|
| 1 | +Qiskit Optimization v0.6 Migration Guide |
| 2 | +======================================== |
| 3 | + |
| 4 | +This tutorial will guide you through the process of migrating your code |
| 5 | +from Qiskit Optimization v0.5 to v0.6. |
| 6 | + |
| 7 | +Overview |
| 8 | +-------- |
| 9 | + |
| 10 | +Qiskit Terra v0.25 deprecated the ``qiskit.algorithms`` module. It has been |
| 11 | +superseded by a new standalone library |
| 12 | +`Qiskit Algorithms <https://github.com/qiskit-community/qiskit_algorithms>`__. |
| 13 | + |
| 14 | +Qiskit Optimization v0.6 supports only the new algorithms of Qiskit Algorithms. |
| 15 | + |
| 16 | +It is not the intention to provide detailed explanations of the |
| 17 | +new Qiskit Algorithms in this migration guide. We suggest that you read the |
| 18 | +`corresponding |
| 19 | +resources <https://qiskit.org/ecosystem/algorithms/index.html>`__ |
| 20 | +of the Qiskit Algorithms documentation instead. |
| 21 | + |
| 22 | +We can basically use the existing codes by replacing ``qiskit.algorithms`` |
| 23 | +with ``qiskit_algorithms``. |
| 24 | + |
| 25 | + |
| 26 | +``MinimumEigenOptimizer`` |
| 27 | +------------------------- |
| 28 | + |
| 29 | +The former algorithms exist in |
| 30 | +``qiskit.algorithms.minimum_eigensolvers``. |
| 31 | +On the other hand, the new algorithms exist in |
| 32 | +``qiskit_algorithms.minimum_eigensolvers`` and we can access them by |
| 33 | +``qiskit_algorithms.*``. |
| 34 | + |
| 35 | +``MinimumEigenOptimizer`` of Qiskit Optimization can use |
| 36 | +``qiskit_algorithms.SamplingMinimumEigensolver`` |
| 37 | +interface of the new algorithms. Note that ``MinimumEigenOptimizer`` |
| 38 | +cannot basically handle |
| 39 | +``qiskit_algorithms.MinimumEigensolver`` of the new |
| 40 | +algorithms. But there is an exception. ``MinimumEigenOptimizer`` can |
| 41 | +handle ``qiskit_algorithms.NumPyMinimumEigensolver`` |
| 42 | +because ``qiskit_algorithms.NumPyMinimumEigensolver`` has |
| 43 | +an extension that allows users to access the eigen states. |
| 44 | + |
| 45 | +The following is the corresponding table. |
| 46 | + |
| 47 | +.. csv-table:: |
| 48 | + :header: Former algorithm, New algorithm |
| 49 | + |
| 50 | + ``qiskit.algorithms.minimum_eigensolvers.SamplingMinimumEigensolver``, ``qiskit_algorithms.SamplingMinimumEigensolver`` |
| 51 | + ``qiskit.algorithms.minimum_eigensolver.NumPyMinimumEigensolver``, ``qiskit_algorithms.NumPyMinimumEigensolver`` |
| 52 | + ``qiskit.algorithms.minimum_eigensolvers.QAOA``, ``qiskit_algorithms.QAOA`` |
| 53 | + ``qiskit.algorithms.minimum_eigensolvers.SamplingVQE``, ``qiskit_algorithms.SamplingVQE`` |
| 54 | + |
| 55 | + |
| 56 | + |
| 57 | +NumPyMinimumEigensolver |
| 58 | +~~~~~~~~~~~~~~~~~~~~~~~ |
| 59 | + |
| 60 | +Previously |
| 61 | + |
| 62 | +.. code:: python |
| 63 | +
|
| 64 | + from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver |
| 65 | +
|
| 66 | + from qiskit_optimization.algorithms import MinimumEigenOptimizer |
| 67 | +
|
| 68 | + mes = NumPyMinimumEigensolver() |
| 69 | + meo = MinimumEigenOptimizer(min_eigen_solver=mes) |
| 70 | + result = meo.solve(problem) |
| 71 | + print(result) |
| 72 | +
|
| 73 | +
|
| 74 | +New |
| 75 | + |
| 76 | +.. code:: python |
| 77 | +
|
| 78 | + from qiskit_algorithms import NumPyMinimumEigensolver |
| 79 | +
|
| 80 | + from qiskit_optimization.algorithms import MinimumEigenOptimizer |
| 81 | +
|
| 82 | + mes = NumPyMinimumEigensolver() |
| 83 | + meo = MinimumEigenOptimizer(min_eigen_solver=mes) |
| 84 | + result = meo.solve(problem) |
| 85 | + print(result) |
| 86 | +
|
| 87 | +
|
| 88 | +
|
| 89 | +QAOA |
| 90 | +~~~~ |
| 91 | + |
| 92 | +Previously |
| 93 | + |
| 94 | +.. code:: python |
| 95 | +
|
| 96 | + from qiskit.algorithms.minimum_eigensolvers import QAOA |
| 97 | + from qiskit.algorithms.optimizers import COBYLA |
| 98 | + from qiskit.primitives import Sampler |
| 99 | +
|
| 100 | + from qiskit_optimization.algorithms import MinimumEigenOptimizer |
| 101 | +
|
| 102 | + shots = 1000 |
| 103 | + mes = QAOA(sampler=Sampler(), optimizer=COBYLA()) |
| 104 | + meo = MinimumEigenOptimizer(min_eigen_solver=mes) |
| 105 | + result = meo.solve(problem) |
| 106 | + print(result) |
| 107 | +
|
| 108 | +
|
| 109 | +New |
| 110 | + |
| 111 | +.. code:: python |
| 112 | +
|
| 113 | + from qiskit_algorithms import QAOA |
| 114 | + from qiskit_algorithms.optimizers import COBYLA |
| 115 | + from qiskit.primitives import Sampler |
| 116 | +
|
| 117 | + from qiskit_optimization.algorithms import MinimumEigenOptimizer |
| 118 | +
|
| 119 | + shots = 1000 |
| 120 | + mes = QAOA(sampler=Sampler(), optimizer=COBYLA()) |
| 121 | + meo = MinimumEigenOptimizer(min_eigen_solver=mes) |
| 122 | + result = meo.solve(problem) |
| 123 | + print(result) |
| 124 | +
|
| 125 | +
|
| 126 | +
|
| 127 | +SamplingVQE |
| 128 | +~~~~~~~~~~~ |
| 129 | + |
| 130 | +Previously |
| 131 | + |
| 132 | +.. code:: python |
| 133 | +
|
| 134 | + from qiskit.algorithms.minimum_eigensolvers import SamplingVQE |
| 135 | + from qiskit.algorithms.optimizers import COBYLA |
| 136 | + from qiskit.circuit.library import RealAmplitudes |
| 137 | + from qiskit.primitives import Sampler |
| 138 | +
|
| 139 | + from qiskit_optimization.algorithms import MinimumEigenOptimizer |
| 140 | +
|
| 141 | + mes = SamplingVQE(sampler=Sampler(), ansatz=RealAmplitudes(), optimizer=COBYLA()) |
| 142 | + meo = MinimumEigenOptimizer(min_eigen_solver=mes) |
| 143 | + result = meo.solve(problem) |
| 144 | + print(result) |
| 145 | +
|
| 146 | +
|
| 147 | +New |
| 148 | + |
| 149 | +.. code:: python |
| 150 | +
|
| 151 | + from qiskit_algorithms import SamplingVQE |
| 152 | + from qiskit_algorithms.optimizers import COBYLA |
| 153 | + from qiskit.circuit.library import RealAmplitudes |
| 154 | + from qiskit.primitives import Sampler |
| 155 | +
|
| 156 | + from qiskit_optimization.algorithms import MinimumEigenOptimizer |
| 157 | +
|
| 158 | + mes = SamplingVQE(sampler=Sampler(), ansatz=RealAmplitudes(), optimizer=COBYLA()) |
| 159 | + meo = MinimumEigenOptimizer(min_eigen_solver=mes) |
| 160 | + result = meo.solve(problem) |
| 161 | + print(result) |
| 162 | +
|
| 163 | +
|
| 164 | +
|
| 165 | +``WarmStartQAOAOptimizer`` |
| 166 | +-------------------------- |
| 167 | + |
| 168 | + |
| 169 | +Previously |
| 170 | + |
| 171 | +.. code:: python |
| 172 | +
|
| 173 | + from qiskit.algorithms.minimum_eigensolvers import QAOA |
| 174 | + from qiskit.algorithms.optimizers import COBYLA |
| 175 | + from qiskit.primitives import Sampler |
| 176 | +
|
| 177 | + from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer |
| 178 | +
|
| 179 | + qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA()) |
| 180 | + optimizer = WarmStartQAOAOptimizer( |
| 181 | + pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25 |
| 182 | + ) |
| 183 | + result = optimizer.solve(problem) |
| 184 | + print(result) |
| 185 | +
|
| 186 | +
|
| 187 | +New |
| 188 | + |
| 189 | +.. code:: python |
| 190 | +
|
| 191 | + from qiskit_algorithms import QAOA |
| 192 | + from qiskit_algorithms.optimizers import COBYLA |
| 193 | + from qiskit.primitives import Sampler |
| 194 | +
|
| 195 | + from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer |
| 196 | +
|
| 197 | + qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA()) |
| 198 | + optimizer = WarmStartQAOAOptimizer( |
| 199 | + pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25 |
| 200 | + ) |
| 201 | + result = optimizer.solve(problem) |
| 202 | + print(result) |
| 203 | +
|
| 204 | +
|
| 205 | +
|
| 206 | +``GroverOptimizer`` |
| 207 | +------------------- |
| 208 | + |
| 209 | + |
| 210 | +Previously |
| 211 | + |
| 212 | +.. code:: python |
| 213 | +
|
| 214 | + from qiskit.algorithms.optimizers import COBYLA |
| 215 | + from qiskit.primitives import Sampler |
| 216 | +
|
| 217 | + from qiskit_optimization.algorithms import GroverOptimizer |
| 218 | +
|
| 219 | + optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, sampler=Sampler()) |
| 220 | + result = optimizer.solve(problem) |
| 221 | + print(result) |
| 222 | +
|
| 223 | +
|
| 224 | +New |
| 225 | + |
| 226 | +.. code:: python |
| 227 | +
|
| 228 | + from qiskit_algorithms.optimizers import COBYLA |
| 229 | + from qiskit.primitives import Sampler |
| 230 | +
|
| 231 | + from qiskit_optimization.algorithms import GroverOptimizer |
| 232 | +
|
| 233 | + optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, sampler=Sampler()) |
| 234 | + result = optimizer.solve(problem) |
| 235 | + print(result) |
0 commit comments