forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
interaction.py
93 lines (76 loc) · 2.95 KB
/
interaction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import json
import argparse
from collections import namedtuple
from termcolor import colored, cprint
import paddle
from utils.args import parse_args, str2bool
from utils import gen_inputs
from readers.nsp_reader import NSPReader
from readers.plato_reader import PlatoReader
from model import Plato2InferModel
def setup_args():
"""Setup arguments."""
parser = argparse.ArgumentParser()
group = parser.add_argument_group("Model")
group.add_argument("--init_from_ckpt", type=str, default="")
group.add_argument("--vocab_size", type=int, default=8001)
group.add_argument("--latent_type_size", type=int, default=20)
group.add_argument("--num_layers", type=int, default=24)
group = parser.add_argument_group("Task")
group.add_argument("--is_cn", type=str2bool, default=False)
args, _ = parser.parse_known_args()
NSPReader.add_cmdline_args(parser)
args = parse_args(parser)
args.batch_size *= args.latent_type_size
#print(json.dumps(args, indent=2))
return args
def load_params(model, init_from_ckpt):
state_dict = paddle.load(init_from_ckpt)
model.set_state_dict(state_dict)
def interact(args):
"""Inference main function."""
plato_reader = PlatoReader(args)
nsp_reader = NSPReader(args)
if args.num_layers == 24:
n_head = 16
hidden_size = 1024
elif args.num_layers == 32:
n_head = 32
hidden_size = 2048
else:
raise ValueError('The pre-trained model only support 24 or 32 layers, '
'but received num_layers=%d.' % args.num_layers)
model = Plato2InferModel(nsp_reader, args.num_layers, n_head, hidden_size)
load_params(model, args.init_from_ckpt)
model.eval()
Example = namedtuple("Example", ["src", "data_id"])
context = []
start_info = "Enter [EXIT] to quit the interaction, [NEXT] to start a new conversation."
cprint(start_info, "yellow", attrs=["bold"])
while True:
user_utt = input(colored("[Human]: ", "red", attrs=["bold"])).strip()
if user_utt == "[EXIT]":
break
elif user_utt == "[NEXT]":
context = []
cprint(start_info, "yellow", attrs=["bold"])
else:
context.append(user_utt)
example = Example(src=" [SEP] ".join(context), data_id=0)
record = plato_reader._convert_example_to_record(
example, is_infer=True)
data = plato_reader._pad_batch_records([record], is_infer=True)
inputs = gen_inputs(data, args.latent_type_size)
inputs['tgt_ids'] = inputs['tgt_ids'].astype('int64')
pred = model(inputs)[0]
bot_response = pred["response"]
print(
colored(
"[Bot]:", "blue", attrs=["bold"]),
colored(
bot_response, attrs=["bold"]))
context.append(bot_response)
return
if __name__ == "__main__":
args = setup_args()
interact(args)