-
Notifications
You must be signed in to change notification settings - Fork 1
/
models.py
93 lines (80 loc) · 2.79 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torchsummary import summary
torch.manual_seed(999)
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1. / np.sqrt(fan_in)
return (-lim, lim)
class ActorNetwork(nn.Module):
"""
Actor (Policy) Network.
"""
def __init__(self, state_dim, action_dim):
"""Initialize parameters and build model.
:state_dim (int): Dimension of each state
:action_dim (int): Dimension of each action
"""
super(ActorNetwork, self).__init__()
self.fc1 = nn.Linear(state_dim, 64)
self.fc2 = nn.Linear(64, 128)
self.fc3 = nn.Linear(128, action_dim)
self.reset_parameters()
def reset_parameters(self):
"""
Initialize parameters
"""
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, x):
"""
Maps a state to actions
"""
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return F.tanh(self.fc3(x))
class CriticNetwork(nn.Module):
"""
Critic (State-Value) Network.
"""
def __init__(self, state_dim, action_dim):
"""
Initialize parameters and build model
:state_dim (int): Dimension of each state
:action_dim (int): Dimension of each action
"""
super(CriticNetwork, self).__init__()
self.state_fc = nn.Linear(state_dim, 64)
self.fc1 = nn.Linear(action_dim+64, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 1)
self.reset_parameters()
def reset_parameters(self):
"""
Initialize parameters
"""
self.state_fc.weight.data.uniform_(*hidden_init(self.state_fc))
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state, action):
"""
Maps a state-action pair to Q-values
"""
state, action = state.squeeze(), action.squeeze()
x = F.relu(self.state_fc(state))
x = torch.cat((x, action), dim=1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return self.fc3(x)
if __name__ == "__main__":
# summarize network structures using torchsummary
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
state_dim, action_dim = 24, 2
actor = ActorNetwork(state_dim, action_dim).to(device)
critic = CriticNetwork(state_dim, action_dim).to(device)
sum_res = summary(actor, (1, state_dim))
sum_res = summary(critic, [(1, state_dim), (1, action_dim)])