiIkoMkgT8/vehf9Zoov42tyjiP9vb8WB9PczHjmFJbS3e6+mJ7bkzM0OXC956K7bvmyAYBoiIKDHs2wccOAAYDDF9W08ggFc6OnDa50OZWn1pzy0IgFodOmqYgrUDDANERJQY3n8/dNwvPT2mb8tVKPCPsjJsnD4dD+XnX/rzZ2UB7e2AzXbpj5GkGAaIiCgx7N37z/kCMVDJZMhRjMLcvfBjHDly+Y+VZBgGiIgo/gYGQsV7MdQKjJmPP473CsYdwwAREcXfiROA23157YZHg0YDHD4cGoecQhgGiIgo/np7Q7MILmO7X5QkiBcfxHthCkVo9LHHc3mPk2RG4SILERHRZfL7Q0cLY6wXECUJfX19cDmdcLpcaFYoIF1OIBCE0FwEny/UeyBFMAwQEVH8qVT/fCOWyy9416AoRgJAX18fREmCRq1GpsGA452dkC6nWVE4kKhUl/4YSYhhgIiI4i8zM7RFHwiEOgKeJxgMwhUOAP39kCQJaRoNcvPyoNfpoFKpIIoi0NV1eTsDfj+g08W/dmGcMQwQEVH8TZ8e6i/g8UTeiAPBIFwuF1xOJ/r7+yEBSE9LQ35+PnQ6HVTnhQaZTAaFXA7J77/0dXg8wKpVozcuOUkwDBARUfyp1cDMmQju3IleAC6XC+7+fgBAeno6CgoLodPpoByhwPDNri64RBHHJAmSKGJrXx/aAgEAwC1ZWci4yKWHQebNu9xXk3QYBoiIKK5aWlpgs9mgcThQ0dGBdqUS2owMFE6aBF1GBhRRnDD4r64uNPv98Pv9ECUJNpcLNpcLAHCNXh9dGPD7Q/UCV155uS8p6TAMEBHRuGtoaIDNZoPVasXhw4ehVCpx48yZ+KzDgXKDAXK9PqbHe2/6dABAR0cHOru6MKO8PPZFdXcDhYVAVVXs35vkGAaIiGhcnD59OhIAjh07BrVajVWrVuHWW2/FmjVroE1PB77wBWDbNiDGMBCmUqkQDAYRDAYhj+XSgCSFjhN+8Ysxz0aYCBgGiIhoTEiShBMnTsBqtcJms+HUqVNIT0/H6tWr8dWvfhUrV65E2vlV++vXAzt3htoTX0JFv+rskUCfzzf0sS+kuzt0iuCmm2J+zomAYYCIiEaNJEmora2NBACHw4GMjAxUVlbigQcewIoVKyJv2MO67jrg9deB6mqgqCjmqn5lOAz4/dGHAZ8vFD6++U1g2rSYnm+iYBggIqLLIooiDh06hE2bNsFut6O5uRkGgwEmkwmPP/44li5dCuUwvQOGpVAA3/8+cP31QEcHEONIYvnZ44U+ny+6b5Ck0NjiuXOBBx+M6bkmEoYBIiKKmSiK2L9/P6xWK+x2O9rb25GTkwOTyQSLxYJFixbFds3+XNOnA9/6FvDd7wI9PaGGRDFQqVTRhQFJAlpbQ/UJL76YkrUCYQwDREQUlUAggD179sBms8Fut6O7uxv5+flYu3YtLBYL5s2bB9loNevZsAFobAR+/vPQv8cQCJQqFfwXCwOSBLS0hOoSfvITYPHiS1/rBMAwQEREI/L5fPjoo49gs9lQXV0Np9OJ4uJiXHfddTCbzZg9e/boBYBzCQLw5JOhmoGf/zz0xp2fH1UNgUqlQn9f38h38PuBtrbQjsCPfwx87nOjuPDkxDBARESDeDwebN++HTabDVu3bkV/fz9KS0tx0003wWKxoLy8HMLlDAOKlkwGPPFEqKjv//wfoKkJyMq66DRBlUqFQDCIoChCfm54kKTQZYf+fmD27NClgeXLx/Y1JAmGASIigtvtRk1NDaxWK7Zt2waPx4OysjLcdtttsFgsmDp16vgEgPMJAnDLLcDKlcAzzwBWa+gNPSMjdBRwmJ2C8MwCv88HuUYTGn7U2xs6MaDVAvffDzz8cOgxCADDABFRynK5XNiyZQusVit27twJn8+H2bNn46677oLZbMbkyZPjvcR/MhqB114DtmwJHT3ctAlobg592lepAI0mdBIBgCoYREYwGCoOVChCgSInB/jyl0PBYs6cOL+YxMMwQESUQnp6elBdXQ2r1Ypdu3YhEAhg3rx5uP/++2EymVBUVBTvJY5MJgu1Cq6qAurrgX/8Azh8GNi3LxQMPB7g7KUBQSZDR2EhSq67Dpg/H/jMZ2I+lZBKBCmKwc9OpxMGgwG9vb3QX2KLSCIiio/Ozk7Y7XZYrVbs3bsXALBgwQKsXbsWVVVVyI/xLH9C6uoC+vpCxYEqFe761rcwedYsPPPMM/FeWVxF+/7NnQEiogmotbU1MgfgwIEDEAQBS5cuxRNPPIGqqipkZ2fHe4mjKzs79HVWwbRpaGhoiOOCkgvDABHRBNHY2BhpA3zo0CEolUosX74cTz/9NCorK2EwGOK9xHFjNBqxb9++eC8jaTAMEBElsTNnzkR2AI4ePQqVSoVVq1bhhRdewJo1a5CRohXzRqMR7e3tGBgYiG1gUYpiGCAiSiKSJOHkyZOwWq2wWq04deoU0tLSsGbNGtxxxx1YuXIl0lO4rW6Y0WgEENotmT59epxXk/gYBoiIEpwkSfj0008jlwDq6+uRkZGBiooK3H///VixYgXUanW8l5lQSkpKAAAOh4NhIAoMA0RECSg8CTA8CKipqQkGgwFVVVV47LHHYpsEmIKysrKQnp4Oh8MR76UkBYYBIqIEIYoiPv7440gAaGtrQ3Z2NsxmM8xmMxYvXnzpkwBTjCAIMBqNPFEQJYYBIqI4CgQC2Lt3L6xWKzZv3oyuri7k5+fDYrHAbDZj/vz5YzMIKAUYjUbuDESJYYCIaJz5fD7s2rULNpsNmzdvhtPpRFFRET73uc/BYrGM3STAFFNSUoJDhw7FexlJgWGAiGgceL3eyCTALVu2xG8SYAoxGo1obW2Fz+eDSqWK93ISGsMAEdEYCU8CtNlsqKmpgcfjwfTp07F+/XqsXbs2fpMAU4TRaIQkSWhqasKUKVPivZyExjBARDSKXC4Xtm7dCqvVih07dsDn82HWrFn46le/CovFkliTACe4c48XMgxcGMMAEdFlGmkS4H333Qez2ZzYkwAnsNzcXKjVahYRRoFhgIjoEnR2dmLz5s2wWq3Ys2cPJEnCwoUL8fDDD8NkMk2MSYBJTiaToaSkhMcLo8AwQEQUpba2tsgcgI8//hiCIGDJkiUTdxLgBMDjhdFhGCAiuoCmpqZIG+BPPvkECoUiZScBJiOj0Qi73R7vZSQ8hgEiovPU1dVFAsCnn34KlUqFlStX4vnnn8eaNWug0+nivUSKktFoRFNTEwKBABQKvuWNhH8yRJTyJEnCqVOnIpMAT548ibS0NKxevRobNmzAqlWrOAkwSZWUlEAURTQ3N0cmGdJQDANElJLCkwDDNQD19fXQarWorKzEvffei6uuuoqTACeAcABwOBwMAxfAMEBEKSM8CdBms8Fms6GpqQl6vR5VVVV49NFHsXTpUnaqm2AKCgqgVCp5ouAiGAaIaEIbaRKgyWSCxWLBokWLeC15ApPJZCguLuaJgovg3wAimnACgQD27duHTZs2DZoEGB4FvGDBAg4CSiE8XnhxDANENCH4fD7s3r07Mgo4PAnw2muvhcViwZw5cxgAUpTRaMS2bdvivYyExjBAREnL6/Vix44dsNlsqK6uRn9/PyZPnoz/9b/+FywWC2bMmMFBQISSkhI0NjZCFEUGwhEwDBBRUnG73di2bVtkEuDAwACuuOIKrF+/HhaLBdOmTWMAoEGMRiMCgQBaWlo4J2IEDANElPD6+vqwZcsW2Gw2bN++HT6fDzNnzsQdd9wBi8WC0tLSeC+RElj4SGFDQwPDwAgYBogoIfX29kYmAX700UcIBAKYO3cu7r33XpjNZhQXF8d7iZQkCgsLIZPJ4HA4sGzZsngvJyExDBBRwujq6sLmzZuxadOmQZMAv/nNb8JkMqGgoCDeS6QkpFAoUFRUxF4DF8AwQERxFZ4EaLPZsH///sgkwG9/+9uoqqpCTk5OvJdIEwCPF14YwwARjbumpqZIG+DwJMBly5bh6aefRkVFBTIzM+O9RJpgjEYj9u7dG+9lJCyGASIaF/X19ZFBQOFJgFdddRUnAdK4KCkpwV/+8hceLxwBwwARjYnhJgFqNBpOAqS4MBqN8Hq96OjoQH5+fryXk3AYBoho1EiShKNHj0YuAdTV1UGr1aKiogJf//rXcdVVV0Gj0cR7mZSCzj1eyDAwFMMAEV0WURRx+PDhSAA4dxLgww8/jGXLlnESIMVdUVERBEGAw+HAokWL4r2chMMwQEQxE0URBw4cgNVqhc1mi0wCrKqqgsViweLFizkJkBKKSqVCYWEhTxSMgH9biSgqwWAQe/fujYwC7urqQl5eHsxmMywWCycBUsLj8cKRMQwQ0Yj8fv+gSYC9vb2YNGkSrrnmGlgsFlx55ZUMAJQ0SkpKcOjQoXgvIyExDBBNYJIk4Y033sCBAwdgsVhgNpsv+ubt9Xqxc+dOWK1WbNmyBX19fZg8eTJuvPFGWCwWzJw5k4OAKCkZjUb8/e9/hyRJ/H/4PAwDRBNUS0sL/vVf/xVNTU1YtGgRXn75Zdx333147LHHkJ+fP+QHoiRJePHFF/G3v/0NAwMDmDZtGm699VZYLBZcccUV/OFJSc9oNMLtdqO7uxvZ2dnxXk5CYRggmqB+/OMfw+/3Y+fOnSgsLMSrr76Kn/3sZ5DL5XjxxReHDQOFhYW44447YDabMWXKlPgtnmgMhI8XOhwOhoHzMAwQTUCiKOLEiROYM2cOCgsLAQBf+cpX0NzcjJ/+9Kd48cUXh1wuEAQBd955ZzyWSzQuwpMuHQ4H5s+fH+fVJBZW/hAlke7ubrz88st44YUX0NbWNuL9+vr6MDAwMKjHv0qlwvXXX4++vj784x//ABDaDQjjZQCa6DQaDfLz83miYBgMA0RJQBRFvPPOO1i3bh2ee+45vPDCCyOOY5UkCXq9HmlpaWhra0Nra2vkttLSUixduhT//d//HXlcolRSUlLCMDAMhgGiJCCTyeDxeHDttddi9+7d0Gg02LFjx7Bv5uHfM5lMOHToEI4ePRq5TaPRYPHixaitrQUAyOXy8XkBRAnCaDSOGKRTGcMAUZL4/Oc/j6eeegpTp06F2WzGe++9B5fLNeR+4VqAG2+8EaIo4sMPP4zcptFocObMGcyePRs+n2/c1k6UKLgzMDyGAaIkkZGREenxf8cdd6CmpgZ1dXWD7iNJUqQOwGg04vrrr8cbb7wRuSxQV1eHQ4cOYf78+VCpVINqBohSgdFohMvlgtPpjPdSEgrDAFESCRf53XDDDZFjg+deKhAEYdApgW9961u4+uqr8fDDD6OiogILFy7EnDlzcMsttwx6PKJUce7xQvonhgGiJBMIBAAAZrMZ7777Lvr7+yO3DQwM4Le//S1efvllAEBmZiZeeuklvP3227jmmmvw3nvv4S9/+Qvy8vLisnaieCspKQHAMHA+hgGiBCGKIj7++GO8/PLLkTf84YQ/zd95553YunUrGhsbAQA9PT1QKpV488038dprr8Hr9QIIHSlcunQpnnzySaxatWrsXwhRAtNqtcjOzmYYOA+bDhHFUXgSoM1mg91uR2dnJ/Ly8nDttddi2rRpw27jh08A/Mu//AvWr1+Pp59+GnV1dcjMzMTbb7+N559/HtnZ2VCr1eP9coiSAosIh2IYIBpnw00CLCwsxGc/+9moJgEGAgG89tprePXVVxEIBFBbW4t169bhvvvug1arxeLFi8fx1RAlH44yHophgGgc+Hw+7Ny5E5s2bYpMAjQajbjxxhthNpsxa9asqIv5JEmCw+HA6tWr8dZbb6G0tHSMV080sRiNRmzfvj3ey0goDANEY2RgYADbt2+H1WpFTU0N3G53ZBKg2WzG9OnTL6maX6lU4nvf+94YrJgoNRiNRnR3d6Ovrw8ZGRnxXk5CYBggGkX9/f3YunUrbDYbtm3bBq/Xi/LycmzYsAFmsxlTp06N9xKJUl74eGFDQwNmzpwZ59UkBoYBosvkdDpRXV0Nm82GnTt3wu/3Y86cObjnnntgNpsjR5mIKDGce7yQYSCEYYDoEnR1dWHz5s2w2WzYvXs3RFHE/Pnz8eCDD8JsNkfGBhNR4tHr9dDr9SwiPAfDAFGU2tvbYbfbYbVasX//fgDA4sWL8dhjj8FkMiE3NzfOKySiaM2dO/eCp3ZSjSBF0Zzc6XTCYDCgt7cXer1+PNZFlBCam5ths9lgtVpx8OBByOVyLFu2DBaLBZWVlcjKyor3EomIRhTt+zd3BojO43A4IgHgyJEjUKlUWLFiBZ577jmsWbOGgZiIJhyGASIAp06digSA48ePQ6PRYNWqVbjtttuwevVqpKenx3uJRERjhmGAUpIkSTh+/DisViusVivOnDmD9PR0rFmzBl/72tewcuVKaDSaeC+TiGhcMAxQypAkCUeOHIkEgMbGRuh0OlRWVuKhhx7C8uXLoVKp4r1MIqJxxzBAE5ooijh48GDkEkBrayuysrJQVVUFi8WCJUuWQKHgXwMiGszn80EUxZTZIeRPQZpwgsEg9u3bF5kE2NHRgdzcXJjNZpjNZixcuDAy+Y+IaDi//e1v0dnZiccffzwlfl4wDNCE4Pf7sWfPnsgkwJ6eHhQWFmLdunWwWCw8U0xEg/z617/G6tWrMX36dIiiCEEQIJPJIvNC8vPz8fLLL+Pmm2/GtGnT4rzasccwQEkrPAnQarViy5YtcLlcKCkpwQ033ACLxRLTJEAiSi2PP/44fvjDH6K8vHzQBwWfzweHw4G2tjYcOnQIBw8eZBggSjQDAwPYsWMHNm3aFJkEOHXqVNxyyy0wm80oKytjACCii7rqqqvw+uuvo6GhAQcOHMDRo0fR2NgIp9MJQRCQn5+PWbNmpcyxYoYBSnj9/f2oqamB1WodNAnwK1/5Csxmc0qkdiIaXcuXL8ezzz6L7u5ulJSU4DOf+QymT5+OyZMno6CgANnZ2dBoNCnTZZRhgBKS0+nEli1bYLPZsGPHDvj9fsyePRt33303zGZzZAQpEdGlMBqNmDRpEt59911kZmZCoVBAqVSm7M4iwwAljO7u7sgkwF27dkEURcybNw8PPvggTCYTJk2aFO8lEtEEceWVVwIAdDpdylwKuBCGAYqr8CRAm82Gffv2AQAWLVqERx99FCaTCXl5eXFeIRFNRHPnzsULL7yAjIyMeC8lIXBqIY27lpaWQZMAZTIZli1bBrPZjKqqqpS5RkdE8dXV1YX6+nrMnTt3wvYS4NRCSijnTwJUKpW46qqr8Oyzz6KiooIhk4jG3cMPP4zDhw/jz3/+MyZPnhzv5cQVwwCNmdOnT8NqtcJms+HYsWNQq9VYtWoV1q9fj9WrV0Or1cZ7iUSUwioqKjB9+vTITBJRFIc0J5MkKSWKCnmZgEZNeBJgeAfg9OnTSE9Px+rVq7F27VpcddVVSEtLi/cyiYguqK+vD11dXcjMzEz69zxeJqBxIUkSamtrI5MAGxoaoNPpUFFRgQcffBArVqzgJEAiSmh9fX34/e9/jw8//BDHjh2Dz+dDZmYmiouLYTKZ8PWvfx1KpTLeyxxTDAMUM1EU8cknn0QuAbS0tCAzMxNVVVX49re/jSVLlkz4vzhENDE0NDTgoYcewqeffor58+fjhhtuQF5eHrxeL/bt24d///d/R2trK773ve/Fe6ljimGAohIMBrF//37YbDbYbDZ0dHQgJycnMglw0aJFE7Yal4gmJlEU8eqrr+LgwYP4xS9+gfnz5yMrK2vQWPONGzfi1ltvxQsvvDChawcYBmhEgUAAu3fvhs1mw+bNm9Hd3Y2CggKsW7cOZrMZ8+bN4yRAIkpaMpkMr776Kn76059i7dq1w95n6dKlkMvlqK+vR2lp6TivcPwwDNAgPp8PH330UWQSoNPpRElJCa677jpYLBbMnj17QqdjIkotcrkc/f39Q37f7/ejo6MDjzzyCBYvXjzha58YBggejwfbt2+H1WrF1q1b4Xa7MWXKFHzhC1+AxWLhJEAimrDuvPNO/PCHP8SePXvwuc99DjqdDl1dXThy5Aiqq6tx6tQpvPjiixO+HTrDQIpyu92oqanBpk2bsH37dng8HpSVlXESIBGllMceewwajQYbN27EO++8g+bmZoiiiPz8fKxZswa//OUvUVlZGe9ljjn2GUghTqcTW7duhdVqxc6dO+Hz+TB79mxYLBZOAiSilOZwONDW1oa8vDzk5+dDo9HEe0mjgn0GCEBoEmB1dTWsVit27dqFYDCIefPm4YEHHuAkQCKis4xG46APRJIkRboPpsJlUoaBCaijoyMyCXDv3r0AgIULF+LRRx9FVVUV8vPz47xCIqLEliohIIxhYIIITwK02Ww4cOAAZDIZli5diieeeAJVVVXIzs6O9xKJiChBMQwksYaGhsgcgMOHD0OpVGLFihV45plnUFlZyfoOIiKKCsNAkjlz5kxkDsC5kwBvvfVWrFmzhpMAiYgoZhMqDAREET5JggRALQhQTIDueJIk4cSJE5EdgFOnTkUmAX71q1/FypUrOQmQiOgyHTt2DD/4wQ/wb//2b8jLy4v3csZdUoeBE243tjudqO3vx/6+Ppz2eCCevU0GwKhWY2FGBmZrtViu12N2knxqDk8CDAcAh8OBjIwMVFRU4IEHHuAkQCKiUaZWq3HgwAHU19czDCQDvyjC1tODP7W2YmtvL9zBIABAIQhQy2QI7wUEARx1u3HY7QYkCRq5HMt1OnypoACfyc6GOsF2DURRxKFDhyKTAJubm2EwGFBVVYXHH38cS5cu5SRAIqIxMmnSJMhkMjgcDixevDjeyxl3SRUGDvT14alTp3Cgrw9BADqZDEUq1UWPf0iShD5RRHVvL7b29mJmejq+P3UqVhgM47PwEYiiiP3798NqtcJut6O9vR05OTkwmUywWCycBEhENE5UKhUKCwvhcDjivZS4SIow4BVF/LyxET9vaoIrEECuUglNDJ/sBUGATi6HTi6HTxRxpL8fX6qtxR2FhXjEaIR2HN9wA4EA9uzZA5vNBrvdju7ubuTn52Pt2rWwWCycBEhEFCclJSUMA4mqLxDAA8eP44PubqgFAcVR7ARciOrsbkJPMIifNzXhQF8ffjVjBrLHcAs+PAnQZrOhuroaTqcTxcXFuO6662A2mzF79mwGACKiODMajfjkk0/ivYy4SOgw4A4G8bWjR2Hv6UGOQoG0UfoELwgCshQKpIsianp7saG2Fr+bNQtZoxgIwpMAbTYbtm7div7+fpSWluKmm26CxWJBeXl5SnW3IiJKdEajEX/9618jbYhTScKGAVGS8MiJE7D39MR8WSBaapkM+UoldrtcuO/YMfzXrFmXdRwxPAnQarVi27Zt8Hg8mD59Om677TZYLBZMnTo15f4HIyJKFkajEQMDA+jq6kJOTk68lzOuEjYMvNXejo2dnchUKMYkCISpZDLkKJWo7u3Fr1tacHdRUUzf73K5sHXrVmzatCkyCXDWrFm46667YDabMXny5DFaORERjabwoCKHw8EwkAgavV68WF8PAMgYh+K+NJkMfYKAlxoaUJWZifL09Avev6enZ9AkwEAggHnz5uH++++HyWRCUYyBgoiI4q+4uBhAKAwsWLAgvosZZwkZBn7scKDZ60XRODbWyVUo0Ojz4Xt1dfjdrFlDbu/s7IxMAtyzZw8AYMGCBXj44YdhMpk4CZCIKMmp1Wrk5+en5ImChAsDzV4v3u/shFYuhyzK6+sDp06ht6YG7tpa+NrbIc/IQNoVVyD/C1+AqrAwqscQBAEGuRw1vb046nZjRno6WltbI5MAP/74YwiCwEmAREQTWElJCRoaGuK9jHGXcGHgzx0d6A0EYtoV6Ny4EQPHj0O3bBmyjUYEenvR9eGHOP3005jy7LNQl5RE9TgZcjnqPR489cEH0L3zDg4dOgSlUonly5fj6aefRmVlJQxxblRERERjx2g04vjx4/FexrhLqDAgSRL+1NoKhSBEvSsAANnXXIO0++6DoPjny9EvX45TTz2FjvfeQ/G9917w+30+H5wuF1xOJ/rkcvzd48HdBQV44ZZbsGbNGmRkZFzyayIiouRhNBphtVpT7nhhQoWBRq8XzT5fzEWD6WVlQ35PVVgIdXExfE1Nw36P1+uNBACv1wuZTIaMjAwU6vWQ1Gp89frrcSVDABFRSjEajejr64PT6UypneCECgO1bjcGRBG6UWj+I0kSAk4n1GerQ4FQI6BwAPD5fJDJ5dBlZCAvPx8ZWi0EQYAoSWj2+VDrdjMMEBGlmHOPFzIMxMmnbjeA0ATCy+Xcvh2B7m4YPv95tLa1weV0wu/3Qy6XQ6fToaCwENr09CHbQDJBAAQBtWfXQkREqaPkbI2Zw+HAlVdeGefVjJ+ECgMdfj+kUXicnpMn4Xj1VUj5+egoKoKitxd6nQ46vR7ai/QQAEK7Ch1+/yishIiIkkl6ejqys7NT7nhhQoUBvyQB0uXFAWdzM06++CIEQUDazTcjQ69HulYLlUoFhUIRVVGIAMATDF7WOoiIKDkZjcaUO16YUGHgci8PBN1uNP74x5D5fMh/9FFIOTnw+f1ob2+HJIr/fB6lEiqlEiqVCkqVKvLPKpUKMpkMEgAlpwgSEaUko9GIurq6eC9jXCVUGMiQyy/5KIfo96PhJz+B2NEB1fr1KJo3b9BjBYJB+Hw++H0++M5+ebxeuFwuBM/ZBZDL5QhkZuLj48fxq82bUVJSgpKSEhiNRmRmZqbUURMiolRkNBpRU1MT72WMq4QKA+VpaZAQmlgYS58BSRTR+P/+H9wnTqDwvvvQptPB6/NBo1ZH7qOQy6FISwPS0oZ8f1AUIyHB6/OhUxAgb2rC/1RXo7OzM3K/9PR0GI3GSDgI/2o0GpGbmwsZdxOIiJKe0WhET08PXC4XdDpdvJczLhIqDMzSaqEWBHhEEekx9Bpo++Mf0bd/PzIWLoTM60Xw1Cl0NzQg/WyxoGHVqgt+v1wmg1yjgUajgU8UIQaD+PcHHsDyp56C2+1GY2MjHA4HGhoaIl//+Mc/0NLSAulsjYNKpYrsIpwfFgoLC6FQJNQfNRERjSB8oqChoQGzhplVMxEl1DvUNI0GeoUCzkAgpjDgOXttp2//fvTt3w+/x4MOhSLyBnyxMHAutygiTSbDzLNBIj09HWVlZSgbprGRz+dDc3NzJCg4HA44HA7U1NSgqakJgUAAACCTyVBUVDRoJyEcGoqLi6E+ZweDiIji69zjhQwDcaCUyXB9Tg5ebW6OqRVk6Xe+M+jf6+rqoFAqUXwJo4T7g0HcmJcHQxSf5FUqFUpLS1FaWjrkNlEU0dLSEgkJ4V/379+Pd999F16vN3Lf/Pz8IUEh/KtWq435NRAR0aXT6/UwGAwpdaIgocIAANycn48/tLaiXxRjbkscplKp4PF4Yv6+AVGEQibDF0dhHHF4N6CoqAjLli0bdJskSejs7IzsJIQvPRw/fhw2mw0ulyty36ysrEE7CeeGBoPBwIJGIqIxYDQaU6rXQMKFgblaLRbrdKjp7YVWJrukNzuVWg2n0xnz93X5/Zij1WL1GLegFAQBubm5yM3NxcKFC4fc7nQ6BwWF8K87d+5EV1dX5H5arXbYgsaSkhIWNBIRXQaGgTgTBAGPT56MfUeOoCcYRNYlFN6pVSqIoohAIBB14Z4zEIBKJsPjkyfHdJJhLOj1esyZMwdz5swZcpvb7R5UyBgODYcOHUJra+uwBY3nn3woLCyE/BJ3XYiIUoHRaMSuXbvivYxxk3BhAACW6/W4s7AQP2tqglYUoYrxE65KpQIAeH2+qMJAQJLgDAaxvqAA67KyLmnN4yU9PR3l5eUoLy8fcpvP50NTU9OQHYWtW7eisbEx0k9BLpcPKmg8NzQUFxdH/vyIiFJVSUkJOjs74Xa7IyfTJrKEDAMA8LDRiM09PTjU349JKhXkMXxaV6lUEAQBPq/3orMIRElCq8+HqWlp+E5paVJfg1epVJgyZQqmTJky5LZgMIjW1tYhlx/27t2Lv/zlL5GCRkEQLljQmAp/KYiIzj1eONyHr4kmYcOAVi7Hf86YgfVHjuCMxxNzIFCqVPD5fBe8jyhJaPL5UKhS4T/Ly5E9CqOTE1V4N6CoqAjLly8fdJskSejo6BhUzOhwOHD06FFs2rQJfX19kftmZ2ePePlBr9cndZgiIgoLjzJmGEgAV6Sl4f+bORN3Hj2KkwMDyFUqkRblJQO1SjXo+N75vKKIdr8fRWo1XpkxA/MyMkZr2UlHEATk5eUhLy8PixYtGnSbJElRFzRmZGQM2UkI/3Nubi6DAhEljczMTGi12pQ5XpjQYQAAZmq1+NPs2Xjs5Els6+1FnyAgR6G4aJGfSqUa9kSBJEnoCgTgkSQs1unw4yuuwEye5R+RIAgwGAwwGAzDzvYOFzSeHxQOHjyI1tbWyP3UavWIOwoFBQUsaCSihCIIQkqdKEj4MAAApRoN/jRrFn7T0oKfNDSgyeeDRiZDpkIx4qRDlVoNv98faV4UlCT0BgJwiyJ0CgWeKC7G14uKoObxu8tysYLG81s5OxwOVFdXo6mpaVBBY3Fx8bBhoaioiAWNRBQXDAMJSCGT4WtFRbBkZeG/WlrwVkcHWs++2atlMqTJZFALQmTHQK5UIqhSocXjgXj2DT9LqcQXCwpwW0EBZnM3YMypVCpMnToVU6dOHXJbMBhES0vLkFbOe/bswTvvvBOp9xAEAQUFBcO2cmZBIxGNJaPRiIMHD8Z7GeMiacJA2LS0NDw7dSoeNhrxbkcHtvb2Yn9fHzr9fvQFgxDDd5TLISkU0Pr9WFNUhFUGA27IzUXOBC4STCbh3YDi4uIht4miiI6OjiGXH2pra/HBBx+gv78/ct/s7OwRJ0nq9frxfElENMGUlJSgtbUVXq93ws+QSbowEKZXKHBbYSFuKyyEJElo9vlwxuOBRxQhAVALAp78yU9w22c/i3vM5ngvl2Igk8mQn5+P/Pz8YQsae3t7h7Rydjgc2L59O7q7uyP31el0I7ZyzsnJYUEjEV1Q+ERBY2Mjpk2bFufVjK2kDQPnEgQBRWo1is5LbjOysuA4O9GQJgZBEJCZmYnMzEzMnTt3yO39/f3DFjR+/PHHaGtri9xPo9EMW6NQUlKCwsJCtnImokHHCxkGklhpaSmOHTsW72XQONJqtZgxYwZmzJgx5Dav14vGxsYhrZztdjuampogiqGLTAqFYkiHxvCOwqRJk1jQSJQicnJyoNFoUqKIcEKHgSlTpuDDDz+MaRwyTVxqtRrTpk0bNuEHAoEhBY0NDQ3YvXs33n777UEFjYWFhcP2UigpKUFaWtp4vywiGiOpdLxwQoeB0tJSuN1utLe3I38UxhLTxKVQKCJv7OcLFzSef/Lh8OHD+Pvf/w632x25b05OzoiTJONV0Oh2u/HGG2/gwIEDyMjIwPXXX4/FixeztwNRFBgGJoBwj/66ujqGAbpk5xY0Ll68eNBtkiShp6dnSDFjXV0dampq0NPTE7mvXq8fsfFSdnb2mO1etbW1Yc+ePfB6vfiP//gPnD59Gr/85S+h0+nG5PmIJpKSkhJs2rQp3ssYcxM6DBQXF0OhUODMmTNYunRpvJdDE5AgCMjKykJWVhbmzZs35Pa+vr6oChrT0tKGBIXwPxcUFFxWQaPRaMSTTz6JkpISbN68GTNnzhzxckb4ktrhw4fxk5/8BHa7HWVlZXjiiSdgMpkueQ1EycpoNKKlpQV+vx/KCXw0fUKHAblcjpKSEtTxRAHFSUZGBmbOnImZM2cOuc3j8QwZOe1wOGC1WtHc3BwpaFQqlRcsaLzYD6jw3wMgdERq8uTJI472FgQBjY2NWLt2LZYtW4bnn38eNTU1+OY3v4k//OEPw7akJprIjEYjRFFEc3MzJk+eHO/ljJkJHQaA0KWCM2fOxHsZRENoNJoLFjQ2NzcPufzw0Ucf4c9//nOkoFEmk6GwsBBPP/00Fi9efMEdhN7eXni9XhQVFV1wXd///vdRUFCAP/3pT0hPT8f111+PhQsX4q233sLs2bN57JJSSvh4ocPhYBhIZqWlpfjggw/ivQyimCgUisin//OJooj29vZBOwpFRUUjvkmHt/5PnDgBpVJ5wfqZjo4ObNu2DTfffHOk1bNer8ctt9yCjRs34n//7/89Kq+PKFnk5eVBpVJN+CLClAgDLS0t8Hg80Gg08V4O0WWTyWQoKChAQUEBlixZctH7i6IIuVyOw4cPIzs7G5mZmUPuEw4Mp06dgtPpxJw5cyK3BQIBaDSaSDGkKIrcHaCUIZPJUFxcPOHDwIT/Gz1lyhRIkoT6+vp4L4Uorg4dOoSSkpIhpwhEUYxMkDxz5gy0Wi1ycnIit0uShIaGBhQUFIzreokSRSocL0yJMACARYSUksJHHwHg2LFjmD59OjIyMgbdRyaTRQoK+/v7odVqB33y7+3txbFjx0YsHnQ6ndi+fTvq6+vh9/vH5oUQxVFJSQkaGhrivYwxNeEvE+j1emRlZbGIkFJSY2Mj1q1bh4GBAdTV1aGsrAwvvfQSVq9ejVWrVuHdd9/FwYMHcdddd6GwsBCzZs1Ce3v7oMmQBw8eRFNTE+655x4AGNQPQRRF7Nu3D4899hiAfxY0nj9y2mg0ori4mJfqKCkZjUY0NTUhGAxO2GZdEz4MAKG6Ae4MUCoqLi7Gn/70Jxw8eBDNzc3YtWsXXnnlFezevRsrVqyA3W7HG2+8gTvvvBMAsGLFChQUFOCXv/wl5s6dC5/Ph2984xuYO3cuKisrAQwOAzKZDJWVldi4ceOQXgqffPIJ/vrXv2JgYCBy/7y8vGEnSQ53+YIoURiNRgQCAbS2tl70NE6ySpkwwIFFlIoEQcD8+fMxf/78YW//zne+g/Xr1w/6Afe73/0Ot99+O8rLy5GXl4eZM2fihRdeGPGHYHheQ2Fh4ZDmXpIkobu7e0gvhZMnT2Lz5s1wOp2R+xoMhhFbOWdlZXG+CMXNuccLGQaSGAcWEQ0vNzcXubm5g36vrKwM27Ztw5kzZ9Dc3IyysrIh94mWIAjIzs5Gdnb2sIHE6XRG+iicu6uwZ88edHR0RO6Xnp4+YivnvLw8nm6gMVVYWAi5XA6Hw4Hly5fHezljIiXCAAcWEcVuypQpkQLcsaLX6zF79mzMnj17yG0DAwNobGwccvnhww8/REtLS6RDo0qlQnFx8bCtnCdNmjRit0WiaMnl8gl/vDAl/pZwYBFR8klLS8P06dMxffr0Ibf5/f5BHRrDlx+2bduGxsZGBAIBAKGahkmTJo1Y0KhWq8f7ZVGSKikpYRhIdhxYRDSxKJVKTJ48edj2sKIoorW1dUgr5wMHDmDjxo3weDyR++bn5w97+aGkpGTIEUxKbUajEbt37473MsZMSoQBDiwiSh3h3YBJkyZh2bJlg26TJAldXV2RnYRwUDhx4sSQgsbMzMwhASH8xYLG1GM0GvH2229P2A6cKREGAA4sIqJQQWNOTg5ycnKwYMGCIbeHCxrPr1PYtWsXOjs7I/dLT08f8eQDCxonJqPRCJ/Ph/rWVhhycyEA0Mhk0EyQvgMpEwY4sIiILuZCBY1ut3tQQWP46x//+AdaWlogSRKAUEHjubsI59YrFBYWsqAxiUiShE/6+7HT6cTOtDQcve8+VBw7BtXZXWaZIKBYrcbijAzM1mqxUq/HTK02zqu+NCnzf+WUKVM4sIiILll6ejrKyspQVlY25DafzzekoLGhoQE1NTVoamoaVNBYVFQ0pKCxpKSEBY0JxB0M4u9dXfhDayv2ulzwShIkSYI3Kwv+QABpZ/87iZKEk243Pj3bsTNNLsdVej1uzc/HuuxsqJJohyhlwkBpaWlkYFF5eXm8l0NEE4hKpUJpaSlKS0uH3CaKIlpaWgYVMzocDuzfvx/vvvsuvF5v5L7hgsbzTz6UlJRAm6SfOJPN1p4efPf0aRw/2znTIJcjRyaDIAjweL1Qer3QGQxDvk+SJPSJImzd3djc04M5Wi3+bdo0LEqSzpopEwbOPV7IMEBE4yW8G1BUVDRsQWNnZ+eQHYXjx4/DZrPB5XJF7puVlTViK+fMzEwWNF4mVyCAf3c48F+trfCIIvIUiiGf7FUqFXwjDOMSBAE6uRw6uRxeUcQnfX24+fBh3F1UhAeLi5GW4LUFKRMGOLCIiBKNIAiRLpALFy4ccrvT6Rxy8qGhoQE7d+5EV1dX5H5arXbEgsbc3FwWNF5Em8+Hu48exUdOJ7RyOYqUymHDlUqlgvucWRsjUctkKFKp0B0I4CWHAwf7+vDz8nLoE7heJHFXNgY4sIiIkoler8ecOXMwZ86cIbe53e5hWzkfOnQIra2twxY0nt/KOdxmN5V1+v24/dNPsc/lQp5SCfUFgpNKpUJPb29UjysIArKVSgyIIjZ1d+NrR4/itRkzkJGggSAxVzVGOLCIiCaK9PR0lJeXD3vZ0+fzoampaciOwtatW9HY2IhgMAgg1IPl3ILGc0NDcXExVCrVeL+sceUTRXz96FHsc7mQr1RetOBPqVJBEkUEAoGoT4WkyWTIVSpR3dODR06exC/LyyFLwEs6KRUGOLCIiFKBSqUacbZEMBgc1KExfBli7969+Mtf/hIpaBQE4YIFjenp6eP8qkbfq83N2OZ0IjeKIAAgEo58fn9MR0Q1MhmyFAq839mJN9va8MWCgkte81hJqTDAgUVElOrCuwFFRUVDJvBJkoSOjo4hrZyPHj2KTZs2oa+vL3Lf7OzsEVs5GwyGhP/AVdvfj582NEAlCNBEWVOhUioBAH6fD0hLi+n5tHI5XMEgXqyvxyqDAcYEO+KeUmEgnJLPnDnDMEBEdB5BEJCXl4e8vDwsWrRo0G2SJEVd0JiRkTFiK+dEKWj8Xl0degMBFMdwKUQQBCiUSvh8vkt6znylEk0+H37kcOCnw/SriKeUCgPhgUV1dXVDjvgQEdHIBEGAwWCAwWDAlVdeOeT2cEHj+UHh4MGDaGtrixQ0qtXqEQsaCwoKxqWg8Uh/P3Y4nTAoFDHtYIh+P4IffICWjz9GZyAA9eTJyL/pJmiH+fMYjkwQkCGX429dXfi214uiBGoylVJhgAOLiIjGxsUKGodr5VxdXY2mpqZBBY3FxcXDhoWioqJRK2j877Y2uIPBmHYFAKD5V7+Cb/t2KFeuRMGsWeitqUH9j36E0iefRPqMGVE9hl4uR5PPh/9pb8eDJSWXsvwxkVJhAODAIiKi8aZSqTB16lRMnTp1yG3BYBAtLS1DdhT27NmDd955J7IlLwgCCgoKhm3lHEtBoycYxP90dEBztqtgtAZOnoTzo49guP56eBYuRFZ5OQxr1uDUk0+i7Y03MOWZZ6J6HJkgQCkIeL2tDQ8UFydMbUXKhQEOLCIiShzh3YDi4uIht4miiI6OjiGtnGtra/HBBx+g/+xMAOCfBY3DnXzQ6/WRN91jAwPoDQSgi/FyhGv3bkAQkGkyoamzE8FgEHKlEpkVFWh/6y34OzuhzMmJ6rG0cjlafD40er0oSZBCwpQLAxxYRESUHGQyGfLz85Gfnz9sQWNvb++ggsZwYNi+fTu6u7sj99XpdJFg0Dp7NpxFRUhXKBBQqaI+Iug5cwaqSZOgNhiAzk74fD6kpaUh7YorQrfX1UUdBjQyGZx+P2rdboaBeOHAIiKi5CcIAjIzM5GZmYm5c+cOub2/v3/YgsYtZ86gT6dDvdMZehyZDCqlEiqVCiqVCsqzv6qUSijPHiUEgEBvLxSZmZHjheEwoDg7tCjQ0xP12hVndylq3W5cnZ19qX8EoyrlwgAHFhERTXxarRYzZszAjPMK+x48fhxvtrUhPy8Pfp8PvvCX3w+nywW/3w+cPfkgCAKUZ4PCgMsFlVYLt9sNmUwWGVgknC1ClC7huGHXCEOP4iHlwgAHFhERpS5vMAgZALVKBfUwpwkkAH6/f0hQCAoC+p1OnDx1CmIwiMLCwtD9wwWOMZ5MkCQJvrOhIxGkXBgAOLCIiChVKWUyXOgtWECo06BKqURaWhpcZ3cLJK0WcDqRodUiLT0dOr0eQOjyAQAoMjNjXosiQU4SACkcBjiwiIgo9RgUClzoLTgYDMLlcsHlcqG/vx+SJCEtLQ36sjIMVFdjSlER5Oe0Ih44eRIAoCktjWkdgiDEfKJhLMW/J2QcTJkyBXV1dZGOWERElBrK09IAQRj08z8QCKC7uxt1dXU4dvw4mltaIIoiCgoKUFZWhilTpqCwshICgB67PfJ9ot+P3q1bkTZtWtQnCQBAlCRIkoQZCTTsKWV3BjiwiIgo9czSaqEQBLj9fnj6+uByOjEwMABBEKDVajGpsBAZOh0U531qT5s+HbqlS9H25psIOp1Q5uejt6YGvvZ2lH71qzGtwSOK0MhkmMkwEF8cWERElHpOnTqF3Zs3ozc7G22BAJQeDzIyMlBUVASdTnfRAUpFX/862t96C73btiHY3w+10QjjI48gfebMmNbhFkUYFApMS5AeA0CKhgEOLCIimvgkScLRo0dhs9lgs9lw5swZpKeno+yuu3DaaMSUjAzIYijikymVKLj1VhTceutlrckjitiQmwtFAkxvDEvJMMCBRUREE5Moijh06BCsVivsdjuampqg1+tRWVmJhx56CMuXL8dHbjfW19bCK0lIG+eK/n5RRJpcjpsTbFc6JcMAwIFFREQTRTAYxL59+2Cz2WC329HR0YGcnByYTCaYzWYsWrRoUNvhVUolZqSn41BfH4pUqnEbFiRJEnoCAVRmZmKOVjsuzxmtlA0DHFhERJS8fD4fdu3aBZvNhurqavT29qKwsBDr1q2D2WzGvHnzRqwBkAkCvm004qtHj8IVDEIf5XyCy9UdCEArl+Nxo3Fcni8WKRsGOLCIiCi5DAwMYMeOHbDZbNi6dSv6+/sxefJk/Ou//ivMZjNmzpwZ9af8tdnZuDkvD//V2op0uXzMGwD5RBEDkoSHioqw5GzDokSSsmGAA4uIiBJfX18ftm7dCpvNhu3bt8Pr9aK8vBy33XYbLBYLpk6desnb/E+WlmKH04kTAwMoUqliKiaMRVCS0Ob3Y15GBr5RUjImz3G5UjYMcGAREVFi6u7uxpYtW2C1WrFr1y4EAgFceeWVuOeee2AymWAcpW32bKUSv5oxA7fV1qLJ6x2TQBCQJLT4fLgiLQ2vzJiB9ATqOniulA0DHFhERJQ42trasHnzZthsNuzbtw8AsGDBAjz88MOoqqpCQUHBmDzvbK0Wv5k5E1/99FM0eL3IVSqhGaUjfwPBIDoDAZSlpeHXM2eiNIEvSadsGAA4sIiIKJ6ampoiRwAPHjwIuVyOZcuW4cknn0RlZSWys7PHZR3zMzLwp9mz8fjJk9jlckElCMhRKC758oMoSWj3+yECMGdl4QfTpsGYwEEASPEwMGXKFBw9ejTeyyAiShmnT5+ONAE6evQoVCoVrrrqKjz//PNYvXo19HEqritLT8ebc+bgleZm/EdDAxp9PqTJZDAoFFEXF/rPHh30iiJylUo8PnkybisogDyBphOOJKXDQPh4oSRJ43bOlIgolUiShGPHjsFqtQ7qArh69WrccccdWLlyJdITpEe/SibD/cXFuDorC39obcWfOzrQ5vdDlCSoZTJoZDKoBSFSVyBKErxnTwn4RBGCIKBQqcQX8vOxvqAgoS8LnC/lw4Db7UZHRwfy8vLivRwiogkh3AUwvANwbhfAb3zjG1ixYgVUKlW8lzmi8vR0PDd1Kh4xGvFuRwd2OJ3Y53Kh3e+HOxiEePZ+MkGAWhBgVKuxWKfDaoMBn8vJgTZBiwQvRJCimOPrdDphMBjQ29sbty2cseDxeOB2u8ftuhQR0UQV7gJot9tht9vR3t6O7OxsmEwmWCyWIV0Ak4109lRAvdcLrxiKAxqZDFM0GuQplQm7uxzt+3fy/pcZBWq1mg2HiIgukc/nw+7du2G1Wgd1Abz66qsv2gUw2QiCgElqNSap1fFeyphI6TCQqEmOiChReTwebN++fUgXwBtvvBFmsxmzZs3iz9YklNJhgIiILq6vrw81NTWw2WzYtm0bvF4vysrKcNttt8FsNmPatGkMAEmOYYCIiIbo6elBdXU1bDYbdu3aBb/fjzlz5ox6F0BKDAwDF+FyuSCKIgwGQ7yXQkQ0ptrb2yMFgHv37oUkSVi4cCEeeughmEymMesCSPHHMHARv/nNb9DQ0IDvf//7UCqV8V4OEdGoampqihwBPLcL4BNPPIGqqiqetkoRKR8GXnnlFaxevRrl5eWR5kPyc86ILliwAL/61a+wYcMGzJkzJ44rJSIaHadPn4bdbofVah3UBfC5557DmjVrJtQRcopOyoeBp59+Gk8//TRmzZo16PcdDgeOHj2KzZs348iRI9i3bx/DABElpXAXwPAOwOnTpyNdAG+//XasWrUqYboAUnykfBioqKjA73//e5w+fRr79u3DsWPH0NraimAwiIyMDEyZMgWf+cxnUFxcHO+lEhFFbaQugBUVFXjwwQcTvgsgja+UDwNr1qzBQw89BLlcjqlTp8JkMqGsrAwlJSXIy8tDZmYm1Go1tFptvJdKRHRBwWAQ+/fvh81mG9QFsKqqChaLBYsXL07qLoA0dlL+/4qpU6dCr9fj9ddfR25uLhQKBf+yEFHS8Pl82LNnT6QLYE9PDwoKCrB27VqYzWbMnz9/wnQBpLGT8u96c+fOhUKhgEqlYmtiIkoK4S6AdrsdW7ZsiXQB/Jd/+Rd2AaRLkvJhoLS0FD/5yU94fIaIElp/fz+2bt06qAvg9OnTsX79epjNZlxxxRUMAHTJUj4MAMDnP/957N27F3PnzmVFLREljN7eXlRXV8NqtUa6AM6ePRt33303TCYTJk+eHO8l0gTBMADgxRdfxDvvvIPXX38dixcvjvQbADDon4mIxlp7ezs2b94Mm80W6QK4YMECfOMb34DJZEJhYWG8l0gTEMMAgKqqKmRmZiI3N3fIbQwFRDTWmpqaIk2APvnkE8hkMixdupRdAGncCJIkSRe7k9PphMFgQG9vb8p0phJFEQ6HA21tbcjJycG0adPivSQimkDOnDkT6QHw6aefQqVSYcWKFbBYLOwCSKMm2vdv7gycw+/34ze/+Q3ee+89fPrppwgGgzAYDFCpVCgrK8MPf/hDFBUVxXuZRJSEJEnC8ePHYbVaI10A09LSsHr1amzYsIFdACmuuDNwVm9vL+677z7s2rULy5cvx9y5c1FYWAiZTIaWlha8/vrrmDRpEv7nf/4HarU63ssloiQgiiIOHz4c2QFobGyETqdDRUUFLBYLli9fzp8nNKa4MxCjN998Ex999BH+7//9v6iqqkJGRsag22+55RYsWrQIn3zyCZYsWRKnVRJRoju3C+DmzZvR1tYW6QJoNpuxZMkSNjajhMP/I8/63e9+h/Xr1+Pzn//8sLcXFhaisLAQJ0+eZBggokH8fj92794dCQDhLoAWiwUmkwkLFixgF0BKaAwDZ+Xn56OlpWXI73u9XrS0tOC73/0u5HI55s6dG4fVEVGi8Xg82LFjB2w2G7Zu3Yq+vj4YjUbccMMNsFgs7AJISYVh4KwNGzbg2Wefxdq1a7Fhwwbk5uaivb0dhw8fxu7du9Hb24snn3wSs2fPjvdSiShO+vv7UVNTA6vViu3bt8Pj8WD69On40pe+xC6AlNRYQHiWKIr429/+htdeew2HDx9GXV0dZDIZJk+ejIqKCtx6660wmUzxXiYRjbNwF0CbzYaPPvoo0gXQbDbDbDazCyAltGjfvxkGztPX14fW1lbk5+dDp9PFezlEFAcdHR2w2+2w2+3Ys2dPpAugyWSC2WxmF0BKGjxNcIkyMjIGnSQQRRGSJEEmk3H7j2gCC3cBtNlsOHjwIGQyGZYsWYInnngClZWVyMnJifcSicYMw8BFsAKYaOKqq6uLNAE6twvgs88+i4qKigm/E0oUxjBARCkj3AUw3ATo1KlTSEtLw6pVq/CVr3wFq1evZhdASkkMA0Q0oYW7AIYHAZ3bBfD+++/HihUr2AWQUh7DwHmCwSAEQeDlAaIkJooi9u/fD6vVOqQLoMlkwpIlS6BUKuO9TKKEwTBwHofDgf/+7//GQw89BJVKFe/lEFGUzu0CWF1dje7ubuTn50eOALILINHIGAbO43Q68cYbb+CGG25AeXl5vJdDRBfg8Xiwc+dO2Gw2bNmyBX19fSgpKcF1110Hi8WC2bNn8xQQURQYBs4zZcoUAKEqY4YBosQT7gJos9mwbds2eDweXHHFFbj11lthNpsxffp0BgCiGDEMnEev1yMrKwtnzpyJ91KI6KxwF0C73Y6dO3dGugDedddd7AJINAoYBoZRWlqKurq6eC+DKKV1dnZGmgCFuwDOnz8fDz74IEwmEyZNmhTvJRJNGAwDw5gyZQo+/fTTeC+DKOU0NTVh8+bNsFqtOHjwIARBwNKlS/Htb38bVVVV7AJINEYYBoZRWlqKDz74AJIk8dojUZT++te/YteuXaisrERlZWXUlfvhLoB2ux21tbWRLoDPPPMMKisr2QWQaBwwDAyjtLQUbrcb7e3tyM/Pj/dyiBJaR0cHbr75ZtTW1mLRokV46aWXcM899+Cxxx5Dfn7+kFAtSRL6+vrwhz/8YUgXwC9/+cvsAkgUBwwDwwifKDhz5gzDANFF/OxnP0NnZyd27tyJ0tJSvPLKK/jFL34BQRDwgx/8YEgYEAQBarUab7/9NpYvX84ugEQJgGFgGMXFxVAoFKirq8OyZcvivRyihFZbW4sZM2agtLQUAHDHHXegvb0dP/rRj/CDH/xg2MsFKpUK77//PhQK/ggiSgRsxzUMuVwOo9HIEwWUsnp6evCzn/0Mzz33HFpaWka8X39/P/r6+pCbmwtJkgAACoUC1113HTweD95//30AiNx2LgYBosTBMDCC0tJS9hqglCOKIjZu3Ih169bhueeew3PPPYf6+vph7ytJErRaLdLT09HZ2TkoNJSWlmL58uV48803I49LRImLYWAE7DVAqUgmk8Hj8eCzn/0sdu/eDYPBgG3btg37Zh7+vaqqKhw+fBjHjh2L3KZSqbBkyZLIEV25XD4+L4CILgnDwAimTJmC5uZmeDyeeC+FaFxdc801+M53voPS0lKsW7cOGzduhNPpHHK/cC3ADTfcAADYtGlT5DaNRgOHw4EZM2bw7xBREmAYGEG4GGqkLVKiiUqr1UYmdt5+++3YsWPHkEtmkiRFvoqLi3H99dfjzTffxJ///GcAQHNzM/bt24e5c+dCo9EMWzNARImDYWAE5w4sIko14aOA11xzDQBgx44dgy4VCIIAmUwWud9jjz0Gs9mMBx54AFdffTUWLlyIadOm4ctf/vKgxyOixMQwMAIOLKJUFwgEAAAWiwXvvfce+vr6Ird5PB788Y9/xM9//nMAQHZ2Nl566SW89dZbWLFiBX7zm9/g73//OwoLC+OydiKKDc/2XACLCGmikiQJx48fR0dHB1asWDFsL4Dwp/k777wTGzZsQFNTE/R6PZxOJ7RaLf74xz+ivr4ed955JzQaDTQaDVauXImVK1eO98shosvEMHABHFhEE4kkSTh8+DBsNhtsNhsaGhowbdq0yPG/84VPAFx33XXwer145pln0NDQgIyMDLz99tt49tlnYTAYoNFoxvNlENEYYBi4AA4somQniiI+/vjjSABoa2tDVlYWqqqq8K1vfQtLly4d8XsDgQB+/etf49VXX4Xf78cnn3yCq6++Gvfddx+0Wu0Fv5eIkgvDwAVwYBElI7/fjz179sBms2Hz5s3o7u5Gfn4+TCYTzGYzFixYENW5f0mSUF9fj5UrV+KNN97A1KlTx2H1RBQPDAMXwIFFlCy8Xi927twJq9WKrVu3wuVyobi4GNdddx1MJhPmzJkT9UjhMKVSie9973tjtGIiSiQMAxfAgUWUyNxuN2pqamCz2bBt2zYMDAxg2rRpuOWWW2A2m1FWVsbLW0QUFYaBC+DAIko0TqcT1dXVsNvt2LlzJ3w+H2bNmoU77rgDZrM5sptFRBQLhoGL4MAiirfOzk5s3rwZNpsNe/bsgSiKmDdvHh544AFUVVWhqKgo3kskoiTHMHAR4RMFROOppaUlcgLgwIEDEAQBS5YsweOPP46qqirk5ubGe4lENIEwDFzEuQOLeJ6axlJ9fX0kABw5cgRKpRLLly/H008/jYqKCmRmZsZ7iUQ0QTEMXMS5A4vKy8vjvBqaSCRJwokTJ2C322G1WnHy5MlIF7/169dj9erV0Gq18V4mEaUAhoGLOHdgEcMAXS5JknDkyBFYrVbY7XY4HA5kZGSgoqICX//613HVVVdxB4qIxh3DwEVwYBFdruG6AGZmZqKqqgqPP/44li5dCqVSGe9lElEKYxiIAgcWUawCgcCgLoBdXV3Iy8uDyWSCxWKJugsgEdF4YBiIAgcWUTTCXQBtNhu2bNkCl8uFoqIifO5zn4PZbL6kLoBEROOBYSAKHFhEIwl3AbTb7aipqYl0Abz55pthsVjYBZCIkgLDQBQ4sIjO5XQ6sWXLFthstkgXwJkzZ7ILIBElLYaBKHBgEXV2dqK6uhpWqxV79uxBMBjEvHnzcP/998NkMrELIBElNYaBKHBgUWoKdwG02+34+OOPIQgCFi9ejMceewxVVVXIy8uL9xKJiEYFw0AUOLAodbALIBGlIoaBKHFg0cQkSRJOnjwZCQAnTpyIdAH80pe+hNWrVyMjIyPeyyQiGlMMA1HiwKKJQ5Ik1NbWwmq1wmazweFwQKvVoqKiAvfccw+7ABJRymEYiBIHFiW3cBdAu90Om82G1tZWGAyGSBfAJUuWQKVSxXuZRERxwTAQJQ4sSj4X6gJoNpuxcOFCdgEkIgLDQNQ4sCg5+Hw+7Ny5E1ardUgXQJPJhCuvvJJdAImIzsMwECUOLEpcbrcb27Ztg81mw7Zt2+B2uzF16lTcfPPNMJvNKC8vZxdAIqILYBiIAQcWJQ6n04mtW7fCarVGugDOmDEDt99+O0wmE6ZOnRrvJRIRJQ2GgRhwYFF8dXV1YfPmzbDZbNi9e3ekC+B9990Hs9nMLoBERJeIYSAGHFg0/lpbWyM9AM7tAvjoo4/CZDKxCyAR0ShgGIgBBxaNj/r6etjtdlitVhw5cgQKhYJdAImIxhDDQAw4sGhsDNcFUK1WY9WqVewCSEQ0DhgGYsCBRaMn3AUwHADq6+uh1WqxZs0a3H333Vi5ciWbOxERjROGgRiEBxbxeOGlEUURBw4ciASAc7sAPvroo1i6dCm7ABIRxQHDQIx4vDA2gUAAe/fuhdVqjXQBzM3NhdlshslkwqJFi9gFkIgozhgGYsSBRRcX7gJos9mwZcsWOJ1OFBUV4dprr4XZbGYXQCKiBMMwECMOLBpeuAug3W5HTU0N3G43pkyZgptuugkWi4VdAImIEhjDQIw4sOifwl0AbTYbduzYEekCuGHDBpjNZnYBJCJKEgwDMUr1gUUjdQG89957YTabUVxcHO8lEhFRjBgGYpSKA4taW1tht9sjXQABYNGiRXj00UdRVVXFngtEREmOYeASpMKJAofDEekCePjwYSgUCixbtgzf+c53UFFRgaysrHgvkYiIRgnDQCy8XuDYMVzjcgG7dgFtbcDAACCXA3o9UFYGzJoFzJ4NTJoEJFHBnCRJOHXqFKxWK+x2O44fPw61Wo2VK1fii1/8ItasWcMugEREExTDQDROnQLeegt4/XWgsxPX9vai3+2G1N7+zwp5UQTCx+XS0oCFC4H164HPfjb07wlouC6A6enpqKiowNe+9jVcddVVSEvQtRMR0ehhGLiQ+nrg+98HNm0C+vsBtRrIyEBAo0FbQwMMBQVQKs77IwwEQrsF27YB27cDRUXA/fcDX/lKaAchzsJdAMM1AC0tLTAYDKisrMQjjzyCZcuWsQsgEVGKYRgYjiiGdgH+7d9ClwL0eqC4OLLtr/L5AAA+r3doGFAoAJ0u9OX3A62twHe/C3zwQShYTJs23q8m0gXQZrPBbrdHugCaTCaYzWZ2ASQiSnEMA+dzu4FHHgHeey/05l9U9M/t/7NUKhUEQYDX54NWqx35sZRKoKAgtFNgtwPXXw/86EehSwdjLNwF0G63o7q6Gk6nE5MmTcI111wDi8XCLoBERBTBMHAutxu45x7gww+BrCxghDd6AaFA4PN6o3vctLRQqGhtBR58EPjxj0PBYJS53W5s374dNpst0gWwtLQUN910E8xmM2bMmMEugERENATDQFggAHzzm6EgkJNz0aI/lUoF39nLBVGRyYDCwlAgePRRICMDMJsvb80IdQGsqamB1WqNdAEsLy/Hhg0bYDKZMC0OlyWIiCi5MAyE/fa3wMaNQHZ2VNX/KpUKTqcztucQhNBlg6Ym4NvfBt5/H7iEhj3hLoB2ux27du1CMBjE3Llzce+998JkMqGkpCTmxyQiotTFMAAAx4+Htu4VCiA9PapvUavV8Pv9ECUJsli23gUhtEPgcADPPw+8/HJU/Qja2toiRwDDXQAXLlzILoBERHTZGAYkCXjmGaCrK3RdP0rh43c+rzf26YVyOWAwAO++C3z+8yMWFDY0NEQCwKFDhyJdAJ966ilUVlayCyAREY0KhoG9e0P9ALKyhpwauBB1OAz4fJc2ylinA5xO4NVXgc98BhAESJKE06dPw2q1wmazDeoC+Pzzz2PNmjXQ6XSxPxcREdEFMAy88UaozXBubtTfcsrrxX+2t2O314u++nroVCpMU6vx5exsVMTyZm0wQNq7F6f+8hf8vbERVqs10gVwzZo17AJIRETjIrXDQGdnqJ9AenpMcwSa/X64RRFr09KQr1BAm5UFm8uFRxoa8FRhIf71Itv3EoABtxvOvj6o29thv/de/M+sWaiqqmIXQCIiGnepHQb27g1t1cdYfLcqIwOrMjLQ1NwMj8eDadnZuCUrC7edPo0/dHUNGwYkSYLb7YbT5YLL5UIgEIBCoUBBWhpuLizEHR9+yC6AREQUF6kdBj79NPTr+S2Fo6Q+e7xQAiATBBQolTg8MBC5XZQk9Pf3w+V0wtXXh2AwCKVSCb1eD71ej7S0NAhOJ+ByAT09of4GRERE4yy1w8ChQ6HTBJcoqFSiJxjEGbcbOzwebOvrw1qdDk6XC06nE319fRBFESqVCllZWdDpdNBoNBh0QUKjCZ1kqK0FVq++7JdEREQUq9QOA8ePh+YHXKJfOp140+uF8tQpyAAsk8txo8uFBpcLGo0GOTk50Ot0UKnVGLEiQakMdT90OC55HURERJcjtcOAxxPTccLzfTkvD+U9PegKBrEDQFAQkJmXh9LMzOgLAAUh9BXtnAMiIqJRltpj6y5zaM9UtRpfmDULX5w8Gb+eMwdKnQ4v9PdDeSm7DRwgREREcZLaYSA9HRDFy3oIuVyO7KwsKBUKWHQ6HPF4UB/LACNJCn1dSuMiIiKiUZDaYWDmTMDvH7WH854tRuyLJWD4fKG6galTR20dREREsUjtMDBnTujXGE8UdAUCQ34vIEl4v7cXakHAVLU6+gfzeEJTEmfOjGkNREREoyW1Cwhnzw4VEAYCMZ0q+D8tLegPBrEwPR35SiU6AwH8rbcXZ3w+PJyfj/RYihIHBoBZswC9/hJeABER0eVL7TCwaFGo0U9vb0yzCdbp9XinpwdvdXejNxiEVi7HTI0G38jPj202gSSFgsjVV1/C4omIiEZHaocBnQ74wheAn/0s9MYcZUX/Or0e60bjk7zLBWi1wE03Xf5jERERXaLUrhkAQmEgPT30xjyeJCk0F6GqCpg2bXyfm4iI6BwMAzNnAtdcE3pjDgbH73l7ekIh5O67x+85iYiIhsEwAADPPAMUFwNtbePzfH4/0N8P3H47sHz5+DwnERHRCBgGAKCgAHj6aUAuDxUTjiVRBFpbQycIHnlkbJ+LiIgoCgwDYTfcANxxR+gT+1jVD4gi0NwcCh8//SmQkTE2z0NERBSD1D5NcC5BCF0u8HiA//qv0JG/zMzRmxkQCIR2BPLzgVdeAebNG53HJSIiukzcGTiXXA68+CLwjW+EPsU3NV1+u2JJCl16aGkJnRr47W+BZctGZ71ERESjgGHgfDIZ8MQTod2BGTNCn+Y7OkKf7GMhSaFLDuFAsWEDsHEjsGDBmCybiIjoUvEywUhWrwbeew/4xS+AP/whdNJAkkLX+dPSQu2Lz7+EIIqhywwDA6EvjSa0C/DQQ4DZHJ/XQUREdBGCJF18So/T6YTBYEBvby/0qdhD3+UC3n8f+NOfgCNHQm/4fn9oF+HczoWSBKjVoTkDn/0s8MUvAgsXjl7dARERUQyiff9mGIhVby9QWxv6amkBvN5QrYFWC0yfHmpiNG0aoOCmCxERxVe07998x4qVwQCsWBH6IiIimgBYQEhERJTiGAaIiIhSHMMAERFRimMYICIiSnEMA0RERCmOYYCIiCjFMQwQERGlOIYBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcVENKgoPNnQ6nWO6GCIiIho94fftiw0ojioMuFwuAIDRaLzMZREREdF4c7lcMBgMI94uSBeLCwBEUURTUxN0Oh0EQRjVBRIREdHYkCQJLpcLRUVFkMlGrgyIKgwQERHRxMUCQiIiohTHMEBERJTiGAaIiIhSHMMAERFRimMYICIiSnEMA0RERCmOYYCIiCjF/f/2b7UAJYnTzwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -638,10 +638,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:52.147417Z", - "iopub.status.busy": "2024-02-09T16:52:52.147004Z", - "iopub.status.idle": "2024-02-09T16:52:52.313773Z", - "shell.execute_reply": "2024-02-09T16:52:52.313107Z" + "iopub.execute_input": "2024-02-14T16:07:45.838992Z", + "iopub.status.busy": "2024-02-14T16:07:45.838754Z", + "iopub.status.idle": "2024-02-14T16:07:46.007436Z", + "shell.execute_reply": "2024-02-14T16:07:46.006728Z" } }, "outputs": [ @@ -692,10 +692,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:52.316569Z", - "iopub.status.busy": "2024-02-09T16:52:52.316044Z", - "iopub.status.idle": "2024-02-09T16:52:52.485287Z", - "shell.execute_reply": "2024-02-09T16:52:52.484452Z" + "iopub.execute_input": "2024-02-14T16:07:46.010407Z", + "iopub.status.busy": "2024-02-14T16:07:46.009943Z", + "iopub.status.idle": "2024-02-14T16:07:46.199893Z", + "shell.execute_reply": "2024-02-14T16:07:46.199182Z" } }, "outputs": [ @@ -780,10 +780,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:52.488288Z", - "iopub.status.busy": "2024-02-09T16:52:52.487701Z", - "iopub.status.idle": "2024-02-09T16:52:52.515566Z", - "shell.execute_reply": "2024-02-09T16:52:52.514861Z" + "iopub.execute_input": "2024-02-14T16:07:46.203403Z", + "iopub.status.busy": "2024-02-14T16:07:46.203185Z", + "iopub.status.idle": "2024-02-14T16:07:46.230626Z", + "shell.execute_reply": "2024-02-14T16:07:46.229962Z" } }, "outputs": [ @@ -825,10 +825,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:52.518594Z", - "iopub.status.busy": "2024-02-09T16:52:52.518098Z", - "iopub.status.idle": "2024-02-09T16:52:52.550165Z", - "shell.execute_reply": "2024-02-09T16:52:52.549518Z" + "iopub.execute_input": "2024-02-14T16:07:46.233269Z", + "iopub.status.busy": "2024-02-14T16:07:46.232863Z", + "iopub.status.idle": "2024-02-14T16:07:46.271018Z", + "shell.execute_reply": "2024-02-14T16:07:46.270359Z" } }, "outputs": [ @@ -867,10 +867,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:52.552887Z", - "iopub.status.busy": "2024-02-09T16:52:52.552441Z", - "iopub.status.idle": "2024-02-09T16:52:52.616653Z", - "shell.execute_reply": "2024-02-09T16:52:52.615993Z" + "iopub.execute_input": "2024-02-14T16:07:46.273518Z", + "iopub.status.busy": "2024-02-14T16:07:46.273120Z", + "iopub.status.idle": "2024-02-14T16:07:46.318591Z", + "shell.execute_reply": "2024-02-14T16:07:46.317972Z" } }, "outputs": [ @@ -902,10 +902,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:52.619798Z", - "iopub.status.busy": "2024-02-09T16:52:52.619354Z", - "iopub.status.idle": "2024-02-09T16:52:52.817981Z", - "shell.execute_reply": "2024-02-09T16:52:52.817271Z" + "iopub.execute_input": "2024-02-14T16:07:46.321267Z", + "iopub.status.busy": "2024-02-14T16:07:46.320902Z", + "iopub.status.idle": "2024-02-14T16:07:46.518544Z", + "shell.execute_reply": "2024-02-14T16:07:46.517845Z" } }, "outputs": [ @@ -960,10 +960,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:52.820711Z", - "iopub.status.busy": "2024-02-09T16:52:52.820294Z", - "iopub.status.idle": "2024-02-09T16:52:52.823378Z", - "shell.execute_reply": "2024-02-09T16:52:52.822788Z" + "iopub.execute_input": "2024-02-14T16:07:46.521598Z", + "iopub.status.busy": "2024-02-14T16:07:46.520951Z", + "iopub.status.idle": "2024-02-14T16:07:46.524465Z", + "shell.execute_reply": "2024-02-14T16:07:46.523925Z" } }, "outputs": [], @@ -977,10 +977,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:52:52.825702Z", - "iopub.status.busy": "2024-02-09T16:52:52.825516Z", - "iopub.status.idle": "2024-02-09T16:53:07.183612Z", - "shell.execute_reply": "2024-02-09T16:53:07.182907Z" + "iopub.execute_input": "2024-02-14T16:07:46.526872Z", + "iopub.status.busy": "2024-02-14T16:07:46.526666Z", + "iopub.status.idle": "2024-02-14T16:08:00.921856Z", + "shell.execute_reply": "2024-02-14T16:08:00.921106Z" } }, "outputs": [ @@ -989,7 +989,7 @@ "output_type": "stream", "text": [ "energy: -7326.02469952184\n", - "time: 14.17830228805542\n", + "time: 14.182559490203857\n", "feasible: True\n", "solution: [1, 2, 0]\n", "solution objective: 202.0\n" @@ -1028,10 +1028,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:07.186303Z", - "iopub.status.busy": "2024-02-09T16:53:07.185897Z", - "iopub.status.idle": "2024-02-09T16:53:07.188959Z", - "shell.execute_reply": "2024-02-09T16:53:07.188409Z" + "iopub.execute_input": "2024-02-14T16:08:00.924518Z", + "iopub.status.busy": "2024-02-14T16:08:00.924295Z", + "iopub.status.idle": "2024-02-14T16:08:00.927510Z", + "shell.execute_reply": "2024-02-14T16:08:00.926971Z" } }, "outputs": [], @@ -1045,10 +1045,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:07.191304Z", - "iopub.status.busy": "2024-02-09T16:53:07.190925Z", - "iopub.status.idle": "2024-02-09T16:53:21.703934Z", - "shell.execute_reply": "2024-02-09T16:53:21.703256Z" + "iopub.execute_input": "2024-02-14T16:08:00.929971Z", + "iopub.status.busy": "2024-02-14T16:08:00.929560Z", + "iopub.status.idle": "2024-02-14T16:08:15.580313Z", + "shell.execute_reply": "2024-02-14T16:08:15.579590Z" } }, "outputs": [ @@ -1093,10 +1093,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:21.706737Z", - "iopub.status.busy": "2024-02-09T16:53:21.706239Z", - "iopub.status.idle": "2024-02-09T16:53:21.792637Z", - "shell.execute_reply": "2024-02-09T16:53:21.791876Z" + "iopub.execute_input": "2024-02-14T16:08:15.583025Z", + "iopub.status.busy": "2024-02-14T16:08:15.582635Z", + "iopub.status.idle": "2024-02-14T16:08:15.670505Z", + "shell.execute_reply": "2024-02-14T16:08:15.669734Z" } }, "outputs": [ @@ -1104,14 +1104,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_10116/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", + "/tmp/ipykernel_10107/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", " import qiskit.tools.jupyter\n" ] }, { "data": { "text/html": [ - "

Version Information

SoftwareVersion
SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:53:21 2024 UTC
" + "

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
qiskit_algorithms0.2.2
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:08:15 2024 UTC
" ], "text/plain": [ "" @@ -1164,48 +1164,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "215cfc8f77d340db9341637ae8c6ff65": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f6ccf6844d764b888a68a840a4ca634f", - "placeholder": "​", - "style": "IPY_MODEL_74861217823f4582b382534c9e49e039", - "tabbable": null, - "tooltip": null, - "value": "

Circuit Properties

" - } - }, - "74861217823f4582b382534c9e49e039": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f6ccf6844d764b888a68a840a4ca634f": { + "0d0c7f97d5e042dd9ad7dc596753a589": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1257,6 +1216,47 @@ "visibility": null, "width": null } + }, + "48aa0a4574014f989dc30d65ba588236": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0d0c7f97d5e042dd9ad7dc596753a589", + "placeholder": "​", + "style": "IPY_MODEL_ce5b7f0dfd144f31a1999312c52074e5", + "tabbable": null, + "tooltip": null, + "value": "

Circuit Properties

" + } + }, + "ce5b7f0dfd144f31a1999312c52074e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/tutorials/07_examples_vehicle_routing.html b/tutorials/07_examples_vehicle_routing.html index d230a6e1..8b3f1173 100644 --- a/tutorials/07_examples_vehicle_routing.html +++ b/tutorials/07_examples_vehicle_routing.html @@ -1091,7 +1091,7 @@

Step 5
-/tmp/ipykernel_12741/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0
+/tmp/ipykernel_12733/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0
   import qiskit.tools.jupyter
 

@@ -1099,7 +1099,7 @@

Step 5

-

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:53:28 2024 UTC
+

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:08:21 2024 UTC
@@ -1116,7 +1116,7 @@

Version Information

diff --git a/tutorials/07_examples_vehicle_routing.ipynb b/tutorials/07_examples_vehicle_routing.ipynb index d9fdffab..857ee2f1 100644 --- a/tutorials/07_examples_vehicle_routing.ipynb +++ b/tutorials/07_examples_vehicle_routing.ipynb @@ -177,10 +177,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:24.655455Z", - "iopub.status.busy": "2024-02-09T16:53:24.654972Z", - "iopub.status.idle": "2024-02-09T16:53:25.556995Z", - "shell.execute_reply": "2024-02-09T16:53:25.556310Z" + "iopub.execute_input": "2024-02-14T16:08:18.252957Z", + "iopub.status.busy": "2024-02-14T16:08:18.252760Z", + "iopub.status.idle": "2024-02-14T16:08:19.184481Z", + "shell.execute_reply": "2024-02-14T16:08:19.183860Z" } }, "outputs": [], @@ -214,10 +214,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:25.560087Z", - "iopub.status.busy": "2024-02-09T16:53:25.559529Z", - "iopub.status.idle": "2024-02-09T16:53:25.562632Z", - "shell.execute_reply": "2024-02-09T16:53:25.562043Z" + "iopub.execute_input": "2024-02-14T16:08:19.187453Z", + "iopub.status.busy": "2024-02-14T16:08:19.187169Z", + "iopub.status.idle": "2024-02-14T16:08:19.190273Z", + "shell.execute_reply": "2024-02-14T16:08:19.189630Z" } }, "outputs": [], @@ -239,10 +239,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:25.565317Z", - "iopub.status.busy": "2024-02-09T16:53:25.564830Z", - "iopub.status.idle": "2024-02-09T16:53:25.570116Z", - "shell.execute_reply": "2024-02-09T16:53:25.569555Z" + "iopub.execute_input": "2024-02-14T16:08:19.192824Z", + "iopub.status.busy": "2024-02-14T16:08:19.192328Z", + "iopub.status.idle": "2024-02-14T16:08:19.197421Z", + "shell.execute_reply": "2024-02-14T16:08:19.196845Z" } }, "outputs": [], @@ -276,10 +276,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:25.572546Z", - "iopub.status.busy": "2024-02-09T16:53:25.572335Z", - "iopub.status.idle": "2024-02-09T16:53:25.575655Z", - "shell.execute_reply": "2024-02-09T16:53:25.575103Z" + "iopub.execute_input": "2024-02-14T16:08:19.199806Z", + "iopub.status.busy": "2024-02-14T16:08:19.199440Z", + "iopub.status.idle": "2024-02-14T16:08:19.202720Z", + "shell.execute_reply": "2024-02-14T16:08:19.202058Z" } }, "outputs": [], @@ -303,10 +303,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:25.578332Z", - "iopub.status.busy": "2024-02-09T16:53:25.577876Z", - "iopub.status.idle": "2024-02-09T16:53:25.592222Z", - "shell.execute_reply": "2024-02-09T16:53:25.591611Z" + "iopub.execute_input": "2024-02-14T16:08:19.205410Z", + "iopub.status.busy": "2024-02-14T16:08:19.204900Z", + "iopub.status.idle": "2024-02-14T16:08:19.218355Z", + "shell.execute_reply": "2024-02-14T16:08:19.217781Z" } }, "outputs": [], @@ -410,10 +410,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:25.594531Z", - "iopub.status.busy": "2024-02-09T16:53:25.594332Z", - "iopub.status.idle": "2024-02-09T16:53:25.597761Z", - "shell.execute_reply": "2024-02-09T16:53:25.597109Z" + "iopub.execute_input": "2024-02-14T16:08:19.220789Z", + "iopub.status.busy": "2024-02-14T16:08:19.220404Z", + "iopub.status.idle": "2024-02-14T16:08:19.224541Z", + "shell.execute_reply": "2024-02-14T16:08:19.223821Z" } }, "outputs": [ @@ -438,10 +438,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:25.600300Z", - "iopub.status.busy": "2024-02-09T16:53:25.600041Z", - "iopub.status.idle": "2024-02-09T16:53:25.608226Z", - "shell.execute_reply": "2024-02-09T16:53:25.607610Z" + "iopub.execute_input": "2024-02-14T16:08:19.226996Z", + "iopub.status.busy": "2024-02-14T16:08:19.226600Z", + "iopub.status.idle": "2024-02-14T16:08:19.234588Z", + "shell.execute_reply": "2024-02-14T16:08:19.234009Z" } }, "outputs": [ @@ -472,10 +472,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:25.610914Z", - "iopub.status.busy": "2024-02-09T16:53:25.610458Z", - "iopub.status.idle": "2024-02-09T16:53:25.857615Z", - "shell.execute_reply": "2024-02-09T16:53:25.856933Z" + "iopub.execute_input": "2024-02-14T16:08:19.236979Z", + "iopub.status.busy": "2024-02-14T16:08:19.236601Z", + "iopub.status.idle": "2024-02-14T16:08:19.497811Z", + "shell.execute_reply": "2024-02-14T16:08:19.497121Z" } }, "outputs": [ @@ -550,10 +550,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:25.860368Z", - "iopub.status.busy": "2024-02-09T16:53:25.859939Z", - "iopub.status.idle": "2024-02-09T16:53:26.042033Z", - "shell.execute_reply": "2024-02-09T16:53:26.041408Z" + "iopub.execute_input": "2024-02-14T16:08:19.500456Z", + "iopub.status.busy": "2024-02-14T16:08:19.500240Z", + "iopub.status.idle": "2024-02-14T16:08:19.684818Z", + "shell.execute_reply": "2024-02-14T16:08:19.684159Z" } }, "outputs": [], @@ -668,10 +668,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:26.045054Z", - "iopub.status.busy": "2024-02-09T16:53:26.044575Z", - "iopub.status.idle": "2024-02-09T16:53:26.047592Z", - "shell.execute_reply": "2024-02-09T16:53:26.047001Z" + "iopub.execute_input": "2024-02-14T16:08:19.687967Z", + "iopub.status.busy": "2024-02-14T16:08:19.687464Z", + "iopub.status.idle": "2024-02-14T16:08:19.690653Z", + "shell.execute_reply": "2024-02-14T16:08:19.690099Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:26.049999Z", - "iopub.status.busy": "2024-02-09T16:53:26.049618Z", - "iopub.status.idle": "2024-02-09T16:53:26.054932Z", - "shell.execute_reply": "2024-02-09T16:53:26.054371Z" + "iopub.execute_input": "2024-02-14T16:08:19.693025Z", + "iopub.status.busy": "2024-02-14T16:08:19.692664Z", + "iopub.status.idle": "2024-02-14T16:08:19.697780Z", + "shell.execute_reply": "2024-02-14T16:08:19.697135Z" } }, "outputs": [ @@ -745,10 +745,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:26.057160Z", - "iopub.status.busy": "2024-02-09T16:53:26.056975Z", - "iopub.status.idle": "2024-02-09T16:53:26.062657Z", - "shell.execute_reply": "2024-02-09T16:53:26.061997Z" + "iopub.execute_input": "2024-02-14T16:08:19.700405Z", + "iopub.status.busy": "2024-02-14T16:08:19.700035Z", + "iopub.status.idle": "2024-02-14T16:08:19.705860Z", + "shell.execute_reply": "2024-02-14T16:08:19.705167Z" } }, "outputs": [], @@ -770,10 +770,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:26.065202Z", - "iopub.status.busy": "2024-02-09T16:53:26.064829Z", - "iopub.status.idle": "2024-02-09T16:53:27.695090Z", - "shell.execute_reply": "2024-02-09T16:53:27.694447Z" + "iopub.execute_input": "2024-02-14T16:08:19.708376Z", + "iopub.status.busy": "2024-02-14T16:08:19.708018Z", + "iopub.status.idle": "2024-02-14T16:08:21.348416Z", + "shell.execute_reply": "2024-02-14T16:08:21.347660Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:27.697790Z", - "iopub.status.busy": "2024-02-09T16:53:27.697400Z", - "iopub.status.idle": "2024-02-09T16:53:28.063853Z", - "shell.execute_reply": "2024-02-09T16:53:28.063162Z" + "iopub.execute_input": "2024-02-14T16:08:21.351428Z", + "iopub.status.busy": "2024-02-14T16:08:21.351008Z", + "iopub.status.idle": "2024-02-14T16:08:21.666337Z", + "shell.execute_reply": "2024-02-14T16:08:21.665595Z" }, "tags": [ "nbsphinx-thumbnail" @@ -867,10 +867,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:28.066542Z", - "iopub.status.busy": "2024-02-09T16:53:28.066137Z", - "iopub.status.idle": "2024-02-09T16:53:28.169269Z", - "shell.execute_reply": "2024-02-09T16:53:28.168646Z" + "iopub.execute_input": "2024-02-14T16:08:21.669316Z", + "iopub.status.busy": "2024-02-14T16:08:21.668812Z", + "iopub.status.idle": "2024-02-14T16:08:21.771919Z", + "shell.execute_reply": "2024-02-14T16:08:21.771215Z" } }, "outputs": [ @@ -878,14 +878,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_12741/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", + "/tmp/ipykernel_12733/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", " import qiskit.tools.jupyter\n" ] }, { "data": { "text/html": [ - "

Version Information

SoftwareVersion
SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:53:28 2024 UTC
" + "

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:08:21 2024 UTC
" ], "text/plain": [ "" @@ -943,7 +943,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "19e93c268abc4f8bb2d2f180f3a72f2c": { + "0af25da87e734762ac22df70bb5aa9ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dfa58bfece544844904015151a850f8a", + "placeholder": "​", + "style": "IPY_MODEL_8741e82b007249d8b6032756d20a70eb", + "tabbable": null, + "tooltip": null, + "value": "

Circuit Properties

" + } + }, + "8741e82b007249d8b6032756d20a70eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -961,7 +984,7 @@ "text_color": null } }, - "6de83ec77a854676a458ed3f08e840fa": { + "dfa58bfece544844904015151a850f8a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1013,29 +1036,6 @@ "visibility": null, "width": null } - }, - "ae71ebc163404f099d36671025f10508": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6de83ec77a854676a458ed3f08e840fa", - "placeholder": "​", - "style": "IPY_MODEL_19e93c268abc4f8bb2d2f180f3a72f2c", - "tabbable": null, - "tooltip": null, - "value": "

Circuit Properties

" - } } }, "version_major": 2, diff --git a/tutorials/08_cvar_optimization.html b/tutorials/08_cvar_optimization.html index 545e66de..314301a9 100644 --- a/tutorials/08_cvar_optimization.html +++ b/tutorials/08_cvar_optimization.html @@ -731,7 +731,7 @@

Minimum Eigen Optimizer using SamplingVQE
-/tmp/ipykernel_13106/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0
+/tmp/ipykernel_13096/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0
   import qiskit.tools.jupyter
 

@@ -739,7 +739,7 @@

Minimum Eigen Optimizer using SamplingVQE
-

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:53:33 2024 UTC
+

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
qiskit_algorithms0.2.2
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:08:27 2024 UTC
@@ -756,7 +756,7 @@

Version Information

diff --git a/tutorials/08_cvar_optimization.ipynb b/tutorials/08_cvar_optimization.ipynb index 483a0bab..026fc15f 100644 --- a/tutorials/08_cvar_optimization.ipynb +++ b/tutorials/08_cvar_optimization.ipynb @@ -30,10 +30,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:30.678911Z", - "iopub.status.busy": "2024-02-09T16:53:30.678713Z", - "iopub.status.idle": "2024-02-09T16:53:31.791473Z", - "shell.execute_reply": "2024-02-09T16:53:31.790817Z" + "iopub.execute_input": "2024-02-14T16:08:24.230465Z", + "iopub.status.busy": "2024-02-14T16:08:24.230266Z", + "iopub.status.idle": "2024-02-14T16:08:25.371804Z", + "shell.execute_reply": "2024-02-14T16:08:25.371182Z" } }, "outputs": [], @@ -57,10 +57,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:31.794516Z", - "iopub.status.busy": "2024-02-09T16:53:31.794036Z", - "iopub.status.idle": "2024-02-09T16:53:31.797193Z", - "shell.execute_reply": "2024-02-09T16:53:31.796573Z" + "iopub.execute_input": "2024-02-14T16:08:25.375021Z", + "iopub.status.busy": "2024-02-14T16:08:25.374546Z", + "iopub.status.idle": "2024-02-14T16:08:25.377774Z", + "shell.execute_reply": "2024-02-14T16:08:25.377127Z" } }, "outputs": [], @@ -82,10 +82,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:31.799668Z", - "iopub.status.busy": "2024-02-09T16:53:31.799279Z", - "iopub.status.idle": "2024-02-09T16:53:31.802607Z", - "shell.execute_reply": "2024-02-09T16:53:31.802005Z" + "iopub.execute_input": "2024-02-14T16:08:25.380446Z", + "iopub.status.busy": "2024-02-14T16:08:25.380032Z", + "iopub.status.idle": "2024-02-14T16:08:25.383330Z", + "shell.execute_reply": "2024-02-14T16:08:25.382671Z" } }, "outputs": [], @@ -102,10 +102,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:31.805181Z", - "iopub.status.busy": "2024-02-09T16:53:31.804769Z", - "iopub.status.idle": "2024-02-09T16:53:31.809244Z", - "shell.execute_reply": "2024-02-09T16:53:31.808661Z" + "iopub.execute_input": "2024-02-14T16:08:25.385813Z", + "iopub.status.busy": "2024-02-14T16:08:25.385453Z", + "iopub.status.idle": "2024-02-14T16:08:25.390017Z", + "shell.execute_reply": "2024-02-14T16:08:25.389346Z" } }, "outputs": [], @@ -132,10 +132,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:31.811733Z", - "iopub.status.busy": "2024-02-09T16:53:31.811365Z", - "iopub.status.idle": "2024-02-09T16:53:31.848251Z", - "shell.execute_reply": "2024-02-09T16:53:31.847586Z" + "iopub.execute_input": "2024-02-14T16:08:25.392523Z", + "iopub.status.busy": "2024-02-14T16:08:25.392057Z", + "iopub.status.idle": "2024-02-14T16:08:25.430779Z", + "shell.execute_reply": "2024-02-14T16:08:25.429918Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:31.850619Z", - "iopub.status.busy": "2024-02-09T16:53:31.850405Z", - "iopub.status.idle": "2024-02-09T16:53:31.886825Z", - "shell.execute_reply": "2024-02-09T16:53:31.886209Z" + "iopub.execute_input": "2024-02-14T16:08:25.434129Z", + "iopub.status.busy": "2024-02-14T16:08:25.433678Z", + "iopub.status.idle": "2024-02-14T16:08:25.468198Z", + "shell.execute_reply": "2024-02-14T16:08:25.467507Z" } }, "outputs": [ @@ -185,10 +185,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:31.889299Z", - "iopub.status.busy": "2024-02-09T16:53:31.889099Z", - "iopub.status.idle": "2024-02-09T16:53:31.903110Z", - "shell.execute_reply": "2024-02-09T16:53:31.902453Z" + "iopub.execute_input": "2024-02-14T16:08:25.471017Z", + "iopub.status.busy": "2024-02-14T16:08:25.470610Z", + "iopub.status.idle": "2024-02-14T16:08:25.484091Z", + "shell.execute_reply": "2024-02-14T16:08:25.483564Z" } }, "outputs": [], @@ -214,10 +214,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:31.905721Z", - "iopub.status.busy": "2024-02-09T16:53:31.905359Z", - "iopub.status.idle": "2024-02-09T16:53:31.913721Z", - "shell.execute_reply": "2024-02-09T16:53:31.913066Z" + "iopub.execute_input": "2024-02-14T16:08:25.486621Z", + "iopub.status.busy": "2024-02-14T16:08:25.486222Z", + "iopub.status.idle": "2024-02-14T16:08:25.494796Z", + "shell.execute_reply": "2024-02-14T16:08:25.494130Z" } }, "outputs": [], @@ -242,10 +242,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:31.916360Z", - "iopub.status.busy": "2024-02-09T16:53:31.915862Z", - "iopub.status.idle": "2024-02-09T16:53:33.534188Z", - "shell.execute_reply": "2024-02-09T16:53:33.533479Z" + "iopub.execute_input": "2024-02-14T16:08:25.497536Z", + "iopub.status.busy": "2024-02-14T16:08:25.497047Z", + "iopub.status.idle": "2024-02-14T16:08:27.151289Z", + "shell.execute_reply": "2024-02-14T16:08:27.150575Z" } }, "outputs": [ @@ -324,10 +324,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:33.536991Z", - "iopub.status.busy": "2024-02-09T16:53:33.536587Z", - "iopub.status.idle": "2024-02-09T16:53:33.807965Z", - "shell.execute_reply": "2024-02-09T16:53:33.807247Z" + "iopub.execute_input": "2024-02-14T16:08:27.154033Z", + "iopub.status.busy": "2024-02-14T16:08:27.153774Z", + "iopub.status.idle": "2024-02-14T16:08:27.430645Z", + "shell.execute_reply": "2024-02-14T16:08:27.429853Z" } }, "outputs": [ @@ -362,10 +362,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:33.811048Z", - "iopub.status.busy": "2024-02-09T16:53:33.810450Z", - "iopub.status.idle": "2024-02-09T16:53:33.854307Z", - "shell.execute_reply": "2024-02-09T16:53:33.853726Z" + "iopub.execute_input": "2024-02-14T16:08:27.433651Z", + "iopub.status.busy": "2024-02-14T16:08:27.433136Z", + "iopub.status.idle": "2024-02-14T16:08:27.478269Z", + "shell.execute_reply": "2024-02-14T16:08:27.477412Z" } }, "outputs": [ @@ -402,10 +402,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:33.856595Z", - "iopub.status.busy": "2024-02-09T16:53:33.856392Z", - "iopub.status.idle": "2024-02-09T16:53:33.961047Z", - "shell.execute_reply": "2024-02-09T16:53:33.960367Z" + "iopub.execute_input": "2024-02-14T16:08:27.480983Z", + "iopub.status.busy": "2024-02-14T16:08:27.480591Z", + "iopub.status.idle": "2024-02-14T16:08:27.587890Z", + "shell.execute_reply": "2024-02-14T16:08:27.587236Z" } }, "outputs": [ @@ -413,14 +413,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_13106/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", + "/tmp/ipykernel_13096/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", " import qiskit.tools.jupyter\n" ] }, { "data": { "text/html": [ - "

Version Information

SoftwareVersion
SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:53:33 2024 UTC
" + "

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
qiskit_algorithms0.2.2
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:08:27 2024 UTC
" ], "text/plain": [ "" @@ -473,7 +473,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "11284222c18446f29bebc06624ae613d": { + "059f86b3517a408da99c4557bd1f55b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -488,33 +488,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c61b528e19404f3496e6ee1da179b1d4", + "layout": "IPY_MODEL_37790facbc5047c4930222b94a9baf02", "placeholder": "​", - "style": "IPY_MODEL_b729f9486c474b5ab78bd7aa22c5f237", + "style": "IPY_MODEL_658948415f2944e0ab263aef60889ee2", "tabbable": null, "tooltip": null, "value": "

Circuit Properties

" } }, - "b729f9486c474b5ab78bd7aa22c5f237": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c61b528e19404f3496e6ee1da179b1d4": { + "37790facbc5047c4930222b94a9baf02": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -566,6 +548,24 @@ "visibility": null, "width": null } + }, + "658948415f2944e0ab263aef60889ee2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/tutorials/09_application_classes.html b/tutorials/09_application_classes.html index 92172cfe..0c70754c 100644 --- a/tutorials/09_application_classes.html +++ b/tutorials/09_application_classes.html @@ -658,7 +658,7 @@

Vertex cover problem

@@ -901,7 +901,7 @@

How to check the Hamiltonian
-

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
qiskit_algorithms0.2.2
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:53:40 2024 UTC
+

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
qiskit_algorithms0.2.2
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:08:34 2024 UTC
@@ -918,7 +918,7 @@

Version Information

diff --git a/tutorials/09_application_classes.ipynb b/tutorials/09_application_classes.ipynb index d06cc479..c39ad639 100644 --- a/tutorials/09_application_classes.ipynb +++ b/tutorials/09_application_classes.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:35.782685Z", - "iopub.status.busy": "2024-02-09T16:53:35.782125Z", - "iopub.status.idle": "2024-02-09T16:53:36.659634Z", - "shell.execute_reply": "2024-02-09T16:53:36.658972Z" + "iopub.execute_input": "2024-02-14T16:08:29.312480Z", + "iopub.status.busy": "2024-02-14T16:08:29.312273Z", + "iopub.status.idle": "2024-02-14T16:08:30.228563Z", + "shell.execute_reply": "2024-02-14T16:08:30.227789Z" } }, "outputs": [], @@ -103,10 +103,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:36.662908Z", - "iopub.status.busy": "2024-02-09T16:53:36.662321Z", - "iopub.status.idle": "2024-02-09T16:53:36.970640Z", - "shell.execute_reply": "2024-02-09T16:53:36.969978Z" + "iopub.execute_input": "2024-02-14T16:08:30.231806Z", + "iopub.status.busy": "2024-02-14T16:08:30.231494Z", + "iopub.status.idle": "2024-02-14T16:08:30.546984Z", + "shell.execute_reply": "2024-02-14T16:08:30.546281Z" } }, "outputs": [], @@ -123,10 +123,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:36.973834Z", - "iopub.status.busy": "2024-02-09T16:53:36.973293Z", - "iopub.status.idle": "2024-02-09T16:53:36.981442Z", - "shell.execute_reply": "2024-02-09T16:53:36.980810Z" + "iopub.execute_input": "2024-02-14T16:08:30.550253Z", + "iopub.status.busy": "2024-02-14T16:08:30.549633Z", + "iopub.status.idle": "2024-02-14T16:08:30.557819Z", + "shell.execute_reply": "2024-02-14T16:08:30.557210Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:36.983751Z", - "iopub.status.busy": "2024-02-09T16:53:36.983529Z", - "iopub.status.idle": "2024-02-09T16:53:37.132023Z", - "shell.execute_reply": "2024-02-09T16:53:37.131349Z" + "iopub.execute_input": "2024-02-14T16:08:30.560327Z", + "iopub.status.busy": "2024-02-14T16:08:30.559929Z", + "iopub.status.idle": "2024-02-14T16:08:30.711586Z", + "shell.execute_reply": "2024-02-14T16:08:30.710793Z" } }, "outputs": [ @@ -176,10 +176,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:37.134944Z", - "iopub.status.busy": "2024-02-09T16:53:37.134543Z", - "iopub.status.idle": "2024-02-09T16:53:37.171265Z", - "shell.execute_reply": "2024-02-09T16:53:37.170641Z" + "iopub.execute_input": "2024-02-14T16:08:30.714543Z", + "iopub.status.busy": "2024-02-14T16:08:30.714053Z", + "iopub.status.idle": "2024-02-14T16:08:30.753254Z", + "shell.execute_reply": "2024-02-14T16:08:30.752447Z" } }, "outputs": [ @@ -228,10 +228,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:37.173881Z", - "iopub.status.busy": "2024-02-09T16:53:37.173508Z", - "iopub.status.idle": "2024-02-09T16:53:37.405340Z", - "shell.execute_reply": "2024-02-09T16:53:37.404670Z" + "iopub.execute_input": "2024-02-14T16:08:30.756429Z", + "iopub.status.busy": "2024-02-14T16:08:30.756004Z", + "iopub.status.idle": "2024-02-14T16:08:31.002671Z", + "shell.execute_reply": "2024-02-14T16:08:31.001921Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:37.407932Z", - "iopub.status.busy": "2024-02-09T16:53:37.407465Z", - "iopub.status.idle": "2024-02-09T16:53:39.294244Z", - "shell.execute_reply": "2024-02-09T16:53:39.293496Z" + "iopub.execute_input": "2024-02-14T16:08:31.005398Z", + "iopub.status.busy": "2024-02-14T16:08:31.004991Z", + "iopub.status.idle": "2024-02-14T16:08:32.891644Z", + "shell.execute_reply": "2024-02-14T16:08:32.890861Z" } }, "outputs": [ @@ -288,7 +288,7 @@ "\n", "solution: [0, 1, 3, 4]\n", "\n", - "time: 1.3467717170715332\n" + "time: 1.335968017578125\n" ] }, { @@ -328,10 +328,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:39.296998Z", - "iopub.status.busy": "2024-02-09T16:53:39.296609Z", - "iopub.status.idle": "2024-02-09T16:53:39.299796Z", - "shell.execute_reply": "2024-02-09T16:53:39.299147Z" + "iopub.execute_input": "2024-02-14T16:08:32.894427Z", + "iopub.status.busy": "2024-02-14T16:08:32.894210Z", + "iopub.status.idle": "2024-02-14T16:08:32.897326Z", + "shell.execute_reply": "2024-02-14T16:08:32.896733Z" } }, "outputs": [], @@ -344,10 +344,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:39.302141Z", - "iopub.status.busy": "2024-02-09T16:53:39.301775Z", - "iopub.status.idle": "2024-02-09T16:53:39.325914Z", - "shell.execute_reply": "2024-02-09T16:53:39.325215Z" + "iopub.execute_input": "2024-02-14T16:08:32.899564Z", + "iopub.status.busy": "2024-02-14T16:08:32.899367Z", + "iopub.status.idle": "2024-02-14T16:08:32.924318Z", + "shell.execute_reply": "2024-02-14T16:08:32.923549Z" } }, "outputs": [ @@ -381,10 +381,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:39.328557Z", - "iopub.status.busy": "2024-02-09T16:53:39.328131Z", - "iopub.status.idle": "2024-02-09T16:53:39.382663Z", - "shell.execute_reply": "2024-02-09T16:53:39.381999Z" + "iopub.execute_input": "2024-02-14T16:08:32.927060Z", + "iopub.status.busy": "2024-02-14T16:08:32.926841Z", + "iopub.status.idle": "2024-02-14T16:08:32.983891Z", + "shell.execute_reply": "2024-02-14T16:08:32.983168Z" } }, "outputs": [ @@ -413,10 +413,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:39.385141Z", - "iopub.status.busy": "2024-02-09T16:53:39.384781Z", - "iopub.status.idle": "2024-02-09T16:53:40.732792Z", - "shell.execute_reply": "2024-02-09T16:53:40.732059Z" + "iopub.execute_input": "2024-02-14T16:08:32.986555Z", + "iopub.status.busy": "2024-02-14T16:08:32.986168Z", + "iopub.status.idle": "2024-02-14T16:08:34.355126Z", + "shell.execute_reply": "2024-02-14T16:08:34.354387Z" } }, "outputs": [ @@ -430,7 +430,7 @@ "\n", "solution: [0, 1, 3]\n", "\n", - "time: 0.916522741317749\n" + "time: 0.915625810623169\n" ] } ], @@ -458,10 +458,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:40.735458Z", - "iopub.status.busy": "2024-02-09T16:53:40.735247Z", - "iopub.status.idle": "2024-02-09T16:53:40.738298Z", - "shell.execute_reply": "2024-02-09T16:53:40.737722Z" + "iopub.execute_input": "2024-02-14T16:08:34.357980Z", + "iopub.status.busy": "2024-02-14T16:08:34.357590Z", + "iopub.status.idle": "2024-02-14T16:08:34.360908Z", + "shell.execute_reply": "2024-02-14T16:08:34.360271Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:40.740597Z", - "iopub.status.busy": "2024-02-09T16:53:40.740400Z", - "iopub.status.idle": "2024-02-09T16:53:40.763319Z", - "shell.execute_reply": "2024-02-09T16:53:40.762719Z" + "iopub.execute_input": "2024-02-14T16:08:34.363485Z", + "iopub.status.busy": "2024-02-14T16:08:34.363056Z", + "iopub.status.idle": "2024-02-14T16:08:34.387584Z", + "shell.execute_reply": "2024-02-14T16:08:34.386903Z" } }, "outputs": [ @@ -512,10 +512,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:40.765729Z", - "iopub.status.busy": "2024-02-09T16:53:40.765520Z", - "iopub.status.idle": "2024-02-09T16:53:40.790667Z", - "shell.execute_reply": "2024-02-09T16:53:40.790108Z" + "iopub.execute_input": "2024-02-14T16:08:34.390413Z", + "iopub.status.busy": "2024-02-14T16:08:34.389988Z", + "iopub.status.idle": "2024-02-14T16:08:34.406733Z", + "shell.execute_reply": "2024-02-14T16:08:34.406016Z" } }, "outputs": [ @@ -566,10 +566,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:40.793078Z", - "iopub.status.busy": "2024-02-09T16:53:40.792702Z", - "iopub.status.idle": "2024-02-09T16:53:40.812726Z", - "shell.execute_reply": "2024-02-09T16:53:40.812120Z" + "iopub.execute_input": "2024-02-14T16:08:34.409284Z", + "iopub.status.busy": "2024-02-14T16:08:34.408894Z", + "iopub.status.idle": "2024-02-14T16:08:34.429595Z", + "shell.execute_reply": "2024-02-14T16:08:34.429005Z" } }, "outputs": [ @@ -603,10 +603,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:40.815030Z", - "iopub.status.busy": "2024-02-09T16:53:40.814667Z", - "iopub.status.idle": "2024-02-09T16:53:40.923535Z", - "shell.execute_reply": "2024-02-09T16:53:40.922964Z" + "iopub.execute_input": "2024-02-14T16:08:34.432266Z", + "iopub.status.busy": "2024-02-14T16:08:34.431844Z", + "iopub.status.idle": "2024-02-14T16:08:34.636864Z", + "shell.execute_reply": "2024-02-14T16:08:34.636096Z" } }, "outputs": [ @@ -614,14 +614,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_13753/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", + "/tmp/ipykernel_13743/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", " import qiskit.tools.jupyter\n" ] }, { "data": { "text/html": [ - "

Version Information

SoftwareVersion
SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
qiskit_algorithms0.2.2
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:53:40 2024 UTC
" + "

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
qiskit_algorithms0.2.2
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:08:34 2024 UTC
" ], "text/plain": [ "" @@ -674,25 +674,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "a75026cae64741f3874edfb26be17d0e": { + "408663158c3740b281da7b04ff2907e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4f2db399ef214d138a020cdfbf9263ed", + "placeholder": "​", + "style": "IPY_MODEL_89ccf159f1ac45b1bf021958f15b8eb4", + "tabbable": null, + "tooltip": null, + "value": "

Circuit Properties

" } }, - "accc259f33da49cca45b67aee893a855": { + "4f2db399ef214d138a020cdfbf9263ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -745,27 +750,22 @@ "width": null } }, - "f4810e18a0ca4f30a8ebdccf936a9285": { + "89ccf159f1ac45b1bf021958f15b8eb4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_accc259f33da49cca45b67aee893a855", - "placeholder": "​", - "style": "IPY_MODEL_a75026cae64741f3874edfb26be17d0e", - "tabbable": null, - "tooltip": null, - "value": "

Circuit Properties

" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/tutorials/10_warm_start_qaoa.html b/tutorials/10_warm_start_qaoa.html index 6324c98f..ec860504 100644 --- a/tutorials/10_warm_start_qaoa.html +++ b/tutorials/10_warm_start_qaoa.html @@ -958,7 +958,7 @@

Warm-start QAOA
-/tmp/ipykernel_14175/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0
+/tmp/ipykernel_14165/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0
   import qiskit.tools.jupyter
 

@@ -966,7 +966,7 @@

Warm-start QAOA
-

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:54:21 2024 UTC
+

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
qiskit_algorithms0.2.2
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:09:15 2024 UTC
@@ -983,7 +983,7 @@

Version Information

diff --git a/tutorials/10_warm_start_qaoa.ipynb b/tutorials/10_warm_start_qaoa.ipynb index bfdad90a..f0b77410 100644 --- a/tutorials/10_warm_start_qaoa.ipynb +++ b/tutorials/10_warm_start_qaoa.ipynb @@ -36,10 +36,10 @@ "id": "engaging-agreement", "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:43.004679Z", - "iopub.status.busy": "2024-02-09T16:53:43.004482Z", - "iopub.status.idle": "2024-02-09T16:53:43.867474Z", - "shell.execute_reply": "2024-02-09T16:53:43.866801Z" + "iopub.execute_input": "2024-02-14T16:08:36.770164Z", + "iopub.status.busy": "2024-02-14T16:08:36.769960Z", + "iopub.status.idle": "2024-02-14T16:08:37.687224Z", + "shell.execute_reply": "2024-02-14T16:08:37.686451Z" } }, "outputs": [], @@ -78,10 +78,10 @@ "id": "southwest-stake", "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:43.870496Z", - "iopub.status.busy": "2024-02-09T16:53:43.870047Z", - "iopub.status.idle": "2024-02-09T16:53:43.876066Z", - "shell.execute_reply": "2024-02-09T16:53:43.875428Z" + "iopub.execute_input": "2024-02-14T16:08:37.690561Z", + "iopub.status.busy": "2024-02-14T16:08:37.690201Z", + "iopub.status.idle": "2024-02-14T16:08:37.696426Z", + "shell.execute_reply": "2024-02-14T16:08:37.695780Z" } }, "outputs": [], @@ -127,10 +127,10 @@ "id": "laden-number", "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:43.878469Z", - "iopub.status.busy": "2024-02-09T16:53:43.878088Z", - "iopub.status.idle": "2024-02-09T16:53:43.882598Z", - "shell.execute_reply": "2024-02-09T16:53:43.882042Z" + "iopub.execute_input": "2024-02-14T16:08:37.698961Z", + "iopub.status.busy": "2024-02-14T16:08:37.698595Z", + "iopub.status.idle": "2024-02-14T16:08:37.702952Z", + "shell.execute_reply": "2024-02-14T16:08:37.702307Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "supreme-wallace", "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:43.884987Z", - "iopub.status.busy": "2024-02-09T16:53:43.884611Z", - "iopub.status.idle": "2024-02-09T16:53:43.920005Z", - "shell.execute_reply": "2024-02-09T16:53:43.919278Z" + "iopub.execute_input": "2024-02-14T16:08:37.705371Z", + "iopub.status.busy": "2024-02-14T16:08:37.705022Z", + "iopub.status.idle": "2024-02-14T16:08:37.742451Z", + "shell.execute_reply": "2024-02-14T16:08:37.741661Z" } }, "outputs": [ @@ -213,10 +213,10 @@ "id": "contrary-bumper", "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:43.922826Z", - "iopub.status.busy": "2024-02-09T16:53:43.922439Z", - "iopub.status.idle": "2024-02-09T16:53:43.948464Z", - "shell.execute_reply": "2024-02-09T16:53:43.947782Z" + "iopub.execute_input": "2024-02-14T16:08:37.745156Z", + "iopub.status.busy": "2024-02-14T16:08:37.744882Z", + "iopub.status.idle": "2024-02-14T16:08:37.772611Z", + "shell.execute_reply": "2024-02-14T16:08:37.771858Z" } }, "outputs": [ @@ -249,10 +249,10 @@ "id": "spectacular-african", "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:43.951131Z", - "iopub.status.busy": "2024-02-09T16:53:43.950644Z", - "iopub.status.idle": "2024-02-09T16:53:43.968009Z", - "shell.execute_reply": "2024-02-09T16:53:43.967352Z" + "iopub.execute_input": "2024-02-14T16:08:37.775492Z", + "iopub.status.busy": "2024-02-14T16:08:37.775218Z", + "iopub.status.idle": "2024-02-14T16:08:37.793557Z", + "shell.execute_reply": "2024-02-14T16:08:37.792938Z" } }, "outputs": [ @@ -306,10 +306,10 @@ "id": "moderate-photograph", "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:43.970311Z", - "iopub.status.busy": "2024-02-09T16:53:43.970112Z", - "iopub.status.idle": "2024-02-09T16:53:43.993624Z", - "shell.execute_reply": "2024-02-09T16:53:43.993004Z" + "iopub.execute_input": "2024-02-14T16:08:37.796316Z", + "iopub.status.busy": "2024-02-14T16:08:37.795921Z", + "iopub.status.idle": "2024-02-14T16:08:37.821821Z", + "shell.execute_reply": "2024-02-14T16:08:37.821059Z" } }, "outputs": [ @@ -334,10 +334,10 @@ "id": "smoking-discretion", "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:43.996112Z", - "iopub.status.busy": "2024-02-09T16:53:43.995716Z", - "iopub.status.idle": "2024-02-09T16:53:43.999528Z", - "shell.execute_reply": "2024-02-09T16:53:43.998861Z" + "iopub.execute_input": "2024-02-14T16:08:37.824829Z", + "iopub.status.busy": "2024-02-14T16:08:37.824389Z", + "iopub.status.idle": "2024-02-14T16:08:37.828436Z", + "shell.execute_reply": "2024-02-14T16:08:37.827742Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "recreational-packing", "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:44.002007Z", - "iopub.status.busy": "2024-02-09T16:53:44.001519Z", - "iopub.status.idle": "2024-02-09T16:53:44.004975Z", - "shell.execute_reply": "2024-02-09T16:53:44.004418Z" + "iopub.execute_input": "2024-02-14T16:08:37.831006Z", + "iopub.status.busy": "2024-02-14T16:08:37.830623Z", + "iopub.status.idle": "2024-02-14T16:08:37.834213Z", + "shell.execute_reply": "2024-02-14T16:08:37.833613Z" } }, "outputs": [], @@ -393,10 +393,10 @@ "id": "pursuant-pendant", "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:44.007248Z", - "iopub.status.busy": "2024-02-09T16:53:44.006886Z", - "iopub.status.idle": "2024-02-09T16:53:44.009812Z", - "shell.execute_reply": "2024-02-09T16:53:44.009218Z" + "iopub.execute_input": "2024-02-14T16:08:37.836694Z", + "iopub.status.busy": "2024-02-14T16:08:37.836321Z", + "iopub.status.idle": "2024-02-14T16:08:37.839326Z", + "shell.execute_reply": "2024-02-14T16:08:37.838691Z" } }, "outputs": [], @@ -410,10 +410,10 @@ "id": "painful-packing", "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:44.012091Z", - "iopub.status.busy": "2024-02-09T16:53:44.011731Z", - "iopub.status.idle": "2024-02-09T16:53:56.998632Z", - "shell.execute_reply": "2024-02-09T16:53:56.997922Z" + "iopub.execute_input": "2024-02-14T16:08:37.841624Z", + "iopub.status.busy": "2024-02-14T16:08:37.841416Z", + "iopub.status.idle": "2024-02-14T16:08:50.927668Z", + "shell.execute_reply": "2024-02-14T16:08:50.926997Z" } }, "outputs": [ @@ -455,10 +455,10 @@ "id": "controversial-model", "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:57.001274Z", - "iopub.status.busy": "2024-02-09T16:53:57.001054Z", - "iopub.status.idle": "2024-02-09T16:53:57.552341Z", - "shell.execute_reply": "2024-02-09T16:53:57.551558Z" + "iopub.execute_input": "2024-02-14T16:08:50.930280Z", + "iopub.status.busy": "2024-02-14T16:08:50.930059Z", + "iopub.status.idle": "2024-02-14T16:08:51.513250Z", + "shell.execute_reply": "2024-02-14T16:08:51.512511Z" } }, "outputs": [ @@ -510,10 +510,10 @@ "id": "pacific-destiny", "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:57.555007Z", - "iopub.status.busy": "2024-02-09T16:53:57.554716Z", - "iopub.status.idle": "2024-02-09T16:53:58.044557Z", - "shell.execute_reply": "2024-02-09T16:53:58.043823Z" + "iopub.execute_input": "2024-02-14T16:08:51.516319Z", + "iopub.status.busy": "2024-02-14T16:08:51.515799Z", + "iopub.status.idle": "2024-02-14T16:08:52.039362Z", + "shell.execute_reply": "2024-02-14T16:08:52.038656Z" }, "tags": [ "nbsphinx-thumbnail" @@ -560,10 +560,10 @@ "id": "settled-mistress", "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:58.047562Z", - "iopub.status.busy": "2024-02-09T16:53:58.046995Z", - "iopub.status.idle": "2024-02-09T16:53:58.050682Z", - "shell.execute_reply": "2024-02-09T16:53:58.050024Z" + "iopub.execute_input": "2024-02-14T16:08:52.042252Z", + "iopub.status.busy": "2024-02-14T16:08:52.041745Z", + "iopub.status.idle": "2024-02-14T16:08:52.045307Z", + "shell.execute_reply": "2024-02-14T16:08:52.044647Z" } }, "outputs": [], @@ -583,10 +583,10 @@ "id": "wrapped-alberta", "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:58.053022Z", - "iopub.status.busy": "2024-02-09T16:53:58.052650Z", - "iopub.status.idle": "2024-02-09T16:53:58.055649Z", - "shell.execute_reply": "2024-02-09T16:53:58.055024Z" + "iopub.execute_input": "2024-02-14T16:08:52.047604Z", + "iopub.status.busy": "2024-02-14T16:08:52.047395Z", + "iopub.status.idle": "2024-02-14T16:08:52.050476Z", + "shell.execute_reply": "2024-02-14T16:08:52.049782Z" } }, "outputs": [], @@ -600,10 +600,10 @@ "id": "aerial-parcel", "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:53:58.058045Z", - "iopub.status.busy": "2024-02-09T16:53:58.057843Z", - "iopub.status.idle": "2024-02-09T16:54:09.718160Z", - "shell.execute_reply": "2024-02-09T16:54:09.717501Z" + "iopub.execute_input": "2024-02-14T16:08:52.052975Z", + "iopub.status.busy": "2024-02-14T16:08:52.052613Z", + "iopub.status.idle": "2024-02-14T16:09:03.772185Z", + "shell.execute_reply": "2024-02-14T16:09:03.771459Z" } }, "outputs": [ @@ -638,10 +638,10 @@ "id": "sharp-military", "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:09.720729Z", - "iopub.status.busy": "2024-02-09T16:54:09.720506Z", - "iopub.status.idle": "2024-02-09T16:54:09.727324Z", - "shell.execute_reply": "2024-02-09T16:54:09.726744Z" + "iopub.execute_input": "2024-02-14T16:09:03.775094Z", + "iopub.status.busy": "2024-02-14T16:09:03.774605Z", + "iopub.status.idle": "2024-02-14T16:09:03.781314Z", + "shell.execute_reply": "2024-02-14T16:09:03.780656Z" } }, "outputs": [ @@ -686,10 +686,10 @@ "id": "political-dependence", "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:09.729787Z", - "iopub.status.busy": "2024-02-09T16:54:09.729464Z", - "iopub.status.idle": "2024-02-09T16:54:09.733955Z", - "shell.execute_reply": "2024-02-09T16:54:09.733385Z" + "iopub.execute_input": "2024-02-14T16:09:03.783965Z", + "iopub.status.busy": "2024-02-14T16:09:03.783600Z", + "iopub.status.idle": "2024-02-14T16:09:03.787876Z", + "shell.execute_reply": "2024-02-14T16:09:03.787242Z" } }, "outputs": [ @@ -729,10 +729,10 @@ "id": "random-happiness", "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:09.736164Z", - "iopub.status.busy": "2024-02-09T16:54:09.735963Z", - "iopub.status.idle": "2024-02-09T16:54:09.738973Z", - "shell.execute_reply": "2024-02-09T16:54:09.738412Z" + "iopub.execute_input": "2024-02-14T16:09:03.790665Z", + "iopub.status.busy": "2024-02-14T16:09:03.790094Z", + "iopub.status.idle": "2024-02-14T16:09:03.793262Z", + "shell.execute_reply": "2024-02-14T16:09:03.792626Z" } }, "outputs": [], @@ -746,10 +746,10 @@ "id": "tracked-encoding", "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:09.741226Z", - "iopub.status.busy": "2024-02-09T16:54:09.741026Z", - "iopub.status.idle": "2024-02-09T16:54:09.744670Z", - "shell.execute_reply": "2024-02-09T16:54:09.744088Z" + "iopub.execute_input": "2024-02-14T16:09:03.795616Z", + "iopub.status.busy": "2024-02-14T16:09:03.795252Z", + "iopub.status.idle": "2024-02-14T16:09:03.798806Z", + "shell.execute_reply": "2024-02-14T16:09:03.798149Z" } }, "outputs": [], @@ -766,10 +766,10 @@ "id": "insured-champagne", "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:09.746888Z", - "iopub.status.busy": "2024-02-09T16:54:09.746691Z", - "iopub.status.idle": "2024-02-09T16:54:21.568012Z", - "shell.execute_reply": "2024-02-09T16:54:21.567337Z" + "iopub.execute_input": "2024-02-14T16:09:03.801209Z", + "iopub.status.busy": "2024-02-14T16:09:03.800844Z", + "iopub.status.idle": "2024-02-14T16:09:15.659326Z", + "shell.execute_reply": "2024-02-14T16:09:15.658573Z" } }, "outputs": [ @@ -794,10 +794,10 @@ "id": "grave-initial", "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:21.570970Z", - "iopub.status.busy": "2024-02-09T16:54:21.570386Z", - "iopub.status.idle": "2024-02-09T16:54:21.575235Z", - "shell.execute_reply": "2024-02-09T16:54:21.574587Z" + "iopub.execute_input": "2024-02-14T16:09:15.662302Z", + "iopub.status.busy": "2024-02-14T16:09:15.661904Z", + "iopub.status.idle": "2024-02-14T16:09:15.666529Z", + "shell.execute_reply": "2024-02-14T16:09:15.665881Z" } }, "outputs": [ @@ -827,10 +827,10 @@ "id": "weird-dispatch", "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:21.577710Z", - "iopub.status.busy": "2024-02-09T16:54:21.577342Z", - "iopub.status.idle": "2024-02-09T16:54:21.664810Z", - "shell.execute_reply": "2024-02-09T16:54:21.664105Z" + "iopub.execute_input": "2024-02-14T16:09:15.669099Z", + "iopub.status.busy": "2024-02-14T16:09:15.668730Z", + "iopub.status.idle": "2024-02-14T16:09:15.757111Z", + "shell.execute_reply": "2024-02-14T16:09:15.756450Z" } }, "outputs": [ @@ -838,14 +838,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_14175/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", + "/tmp/ipykernel_14165/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", " import qiskit.tools.jupyter\n" ] }, { "data": { "text/html": [ - "

Version Information

SoftwareVersion
SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:54:21 2024 UTC
" + "

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
qiskit_algorithms0.2.2
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:09:15 2024 UTC
" ], "text/plain": [ "" @@ -904,30 +904,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0daf02ce53ce4705bf6efb604909105f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b13e9cccd54842ce9c8d6badcf3e5ce4", - "placeholder": "​", - "style": "IPY_MODEL_6bd3f754dfa44cb78af8808dc5622e24", - "tabbable": null, - "tooltip": null, - "value": "

Circuit Properties

" - } - }, - "6bd3f754dfa44cb78af8808dc5622e24": { + "874ce8a671f242e59719ee81666490df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -945,7 +922,7 @@ "text_color": null } }, - "b13e9cccd54842ce9c8d6badcf3e5ce4": { + "b332de5ee86441f99f6c2712c151db05": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -997,6 +974,29 @@ "visibility": null, "width": null } + }, + "e580a91c0f14439186c3e2d4e041d3b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b332de5ee86441f99f6c2712c151db05", + "placeholder": "​", + "style": "IPY_MODEL_874ce8a671f242e59719ee81666490df", + "tabbable": null, + "tooltip": null, + "value": "

Circuit Properties

" + } } }, "version_major": 2, diff --git a/tutorials/11_using_classical_optimization_solvers_and_models.html b/tutorials/11_using_classical_optimization_solvers_and_models.html index f9317d73..411db452 100644 --- a/tutorials/11_using_classical_optimization_solvers_and_models.html +++ b/tutorials/11_using_classical_optimization_solvers_and_models.html @@ -672,11 +672,11 @@

CplexSolver and GurobiSolver
-/tmp/ipykernel_20358/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0
+/tmp/ipykernel_20408/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0
   import qiskit.tools.jupyter
 

@@ -1005,7 +1005,7 @@

Indicator constraints of Docplex
-

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:54:28 2024 UTC
+

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:09:22 2024 UTC
@@ -1014,7 +1014,7 @@

Version Information

This code is a part of Qiskit

© Copyright IBM 2017, 2024.

This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.

Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.

diff --git a/tutorials/11_using_classical_optimization_solvers_and_models.ipynb b/tutorials/11_using_classical_optimization_solvers_and_models.ipynb index bf9d9e8a..63a1461f 100644 --- a/tutorials/11_using_classical_optimization_solvers_and_models.ipynb +++ b/tutorials/11_using_classical_optimization_solvers_and_models.ipynb @@ -40,10 +40,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:24.035493Z", - "iopub.status.busy": "2024-02-09T16:54:24.035294Z", - "iopub.status.idle": "2024-02-09T16:54:24.703263Z", - "shell.execute_reply": "2024-02-09T16:54:24.702541Z" + "iopub.execute_input": "2024-02-14T16:09:18.390242Z", + "iopub.status.busy": "2024-02-14T16:09:18.390040Z", + "iopub.status.idle": "2024-02-14T16:09:19.050155Z", + "shell.execute_reply": "2024-02-14T16:09:19.049348Z" } }, "outputs": [ @@ -86,10 +86,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:24.706099Z", - "iopub.status.busy": "2024-02-09T16:54:24.705657Z", - "iopub.status.idle": "2024-02-09T16:54:24.971505Z", - "shell.execute_reply": "2024-02-09T16:54:24.970772Z" + "iopub.execute_input": "2024-02-14T16:09:19.052956Z", + "iopub.status.busy": "2024-02-14T16:09:19.052469Z", + "iopub.status.idle": "2024-02-14T16:09:19.317120Z", + "shell.execute_reply": "2024-02-14T16:09:19.316366Z" } }, "outputs": [ @@ -142,10 +142,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:24.974471Z", - "iopub.status.busy": "2024-02-09T16:54:24.974205Z", - "iopub.status.idle": "2024-02-09T16:54:25.011168Z", - "shell.execute_reply": "2024-02-09T16:54:25.010421Z" + "iopub.execute_input": "2024-02-14T16:09:19.320201Z", + "iopub.status.busy": "2024-02-14T16:09:19.319804Z", + "iopub.status.idle": "2024-02-14T16:09:19.359428Z", + "shell.execute_reply": "2024-02-14T16:09:19.358790Z" } }, "outputs": [ @@ -261,10 +261,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:25.014210Z", - "iopub.status.busy": "2024-02-09T16:54:25.013796Z", - "iopub.status.idle": "2024-02-09T16:54:26.961070Z", - "shell.execute_reply": "2024-02-09T16:54:26.960361Z" + "iopub.execute_input": "2024-02-14T16:09:19.362407Z", + "iopub.status.busy": "2024-02-14T16:09:19.361983Z", + "iopub.status.idle": "2024-02-14T16:09:21.353214Z", + "shell.execute_reply": "2024-02-14T16:09:21.352468Z" } }, "outputs": [ @@ -277,11 +277,11 @@ "status: SUCCESS\n", "\n", "display the best 5 solution samples\n", - "SolutionSample(x=array([1., 4.]), fval=4.0, probability=0.051276918982979904, status=)\n", - "SolutionSample(x=array([1., 3.]), fval=3.0, probability=0.057468569687663, status=)\n", - "SolutionSample(x=array([1., 2.]), fval=2.0, probability=0.1352112491092225, status=)\n", - "SolutionSample(x=array([1., 1.]), fval=1.0, probability=0.13617505365527624, status=)\n", - "SolutionSample(x=array([0., 0.]), fval=0.0, probability=0.0776693319328813, status=)\n" + "SolutionSample(x=array([1., 4.]), fval=4.0, probability=0.1305411562032251, status=)\n", + "SolutionSample(x=array([1., 3.]), fval=3.0, probability=0.1167094470574642, status=)\n", + "SolutionSample(x=array([1., 2.]), fval=2.0, probability=0.08161165517949098, status=)\n", + "SolutionSample(x=array([1., 1.]), fval=1.0, probability=0.1136687559480952, status=)\n", + "SolutionSample(x=array([0., 0.]), fval=0.0, probability=0.0464259187911496, status=)\n" ] } ], @@ -316,10 +316,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:26.963927Z", - "iopub.status.busy": "2024-02-09T16:54:26.963455Z", - "iopub.status.idle": "2024-02-09T16:54:26.985050Z", - "shell.execute_reply": "2024-02-09T16:54:26.984380Z" + "iopub.execute_input": "2024-02-14T16:09:21.356056Z", + "iopub.status.busy": "2024-02-14T16:09:21.355636Z", + "iopub.status.idle": "2024-02-14T16:09:21.376826Z", + "shell.execute_reply": "2024-02-14T16:09:21.376160Z" } }, "outputs": [ @@ -360,10 +360,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:26.987736Z", - "iopub.status.busy": "2024-02-09T16:54:26.987318Z", - "iopub.status.idle": "2024-02-09T16:54:26.994432Z", - "shell.execute_reply": "2024-02-09T16:54:26.993877Z" + "iopub.execute_input": "2024-02-14T16:09:21.379733Z", + "iopub.status.busy": "2024-02-14T16:09:21.379324Z", + "iopub.status.idle": "2024-02-14T16:09:21.386548Z", + "shell.execute_reply": "2024-02-14T16:09:21.385968Z" } }, "outputs": [ @@ -427,10 +427,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:26.996963Z", - "iopub.status.busy": "2024-02-09T16:54:26.996575Z", - "iopub.status.idle": "2024-02-09T16:54:27.004888Z", - "shell.execute_reply": "2024-02-09T16:54:27.004168Z" + "iopub.execute_input": "2024-02-14T16:09:21.388966Z", + "iopub.status.busy": "2024-02-14T16:09:21.388565Z", + "iopub.status.idle": "2024-02-14T16:09:21.396801Z", + "shell.execute_reply": "2024-02-14T16:09:21.396108Z" } }, "outputs": [ @@ -498,10 +498,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:27.007339Z", - "iopub.status.busy": "2024-02-09T16:54:27.006950Z", - "iopub.status.idle": "2024-02-09T16:54:27.030859Z", - "shell.execute_reply": "2024-02-09T16:54:27.030218Z" + "iopub.execute_input": "2024-02-14T16:09:21.399417Z", + "iopub.status.busy": "2024-02-14T16:09:21.399098Z", + "iopub.status.idle": "2024-02-14T16:09:21.424265Z", + "shell.execute_reply": "2024-02-14T16:09:21.423616Z" } }, "outputs": [ @@ -581,10 +581,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:27.033522Z", - "iopub.status.busy": "2024-02-09T16:54:27.033101Z", - "iopub.status.idle": "2024-02-09T16:54:27.052464Z", - "shell.execute_reply": "2024-02-09T16:54:27.051786Z" + "iopub.execute_input": "2024-02-14T16:09:21.427079Z", + "iopub.status.busy": "2024-02-14T16:09:21.426661Z", + "iopub.status.idle": "2024-02-14T16:09:21.446726Z", + "shell.execute_reply": "2024-02-14T16:09:21.446007Z" } }, "outputs": [ @@ -643,10 +643,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:27.055069Z", - "iopub.status.busy": "2024-02-09T16:54:27.054649Z", - "iopub.status.idle": "2024-02-09T16:54:28.014650Z", - "shell.execute_reply": "2024-02-09T16:54:28.013955Z" + "iopub.execute_input": "2024-02-14T16:09:21.449613Z", + "iopub.status.busy": "2024-02-14T16:09:21.449172Z", + "iopub.status.idle": "2024-02-14T16:09:22.396219Z", + "shell.execute_reply": "2024-02-14T16:09:22.395537Z" } }, "outputs": [ @@ -684,10 +684,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:28.017441Z", - "iopub.status.busy": "2024-02-09T16:54:28.016907Z", - "iopub.status.idle": "2024-02-09T16:54:28.448361Z", - "shell.execute_reply": "2024-02-09T16:54:28.447568Z" + "iopub.execute_input": "2024-02-14T16:09:22.398822Z", + "iopub.status.busy": "2024-02-14T16:09:22.398419Z", + "iopub.status.idle": "2024-02-14T16:09:22.831686Z", + "shell.execute_reply": "2024-02-14T16:09:22.830919Z" } }, "outputs": [ @@ -695,14 +695,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_20358/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", + "/tmp/ipykernel_20408/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", " import qiskit.tools.jupyter\n" ] }, { "data": { "text/html": [ - "

Version Information

SoftwareVersion
SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:54:28 2024 UTC
" + "

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:09:22 2024 UTC
" ], "text/plain": [ "" @@ -753,48 +753,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "4714ebdfa45f4d758ec15ea865e573dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5697932cf1784577ac2469723e36212d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c5d4561ded1349b4be56ac44567b958b", - "placeholder": "​", - "style": "IPY_MODEL_4714ebdfa45f4d758ec15ea865e573dd", - "tabbable": null, - "tooltip": null, - "value": "

Circuit Properties

" - } - }, - "c5d4561ded1349b4be56ac44567b958b": { + "4de8aa4cc5fb46779b6d2caa6db22a27": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -846,6 +805,47 @@ "visibility": null, "width": null } + }, + "86750cdf487f4798ab765608a1daffa0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4de8aa4cc5fb46779b6d2caa6db22a27", + "placeholder": "​", + "style": "IPY_MODEL_fbc531edff4d4cc3b32cc0765bc44db0", + "tabbable": null, + "tooltip": null, + "value": "

Circuit Properties

" + } + }, + "fbc531edff4d4cc3b32cc0765bc44db0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/tutorials/12_quantum_random_access_optimizer.html b/tutorials/12_quantum_random_access_optimizer.html index 000e55d5..da77022d 100644 --- a/tutorials/12_quantum_random_access_optimizer.html +++ b/tutorials/12_quantum_random_access_optimizer.html @@ -457,7 +457,7 @@

Quantum Random Access Optimization#

In this tutorial, we will consider a random max-cut problem instance and use QRAO to try to find a maximum cut; in other words, a partition of the graph’s vertices (nodes) into two sets that maximizes the number of edges between the sets.

To begin, we utilize the Maxcut class from Qiskit Optimization’s application module. It allows us to generate a QuadraticProgram representation of the given graph.

-

Note that once our problem has been represented as a QuadraticProgram, it will need to be converted to the correct type, a quadratic unconstrained binary optimization (QUBO) problem, so that it is compatible with QRAO. A QuadraticProgram generated by Maxcut is already a QUBO, but if you define your own problem be sure you convert it to a QUBO before proceeding. Here is a +

Note that once our problem has been represented as a QuadraticProgram, it will need to be converted to the correct type, a quadratic unconstrained binary optimization (QUBO) problem, so that it is compatible with QRAO. A QuadraticProgram generated by Maxcut is already a QUBO, but if you define your own problem be sure you convert it to a QUBO before proceeding. Here is a tutorial on converting QuadraticPrograms.

[2]:
@@ -509,7 +509,7 @@ 

Set up a combinatorial optimization problem

Encode the problem into a quantum Hamiltonian#

Once we have appropriately configured our problem, we proceed to encode it using the QuantumRandomAccessEncoding class from the qrao module. This encoding step allows us to generate a quantum Hamiltonian operator that represents our problem. In particular, we employ a Quantum Random Access Code (QRAC) to encode multiple classical binary variables (corresponding to the nodes of our max-cut graph) into each qubit.

-

It’s important to note that the resulting “relaxed” Hamiltonian, produced by this encoding, will not be diagonal. This differs from the standard workflow in qiskit-optimization, which typically generates a diagonal (Ising) Hamiltonian suitable for optimization using a MinimumEigenOptimizer. You can find a tutorial on the MinimumEigenOptimizer here.

+

It’s important to note that the resulting “relaxed” Hamiltonian, produced by this encoding, will not be diagonal. This differs from the standard workflow in qiskit-optimization, which typically generates a diagonal (Ising) Hamiltonian suitable for optimization using a MinimumEigenOptimizer. You can find a tutorial on the MinimumEigenOptimizer here.

In our encoding process, we employ a \((3,1,p)-\)QRAC, where each qubit can accommodate a maximum of 3 classical binary variables. The parameter \(p\) represents the bit recovery probability achieved through measurement. Depending on the nature of the problem, some qubits may have fewer than 3 classical variables assigned to them. To evaluate the compression achieved, we can examine the compression_ratio attribute of the encoding, which provides the ratio between the number of original binary variables and the number of qubits used (at best, a factor of 3).

@@ -617,7 +617,7 @@

Solve the problem using the
 The objective function value: 4.0
 x: [1 0 0 0 1 0]
-relaxed function value: 8.999999981905706
+relaxed function value: 8.999999940760864
 
 

@@ -670,7 +670,7 @@

Inspect the results of subroutines
-<qiskit_algorithms.minimum_eigensolvers.vqe.VQEResult at 0x7ff4ccb3c190>
+<qiskit_algorithms.minimum_eigensolvers.vqe.VQEResult at 0x7f4d797f9670>
 

The result of the rounding scheme is also worth considering. In this example, we used the SemideterministricRounding. It’s important to note that with semi-deterministic rounding, a single sample is generated as the result, making it the optimal solution candidate.

@@ -801,7 +801,7 @@

Solve the problem using the
 The objective function value: 9.0
 x: [1 0 1 0 0 1]
-relaxed function value: 8.99999793369987
+relaxed function value: 8.999995184895
 
 

@@ -826,15 +826,15 @@

Solve the problem using the @@ -848,7 +848,7 @@

Manually solve the relaxed problem.qrao.solve_relaxed() method to directly solve the relaxed problem encoded by QuantumRandomAccessEncoding. This method allows us to focus solely on solving the relaxed problem without performing rounding.

By invoking qrao.solve_relaxed(), we obtain two essential outputs:

@@ -972,7 +972,7 @@

Manually perform rounding on the relaxed problem results
 The objective function value: 9.0
 x: [1 0 1 0 0 1]
-relaxed function value: -8.999996924994738
+relaxed function value: -8.999991361691686
 The number of distinct samples is 56.
 
@@ -1018,13 +1018,6 @@

How to verify correctness of your encoding -
-
-
-
 
 
@@ -1032,7 +1025,7 @@

How to verify correctness of your encoding
-../_images/tutorials_12_quantum_random_access_optimizer_35_2.png +../_images/tutorials_12_quantum_random_access_optimizer_35_1.png

As before, we encode() the problem using the QuantumRandomAccessEncoding class:

@@ -1101,7 +1094,7 @@

How to verify correctness of your encoding
-/tmp/ipykernel_20758/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0
+/tmp/ipykernel_20805/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0
   import qiskit.tools.jupyter
 
@@ -1109,7 +1102,7 @@

How to verify correctness of your encoding
-

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:54:34 2024 UTC
+

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
qiskit_algorithms0.2.2
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:09:28 2024 UTC
@@ -1126,7 +1119,7 @@

Version Information

diff --git a/tutorials/12_quantum_random_access_optimizer.ipynb b/tutorials/12_quantum_random_access_optimizer.ipynb index c94a69ee..f007898e 100644 --- a/tutorials/12_quantum_random_access_optimizer.ipynb +++ b/tutorials/12_quantum_random_access_optimizer.ipynb @@ -31,10 +31,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:30.767557Z", - "iopub.status.busy": "2024-02-09T16:54:30.767349Z", - "iopub.status.idle": "2024-02-09T16:54:31.684841Z", - "shell.execute_reply": "2024-02-09T16:54:31.684080Z" + "iopub.execute_input": "2024-02-14T16:09:24.960803Z", + "iopub.status.busy": "2024-02-14T16:09:24.960604Z", + "iopub.status.idle": "2024-02-14T16:09:25.912664Z", + "shell.execute_reply": "2024-02-14T16:09:25.911988Z" } }, "outputs": [], @@ -58,7 +58,7 @@ "To begin, we utilize the `Maxcut` class from Qiskit Optimization's application module. It allows us to generate a `QuadraticProgram` representation of the given graph.\n", "\n", "Note that once our problem has been represented as a `QuadraticProgram`, it will need to be converted to the correct type, a [quadratic unconstrained binary optimization (QUBO)](https://en.wikipedia.org/wiki/Quadratic_unconstrained_binary_optimization) problem, so that it is compatible with QRAO.\n", - "A `QuadraticProgram` generated by `Maxcut` is already a QUBO, but if you define your own problem be sure you convert it to a QUBO before proceeding. Here is [a tutorial](https://qiskit.org/documentation/optimization/tutorials/02_converters_for_quadratic_programs.html) on converting `QuadraticPrograms`." + "A `QuadraticProgram` generated by `Maxcut` is already a QUBO, but if you define your own problem be sure you convert it to a QUBO before proceeding. Here is [a tutorial](https://qiskit-community.github.io/qiskit-optimization/tutorials/02_converters_for_quadratic_programs.html) on converting `QuadraticPrograms`." ] }, { @@ -66,10 +66,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:31.687998Z", - "iopub.status.busy": "2024-02-09T16:54:31.687628Z", - "iopub.status.idle": "2024-02-09T16:54:32.126702Z", - "shell.execute_reply": "2024-02-09T16:54:32.125950Z" + "iopub.execute_input": "2024-02-14T16:09:25.915894Z", + "iopub.status.busy": "2024-02-14T16:09:25.915357Z", + "iopub.status.idle": "2024-02-14T16:09:26.370611Z", + "shell.execute_reply": "2024-02-14T16:09:26.369817Z" } }, "outputs": [ @@ -127,7 +127,7 @@ "\n", "Once we have appropriately configured our problem, we proceed to encode it using the `QuantumRandomAccessEncoding` class from the `qrao` module. This encoding step allows us to generate a quantum Hamiltonian operator that represents our problem. In particular, we employ a Quantum Random Access Code (QRAC) to encode multiple classical binary variables (corresponding to the nodes of our max-cut graph) into each qubit.\n", "\n", - "It's important to note that the resulting \"relaxed\" Hamiltonian, produced by this encoding, will not be diagonal. This differs from the standard workflow in `qiskit-optimization`, which typically generates a diagonal (Ising) Hamiltonian suitable for optimization using a `MinimumEigenOptimizer`. You can find a tutorial on the `MinimumEigenOptimizer` [here](https://qiskit.org/documentation/optimization/tutorials/03_minimum_eigen_optimizer.html).\n", + "It's important to note that the resulting \"relaxed\" Hamiltonian, produced by this encoding, will not be diagonal. This differs from the standard workflow in `qiskit-optimization`, which typically generates a diagonal (Ising) Hamiltonian suitable for optimization using a `MinimumEigenOptimizer`. You can find a tutorial on the `MinimumEigenOptimizer` [here](https://qiskit-community.github.io/qiskit-optimization/tutorials/03_minimum_eigen_optimizer.html).\n", "\n", "In our encoding process, we employ a $(3,1,p)-$QRAC, where each qubit can accommodate a maximum of 3 classical binary variables. The parameter $p$ represents the bit recovery probability achieved through measurement. Depending on the nature of the problem, some qubits may have fewer than 3 classical variables assigned to them. To evaluate the compression achieved, we can examine the `compression_ratio` attribute of the encoding, which provides the ratio between the number of original binary variables and the number of qubits used (at best, a factor of 3)." ] @@ -137,10 +137,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:32.129662Z", - "iopub.status.busy": "2024-02-09T16:54:32.129130Z", - "iopub.status.idle": "2024-02-09T16:54:32.137700Z", - "shell.execute_reply": "2024-02-09T16:54:32.137129Z" + "iopub.execute_input": "2024-02-14T16:09:26.373706Z", + "iopub.status.busy": "2024-02-14T16:09:26.373134Z", + "iopub.status.idle": "2024-02-14T16:09:26.382341Z", + "shell.execute_reply": "2024-02-14T16:09:26.381765Z" } }, "outputs": [ @@ -197,10 +197,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:32.140199Z", - "iopub.status.busy": "2024-02-09T16:54:32.139789Z", - "iopub.status.idle": "2024-02-09T16:54:32.145465Z", - "shell.execute_reply": "2024-02-09T16:54:32.144875Z" + "iopub.execute_input": "2024-02-14T16:09:26.384991Z", + "iopub.status.busy": "2024-02-14T16:09:26.384606Z", + "iopub.status.idle": "2024-02-14T16:09:26.390231Z", + "shell.execute_reply": "2024-02-14T16:09:26.389596Z" } }, "outputs": [], @@ -251,10 +251,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:32.147931Z", - "iopub.status.busy": "2024-02-09T16:54:32.147565Z", - "iopub.status.idle": "2024-02-09T16:54:32.520406Z", - "shell.execute_reply": "2024-02-09T16:54:32.519658Z" + "iopub.execute_input": "2024-02-14T16:09:26.392804Z", + "iopub.status.busy": "2024-02-14T16:09:26.392417Z", + "iopub.status.idle": "2024-02-14T16:09:26.842679Z", + "shell.execute_reply": "2024-02-14T16:09:26.841992Z" } }, "outputs": [ @@ -264,7 +264,7 @@ "text": [ "The objective function value: 4.0\n", "x: [1 0 0 0 1 0]\n", - "relaxed function value: 8.999999981905706\n", + "relaxed function value: 8.999999940760864\n", "\n" ] } @@ -299,10 +299,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:32.523203Z", - "iopub.status.busy": "2024-02-09T16:54:32.522792Z", - "iopub.status.idle": "2024-02-09T16:54:32.628250Z", - "shell.execute_reply": "2024-02-09T16:54:32.627479Z" + "iopub.execute_input": "2024-02-14T16:09:26.845515Z", + "iopub.status.busy": "2024-02-14T16:09:26.845110Z", + "iopub.status.idle": "2024-02-14T16:09:26.981007Z", + "shell.execute_reply": "2024-02-14T16:09:26.980286Z" } }, "outputs": [ @@ -353,17 +353,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:32.631162Z", - "iopub.status.busy": "2024-02-09T16:54:32.630724Z", - "iopub.status.idle": "2024-02-09T16:54:32.635645Z", - "shell.execute_reply": "2024-02-09T16:54:32.634849Z" + "iopub.execute_input": "2024-02-14T16:09:26.983957Z", + "iopub.status.busy": "2024-02-14T16:09:26.983464Z", + "iopub.status.idle": "2024-02-14T16:09:26.988070Z", + "shell.execute_reply": "2024-02-14T16:09:26.987411Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 7, @@ -390,10 +390,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:32.638149Z", - "iopub.status.busy": "2024-02-09T16:54:32.637940Z", - "iopub.status.idle": "2024-02-09T16:54:32.642665Z", - "shell.execute_reply": "2024-02-09T16:54:32.641957Z" + "iopub.execute_input": "2024-02-14T16:09:26.990605Z", + "iopub.status.busy": "2024-02-14T16:09:26.990228Z", + "iopub.status.idle": "2024-02-14T16:09:26.994521Z", + "shell.execute_reply": "2024-02-14T16:09:26.993862Z" } }, "outputs": [ @@ -427,10 +427,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:32.645349Z", - "iopub.status.busy": "2024-02-09T16:54:32.644936Z", - "iopub.status.idle": "2024-02-09T16:54:32.668944Z", - "shell.execute_reply": "2024-02-09T16:54:32.668352Z" + "iopub.execute_input": "2024-02-14T16:09:26.997277Z", + "iopub.status.busy": "2024-02-14T16:09:26.996745Z", + "iopub.status.idle": "2024-02-14T16:09:27.020138Z", + "shell.execute_reply": "2024-02-14T16:09:27.019480Z" } }, "outputs": [ @@ -468,10 +468,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:32.671345Z", - "iopub.status.busy": "2024-02-09T16:54:32.670953Z", - "iopub.status.idle": "2024-02-09T16:54:32.674593Z", - "shell.execute_reply": "2024-02-09T16:54:32.673923Z" + "iopub.execute_input": "2024-02-14T16:09:27.022839Z", + "iopub.status.busy": "2024-02-14T16:09:27.022371Z", + "iopub.status.idle": "2024-02-14T16:09:27.026163Z", + "shell.execute_reply": "2024-02-14T16:09:27.025494Z" } }, "outputs": [ @@ -512,10 +512,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:32.677177Z", - "iopub.status.busy": "2024-02-09T16:54:32.676781Z", - "iopub.status.idle": "2024-02-09T16:54:33.161187Z", - "shell.execute_reply": "2024-02-09T16:54:33.160425Z" + "iopub.execute_input": "2024-02-14T16:09:27.028677Z", + "iopub.status.busy": "2024-02-14T16:09:27.028300Z", + "iopub.status.idle": "2024-02-14T16:09:27.521815Z", + "shell.execute_reply": "2024-02-14T16:09:27.521190Z" } }, "outputs": [], @@ -551,10 +551,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:33.164486Z", - "iopub.status.busy": "2024-02-09T16:54:33.164050Z", - "iopub.status.idle": "2024-02-09T16:54:33.167833Z", - "shell.execute_reply": "2024-02-09T16:54:33.167199Z" + "iopub.execute_input": "2024-02-14T16:09:27.524891Z", + "iopub.status.busy": "2024-02-14T16:09:27.524467Z", + "iopub.status.idle": "2024-02-14T16:09:27.528523Z", + "shell.execute_reply": "2024-02-14T16:09:27.527820Z" } }, "outputs": [ @@ -564,7 +564,7 @@ "text": [ "The objective function value: 9.0\n", "x: [1 0 1 0 0 1]\n", - "relaxed function value: 8.99999793369987\n", + "relaxed function value: 8.999995184895\n", "\n" ] } @@ -592,10 +592,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:33.170147Z", - "iopub.status.busy": "2024-02-09T16:54:33.169942Z", - "iopub.status.idle": "2024-02-09T16:54:33.174295Z", - "shell.execute_reply": "2024-02-09T16:54:33.173627Z" + "iopub.execute_input": "2024-02-14T16:09:27.530871Z", + "iopub.status.busy": "2024-02-14T16:09:27.530661Z", + "iopub.status.idle": "2024-02-14T16:09:27.534983Z", + "shell.execute_reply": "2024-02-14T16:09:27.534295Z" } }, "outputs": [ @@ -606,15 +606,15 @@ "The number of distinct samples is 56.\n", "Top 10 samples with the largest fval:\n", "SolutionSample(x=array([1, 0, 1, 0, 0, 1]), fval=9.0, probability=0.0094, status=)\n", - "SolutionSample(x=array([0, 1, 0, 1, 1, 0]), fval=9.0, probability=0.0111, status=)\n", - "SolutionSample(x=array([0, 0, 0, 1, 1, 0]), fval=6.0, probability=0.0198, status=)\n", - "SolutionSample(x=array([1, 1, 1, 0, 0, 1]), fval=6.0, probability=0.0209, status=)\n", - "SolutionSample(x=array([0, 1, 1, 1, 1, 0]), fval=6.0, probability=0.0204, status=)\n", - "SolutionSample(x=array([1, 0, 0, 0, 0, 1]), fval=6.0, probability=0.0213, status=)\n", - "SolutionSample(x=array([1, 0, 1, 0, 0, 0]), fval=6.0, probability=0.0197, status=)\n", - "SolutionSample(x=array([0, 1, 0, 1, 1, 1]), fval=6.0, probability=0.0208, status=)\n", - "SolutionSample(x=array([1, 0, 1, 0, 1, 1]), fval=6.0, probability=0.0207, status=)\n", - "SolutionSample(x=array([0, 1, 0, 1, 0, 0]), fval=6.0, probability=0.0217, status=)\n" + "SolutionSample(x=array([0, 1, 0, 1, 1, 0]), fval=9.0, probability=0.011099999999999999, status=)\n", + "SolutionSample(x=array([0, 0, 0, 1, 1, 0]), fval=6.0, probability=0.0212, status=)\n", + "SolutionSample(x=array([1, 1, 1, 0, 0, 1]), fval=6.0, probability=0.0224, status=)\n", + "SolutionSample(x=array([0, 1, 1, 1, 1, 0]), fval=6.0, probability=0.019, status=)\n", + "SolutionSample(x=array([1, 0, 0, 0, 0, 1]), fval=6.0, probability=0.0202, status=)\n", + "SolutionSample(x=array([1, 0, 1, 0, 0, 0]), fval=6.0, probability=0.0226, status=)\n", + "SolutionSample(x=array([0, 1, 0, 1, 1, 1]), fval=6.0, probability=0.0238, status=)\n", + "SolutionSample(x=array([1, 0, 1, 0, 1, 1]), fval=6.0, probability=0.0204, status=)\n", + "SolutionSample(x=array([0, 1, 0, 1, 0, 0]), fval=6.0, probability=0.0214, status=)\n" ] } ], @@ -643,7 +643,7 @@ "\n", "By invoking `qrao.solve_relaxed()`, we obtain two essential outputs:\n", "\n", - "- `MinimumEigensolverResult`: This object contains the results of running the minimum eigen optimizer such as the VQE on the relaxed problem. It provides information about the eigenvalue, and other relevant details. You can refer to the Qiskit Algorithms [documentation](https://qiskit.org/documentation/stubs/qiskit.algorithms.MinimumEigensolverResult.html) for a comprehensive explanation of the entries within this object.\n", + "- `MinimumEigensolverResult`: This object contains the results of running the minimum eigen optimizer such as the VQE on the relaxed problem. It provides information about the eigenvalue, and other relevant details. You can refer to the Qiskit Algorithms [documentation](https://docs.quantum.ibm.com/api/qiskit/qiskit.algorithms.MinimumEigensolverResult) for a comprehensive explanation of the entries within this object.\n", "- `RoundingContext`: This object encapsulates essential information about the encoding and the solution of the relaxed problem in a form that is ready for consumption by the rounding schemes." ] }, @@ -652,10 +652,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:33.176817Z", - "iopub.status.busy": "2024-02-09T16:54:33.176439Z", - "iopub.status.idle": "2024-02-09T16:54:33.515085Z", - "shell.execute_reply": "2024-02-09T16:54:33.514479Z" + "iopub.execute_input": "2024-02-14T16:09:27.537504Z", + "iopub.status.busy": "2024-02-14T16:09:27.537111Z", + "iopub.status.idle": "2024-02-14T16:09:27.962569Z", + "shell.execute_reply": "2024-02-14T16:09:27.961920Z" } }, "outputs": [], @@ -673,10 +673,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:33.518216Z", - "iopub.status.busy": "2024-02-09T16:54:33.517656Z", - "iopub.status.idle": "2024-02-09T16:54:33.736791Z", - "shell.execute_reply": "2024-02-09T16:54:33.736121Z" + "iopub.execute_input": "2024-02-14T16:09:27.965526Z", + "iopub.status.busy": "2024-02-14T16:09:27.965306Z", + "iopub.status.idle": "2024-02-14T16:09:28.188216Z", + "shell.execute_reply": "2024-02-14T16:09:28.187495Z" } }, "outputs": [ @@ -684,10 +684,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "aux_operators_evaluated: [(0.010926743078980372, {'variance': 0.9999999999974761, 'shots': 1000}), (0.02598343694328881, {'variance': 0.999999999997472, 'shots': 1000}), (0.01044933784106082, {'variance': 0.9999999999999999, 'shots': 1000}), (-0.04120945001189341, {'variance': 0.9999999999999999, 'shots': 1000}), (0.02855644212815068, {'variance': 0.9999999946088998, 'shots': 1000}), (0.014189027484473498, {'variance': 0.9999999946088955, 'shots': 1000})]\n", - "combine: >\n", - "cost_function_evals: 116\n", - "eigenvalue: -4.499996924994738\n" + "aux_operators_evaluated: [(0.01077701410810778, {'variance': 0.9999999771030237, 'shots': 1000}), (0.026133164198470896, {'variance': 0.9999999771030168, 'shots': 1000}), (0.010449337841060821, {'variance': 1.0000000000000002, 'shots': 1000}), (-0.04120945001189342, {'variance': 1.0000000000000002, 'shots': 1000}), (0.028630004855762115, {'variance': 0.999999999999981, 'shots': 1000}), (0.014115442055980103, {'variance': 0.9999999999999742, 'shots': 1000})]\n", + "combine: >\n", + "cost_function_evals: 150\n", + "eigenvalue: -4.499991361691686\n" ] }, { @@ -699,19 +699,19 @@ " │ RealAmplitudes(θ[0],θ[1],θ[2],θ[3],θ[4],θ[5],θ[6],θ[7]) │\n", "q_1: ┤1 ├\n", " └──────────────────────────────────────────────────────────┘\n", - "optimal_parameters: {ParameterVectorElement(θ[0]): 2.0471560643273947, ParameterVectorElement(θ[1]): 1.4129824997448401, ParameterVectorElement(θ[2]): -0.7765382357072699, ParameterVectorElement(θ[3]): 1.9443520433144783, ParameterVectorElement(θ[4]): 2.5720037072214055, ParameterVectorElement(θ[5]): -4.069849316982238, ParameterVectorElement(θ[6]): -1.9345584128886406, ParameterVectorElement(θ[7]): 0.1995660862499935}\n", - "optimal_point: [ 2.04715606 1.4129825 -0.77653824 1.94435204 2.57200371 -4.06984932\n", - " -1.93455841 0.19956609]\n", - "optimal_value: -4.499996924994738\n", + "optimal_parameters: {ParameterVectorElement(θ[0]): 1.931845269903189, ParameterVectorElement(θ[1]): -0.3381899861254701, ParameterVectorElement(θ[2]): 0.9789155650474981, ParameterVectorElement(θ[3]): -0.8716894716741508, ParameterVectorElement(θ[4]): -0.29312237633987, ParameterVectorElement(θ[5]): 0.19902685121557584, ParameterVectorElement(θ[6]): -2.5519558808017244, ParameterVectorElement(θ[7]): 2.3715141402586086}\n", + "optimal_point: [ 1.93184527 -0.33818999 0.97891557 -0.87168947 -0.29312238 0.19902685\n", + " -2.55195588 2.37151414]\n", + "optimal_value: -4.499991361691686\n", "optimizer_evals: None\n", - "optimizer_result: { 'fun': -4.499996924994738,\n", + "optimizer_result: { 'fun': -4.499991361691686,\n", " 'jac': None,\n", - " 'nfev': 116,\n", + " 'nfev': 150,\n", " 'nit': None,\n", " 'njev': None,\n", - " 'x': array([ 2.04715606, 1.4129825 , -0.77653824, 1.94435204, 2.57200371,\n", - " -4.06984932, -1.93455841, 0.19956609])}\n", - "optimizer_time: 0.3176090717315674\n" + " 'x': array([ 1.93184527, -0.33818999, 0.97891557, -0.87168947, -0.29312238,\n", + " 0.19902685, -2.55195588, 2.37151414])}\n", + "optimizer_time: 0.40552330017089844\n" ] } ], @@ -738,10 +738,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:33.739816Z", - "iopub.status.busy": "2024-02-09T16:54:33.739169Z", - "iopub.status.idle": "2024-02-09T16:54:33.746591Z", - "shell.execute_reply": "2024-02-09T16:54:33.745941Z" + "iopub.execute_input": "2024-02-14T16:09:28.191224Z", + "iopub.status.busy": "2024-02-14T16:09:28.190692Z", + "iopub.status.idle": "2024-02-14T16:09:28.198071Z", + "shell.execute_reply": "2024-02-14T16:09:28.197405Z" } }, "outputs": [ @@ -751,7 +751,7 @@ "text": [ "The objective function value: 3.0\n", "x: [0 0 0 1 0 0]\n", - "relaxed function value: -8.999996924994738\n", + "relaxed function value: -8.999991361691686\n", "The number of distinct samples is 1.\n" ] } @@ -777,10 +777,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:33.749008Z", - "iopub.status.busy": "2024-02-09T16:54:33.748623Z", - "iopub.status.idle": "2024-02-09T16:54:33.887406Z", - "shell.execute_reply": "2024-02-09T16:54:33.886829Z" + "iopub.execute_input": "2024-02-14T16:09:28.200665Z", + "iopub.status.busy": "2024-02-14T16:09:28.200300Z", + "iopub.status.idle": "2024-02-14T16:09:28.341385Z", + "shell.execute_reply": "2024-02-14T16:09:28.340756Z" } }, "outputs": [ @@ -790,7 +790,7 @@ "text": [ "The objective function value: 9.0\n", "x: [1 0 1 0 0 1]\n", - "relaxed function value: -8.999996924994738\n", + "relaxed function value: -8.999991361691686\n", "The number of distinct samples is 56.\n" ] } @@ -827,10 +827,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:33.889712Z", - "iopub.status.busy": "2024-02-09T16:54:33.889507Z", - "iopub.status.idle": "2024-02-09T16:54:34.057767Z", - "shell.execute_reply": "2024-02-09T16:54:34.057108Z" + "iopub.execute_input": "2024-02-14T16:09:28.343916Z", + "iopub.status.busy": "2024-02-14T16:09:28.343701Z", + "iopub.status.idle": "2024-02-14T16:09:28.516969Z", + "shell.execute_reply": "2024-02-14T16:09:28.516153Z" } }, "outputs": [ @@ -849,13 +849,7 @@ " No constraints\n", "\n", " Binary variables (6)\n", - " x_0 x_1 x_2 x_3 x_4 x_5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + " x_0 x_1 x_2 x_3 x_4 x_5\n", "\n" ] }, @@ -896,10 +890,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:34.060421Z", - "iopub.status.busy": "2024-02-09T16:54:34.060168Z", - "iopub.status.idle": "2024-02-09T16:54:34.069370Z", - "shell.execute_reply": "2024-02-09T16:54:34.068726Z" + "iopub.execute_input": "2024-02-14T16:09:28.520050Z", + "iopub.status.busy": "2024-02-14T16:09:28.519796Z", + "iopub.status.idle": "2024-02-14T16:09:28.528806Z", + "shell.execute_reply": "2024-02-14T16:09:28.528217Z" } }, "outputs": [ @@ -940,10 +934,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:34.071808Z", - "iopub.status.busy": "2024-02-09T16:54:34.071399Z", - "iopub.status.idle": "2024-02-09T16:54:34.215758Z", - "shell.execute_reply": "2024-02-09T16:54:34.215228Z" + "iopub.execute_input": "2024-02-14T16:09:28.531334Z", + "iopub.status.busy": "2024-02-14T16:09:28.531117Z", + "iopub.status.idle": "2024-02-14T16:09:28.677289Z", + "shell.execute_reply": "2024-02-14T16:09:28.676664Z" } }, "outputs": [], @@ -975,10 +969,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-09T16:54:34.218216Z", - "iopub.status.busy": "2024-02-09T16:54:34.217963Z", - "iopub.status.idle": "2024-02-09T16:54:34.396931Z", - "shell.execute_reply": "2024-02-09T16:54:34.396100Z" + "iopub.execute_input": "2024-02-14T16:09:28.680269Z", + "iopub.status.busy": "2024-02-14T16:09:28.680055Z", + "iopub.status.idle": "2024-02-14T16:09:28.875526Z", + "shell.execute_reply": "2024-02-14T16:09:28.874932Z" }, "scrolled": false }, @@ -987,14 +981,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_20758/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", + "/tmp/ipykernel_20805/1492642725.py:1: DeprecationWarning: qiskit.tools.jupyter is deprecated and will be removed in Qiskit 1.0.0\n", " import qiskit.tools.jupyter\n" ] }, { "data": { "text/html": [ - "

Version Information

SoftwareVersion
SoftwareVersion
qiskit0.46.0
qiskit_algorithms0.2.2
qiskit_optimization0.6.0
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Fri Feb 09 16:54:34 2024 UTC
" + "

Version Information

SoftwareVersion
qiskit0.46.0
qiskit_optimization0.6.0
qiskit_algorithms0.2.2
System information
Python version3.8.18
Python compilerGCC 11.4.0
Python builddefault, Aug 28 2023 08:27:22
OSLinux
CPUs2
Memory (Gb)15.60690689086914
Wed Feb 14 16:09:28 2024 UTC
" ], "text/plain": [ "" @@ -1055,25 +1049,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1023e565698e4ca4942a008255d9e76c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "534c07035b4447c6a6cef590a68fd765": { + "21e88dfb559f438c91fdd2982b14053d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1126,7 +1102,25 @@ "width": null } }, - "7543f23d85494b4ca095bc91aee0fc6b": { + "6441b2bd41a04a6991e4ea7400902a13": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d7d38cf0e515431d9dd45266939c2589": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1141,9 +1135,9 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_534c07035b4447c6a6cef590a68fd765", + "layout": "IPY_MODEL_21e88dfb559f438c91fdd2982b14053d", "placeholder": "​", - "style": "IPY_MODEL_1023e565698e4ca4942a008255d9e76c", + "style": "IPY_MODEL_6441b2bd41a04a6991e4ea7400902a13", "tabbable": null, "tooltip": null, "value": "

Circuit Properties

"