Skip to content

Commit e6d712c

Browse files
committed
Deploying to gh-pages from @ 78a47bf 🚀
1 parent 8850dfd commit e6d712c

File tree

68 files changed

+1479
-1229
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

68 files changed

+1479
-1229
lines changed

Diff for: .buildinfo

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
# Sphinx build info version 1
22
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
3-
config: 70c0bb5ae8d333ec48c9975fa2c2fbdc
3+
config: 9819ffc6e12194ec337e2a6db159e35c
44
tags: 645f666f9bcd5a90fca523b33c5a78b7
573 Bytes
Loading
605 Bytes
Loading
573 Bytes
Loading
632 Bytes
Loading
573 Bytes
Loading
-5 Bytes
Loading

Diff for: _sources/getting_started.rst.txt

+1-2
Original file line numberDiff line numberDiff line change
@@ -95,8 +95,7 @@ Optional installs
9595
=================
9696

9797
* **IBM CPLEX** may be installed using ``pip install 'qiskit-optimization[cplex]'`` to enable the reading of `LP` files and the usage of
98-
the `CplexOptimizer`, wrapper for ``cplex.Cplex``. Currently there is no python 3.9 version of CPLEX. In this case, the CPLEX install
99-
command will have no effect.
98+
the `CplexOptimizer`, wrapper for ``cplex.Cplex``. CPLEX is a separate package and its support of Python versions is independent of Qiskit Optimization, where this CPLEX command will have no effect if there is no compatible version of CPLEX available (yet).
10099

101100
* **CVXPY** may be installed using the command ``pip install 'qiskit-optimization[cvx]'``.
102101
CVXPY being installed will enable the usage of the Goemans-Williamson algorithm as an optimizer `GoemansWilliamsonOptimizer`.

Diff for: _sources/index.rst.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ A uniform interface as well as automatic conversion between different problem re
1616
allows users to solve problems using a large set of algorithms, from variational quantum algorithms,
1717
such as the Quantum Approximate Optimization Algorithm QAOA, to Grover Adaptive Search using the
1818
GroverOptimizer, leveraging fundamental algorithms provided by
19-
`Qiskit Algorithms <https://qiskit.org/ecosystem/algorithms/>`__. Furthermore, the modular design
19+
`Qiskit Algorithms <https://qiskit-community.github.io/qiskit-algorithms/>`__. Furthermore, the modular design
2020
of the optimization module allows it to be easily extended and facilitates rapid development and
2121
testing of new algorithms. Compatible classical optimizers are also provided for testing,
2222
validation, and benchmarking.

Diff for: _sources/migration/02_migration_guide_to_v0.6.rst.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ Qiskit Optimization v0.6 supports only the new algorithms of Qiskit Algorithms.
1616
It is not the intention to provide detailed explanations of the
1717
new Qiskit Algorithms in this migration guide. We suggest that you read the
1818
`corresponding
19-
resources <https://qiskit.org/ecosystem/algorithms/index.html>`__
19+
resources <https://qiskit-community.github.io/qiskit-algorithms/index.html>`__
2020
of the Qiskit Algorithms documentation instead.
2121

2222
We can basically use the existing codes by replacing ``qiskit.algorithms``

Diff for: _sources/tutorials/08_cvar_optimization.ipynb.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@
1515
"source": [
1616
"## Introduction\n",
1717
"\n",
18-
"This notebook shows how to use the Conditional Value at Risk (CVaR) objective function introduced in [1] within the variational quantum optimization algorithms provided by [Qiskit Algorithms](https://qiskit.org/ecosystem/algorithms/). Particularly, it is shown how to setup the `MinimumEigenOptimizer` using `SamplingVQE` accordingly. \n",
18+
"This notebook shows how to use the Conditional Value at Risk (CVaR) objective function introduced in [1] within the variational quantum optimization algorithms provided by [Qiskit Algorithms](https://qiskit-community.github.io/qiskit-algorithms/). Particularly, it is shown how to setup the `MinimumEigenOptimizer` using `SamplingVQE` accordingly. \n",
1919
"For a given set of shots with corresponding objective values of the considered optimization problem, the CVaR with confidence level $\\alpha \\in [0, 1]$ is defined as the average of the $\\alpha$ best shots.\n",
2020
"Thus, $\\alpha = 1$ corresponds to the standard expected value, while $\\alpha=0$ corresponds to the minimum of the given shots, and $\\alpha \\in (0, 1)$ is a tradeoff between focusing on better shots, but still applying some averaging to smoothen the optimization landscape.\n",
2121
"\n",

Diff for: _sources/tutorials/12_quantum_random_access_optimizer.ipynb.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -303,7 +303,7 @@
303303
"cell_type": "markdown",
304304
"metadata": {},
305305
"source": [
306-
"The [MinimumEigensolverResult](https://qiskit.org/ecosystem/algorithms/stubs/qiskit_algorithms.MinimumEigensolverResult.html) that results from performing VQE on the relaxed Hamiltonian is available:"
306+
"The [MinimumEigensolverResult](https://qiskit-community.github.io/qiskit-algorithms/stubs/qiskit_algorithms.MinimumEigensolverResult.html) that results from performing VQE on the relaxed Hamiltonian is available:"
307307
]
308308
},
309309
{

Diff for: apidocs/qiskit_optimization.html

+4-3
Original file line numberDiff line numberDiff line change
@@ -440,11 +440,12 @@ <h2>Qiskit optimization module (<a class="reference internal" href="#module-qisk
440440
A uniform interface as well as automatic conversion between different problem representations
441441
allows users to solve problems using a large set of algorithms, from variational quantum algorithms,
442442
such as the Quantum Approximate Optimization Algorithm
443-
(<a class="reference external" href="https://qiskit.org/ecosystem/algorithms/stubs/qiskit_algorithms.QAOA.html#qiskit_algorithms.QAOA" title="(in Qiskit Algorithms v0.2.1)"><code class="xref py py-class docutils literal notranslate"><span class="pre">QAOA</span></code></a>), to
443+
(<a class="reference external" href="https://qiskit-community.github.io/qiskit-algorithms/stubs/qiskit_algorithms.QAOA.html#qiskit_algorithms.QAOA" title="(in Qiskit Algorithms v0.2.2)"><code class="xref py py-class docutils literal notranslate"><span class="pre">QAOA</span></code></a>), to
444444
<a class="reference external" href="https://arxiv.org/abs/quant-ph/9607014">Grover Adaptive Search</a>
445445
(<a class="reference internal" href="../stubs/qiskit_optimization.algorithms.GroverOptimizer.html#qiskit_optimization.algorithms.GroverOptimizer" title="qiskit_optimization.algorithms.GroverOptimizer"><code class="xref py py-class docutils literal notranslate"><span class="pre">GroverOptimizer</span></code></a>), leveraging
446-
fundamental <a class="reference external" href="https://qiskit.org/ecosystem/algorithms/apidocs/qiskit_algorithms.html#minimum-eigensolvers">minimum eigensolvers</a> provided by
447-
<a class="reference external" href="https://qiskit.org/ecosystem/algorithms/">Qiskit Algorithms</a>.
446+
fundamental <a class="reference external" href="https://qiskit-community.github.io/qiskit-algorithms/apidocs/qiskit_algorithms.html#minimum-eigensolvers">minimum eigensolvers</a>
447+
provided by
448+
<a class="reference external" href="https://qiskit-community.github.io/qiskit-algorithms/">Qiskit Algorithms</a>.
448449
Furthermore, the modular design
449450
of the optimization module allows it to be easily extended and facilitates rapid development and
450451
testing of new algorithms. Compatible classical optimizers are also provided for testing,

Diff for: getting_started.html

+1-2
Original file line numberDiff line numberDiff line change
@@ -506,8 +506,7 @@ <h2>Installing Qiskit Optimization from Source</h2><p>Using the same development
506506
<span id="id1"></span><h2>Optional installs<a class="headerlink" href="#optional-installs" title="Permalink to this heading">#</a></h2>
507507
<ul class="simple">
508508
<li><p><strong>IBM CPLEX</strong> may be installed using <code class="docutils literal notranslate"><span class="pre">pip</span> <span class="pre">install</span> <span class="pre">'qiskit-optimization[cplex]'</span></code> to enable the reading of <cite>LP</cite> files and the usage of
509-
the <cite>CplexOptimizer</cite>, wrapper for <code class="docutils literal notranslate"><span class="pre">cplex.Cplex</span></code>. Currently there is no python 3.9 version of CPLEX. In this case, the CPLEX install
510-
command will have no effect.</p></li>
509+
the <cite>CplexOptimizer</cite>, wrapper for <code class="docutils literal notranslate"><span class="pre">cplex.Cplex</span></code>. CPLEX is a separate package and its support of Python versions is independent of Qiskit Optimization, where this CPLEX command will have no effect if there is no compatible version of CPLEX available (yet).</p></li>
511510
<li><p><strong>CVXPY</strong> may be installed using the command <code class="docutils literal notranslate"><span class="pre">pip</span> <span class="pre">install</span> <span class="pre">'qiskit-optimization[cvx]'</span></code>.
512511
CVXPY being installed will enable the usage of the Goemans-Williamson algorithm as an optimizer <cite>GoemansWilliamsonOptimizer</cite>.</p></li>
513512
<li><p><strong>Matplotlib</strong> may be installed using the command <code class="docutils literal notranslate"><span class="pre">pip</span> <span class="pre">install</span> <span class="pre">'qiskit-optimization[matplotlib]'</span></code>.

Diff for: index.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -442,7 +442,7 @@ <h2>Overview<a class="headerlink" href="#overview" title="Permalink to this head
442442
allows users to solve problems using a large set of algorithms, from variational quantum algorithms,
443443
such as the Quantum Approximate Optimization Algorithm QAOA, to Grover Adaptive Search using the
444444
GroverOptimizer, leveraging fundamental algorithms provided by
445-
<a class="reference external" href="https://qiskit.org/ecosystem/algorithms/">Qiskit Algorithms</a>. Furthermore, the modular design
445+
<a class="reference external" href="https://qiskit-community.github.io/qiskit-algorithms/">Qiskit Algorithms</a>. Furthermore, the modular design
446446
of the optimization module allows it to be easily extended and facilitates rapid development and
447447
testing of new algorithms. Compatible classical optimizers are also provided for testing,
448448
validation, and benchmarking.</p>

Diff for: migration/02_migration_guide_to_v0.6.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -440,7 +440,7 @@ <h2>Overview<a class="headerlink" href="#overview" title="Permalink to this head
440440
<p>Qiskit Optimization v0.6 supports only the new algorithms of Qiskit Algorithms.</p>
441441
<p>It is not the intention to provide detailed explanations of the
442442
new Qiskit Algorithms in this migration guide. We suggest that you read the
443-
<a class="reference external" href="https://qiskit.org/ecosystem/algorithms/index.html">corresponding
443+
<a class="reference external" href="https://qiskit-community.github.io/qiskit-algorithms/index.html">corresponding
444444
resources</a>
445445
of the Qiskit Algorithms documentation instead.</p>
446446
<p>We can basically use the existing codes by replacing <code class="docutils literal notranslate"><span class="pre">qiskit.algorithms</span></code>

0 commit comments

Comments
 (0)