Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Torcheval pointing to wrong directory for nvrtc-builtins64_121.dll file. #194

Open
123tsnedd opened this issue Apr 10, 2024 · 0 comments
Open

Comments

@123tsnedd
Copy link

123tsnedd commented Apr 10, 2024

🐛 Describe the bug

Attempting to use Torcheval r2_score, but isn't finding the file in Conda environment. I had to copy the file from anaconda3/envs/{myenv}/bin to the local GPU computing toolkit/CUDA/V12.4/bin for it to work. Local GPU toolkit was downloaded from NVIDIA

import torch
from torcheval.metrics.functional import r2_score
# code training lope
# prediction == <class 'torch.Tensor'>
#target == <class 'torch.Tensor'>
r2 = r2_score(prediction, target)
# remaining code 

traceback

			"outputType": "error",
			"originalError": {
				"output_type": "error",
				"ename": "RuntimeError",
				"evalue": "nvrtc: error: failed to open nvrtc-builtins64_121.dll.\n  Make sure that nvrtc-builtins64_121.dll is installed correctly.\nnvrtc compilation failed: \n\n#define NAN __int_as_float(0x7fffffff)\n#define POS_INFINITY __int_as_float(0x7f800000)\n#define NEG_INFINITY __int_as_float(0xff800000)\n\n\ntemplate<typename T>\n__device__ T maximum(T a, T b) {\n  return isnan(a) ? a : (a > b ? a : b);\n}\n\ntemplate<typename T>\n__device__ T minimum(T a, T b) {\n  return isnan(a) ? a : (a < b ? a : b);\n}\n\nextern \"C\" __global__\nvoid fused_sub_div_neg_add(float* trss_1, float* tsum_squared_obs_1, float* tv_, float* aten_add, float* aten_sub) {\n{\n  float tsum_squared_obs_1_1 = __ldg(tsum_squared_obs_1 + 0ll);\n  float tv__1 = __ldg(tv_ + 0ll);\n  aten_sub[0ll] = tsum_squared_obs_1_1 - tv__1;\n  float v = __ldg(trss_1 + 0ll);\n  aten_add[0ll] = (0.f - v / (tsum_squared_obs_1_1 - tv__1)) + 1.f;\n}\n}\n",
				"traceback": [
					"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
					"\u001b[1;31mRuntimeError\u001b[0m                              Traceback (most recent call last)",
					"Cell \u001b[1;32mIn[16], line 62\u001b[0m\n\u001b[0;32m     59\u001b[0m \u001b[38;5;66;03m#################################   \u001b[39;00m\n\u001b[0;32m     60\u001b[0m    \u001b[38;5;66;03m#r2 score\u001b[39;00m\n\u001b[0;32m     61\u001b[0m    \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;28mtype\u001b[39m(prediction))\n\u001b[1;32m---> 62\u001b[0m    R2 \u001b[38;5;241m=\u001b[39m \u001b[43mr2_score\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprediction\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtarget\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m     63\u001b[0m    train_r2_list\u001b[38;5;241m.\u001b[39mappend(R2) \u001b[38;5;66;03m# all scores recorded\u001b[39;00m\n\u001b[0;32m     64\u001b[0m    mean_train_epoch_r2 \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m R2 \u001b[38;5;66;03m# per batch list\u001b[39;00m\n",
					"File \u001b[1;32mc:\\Users\\snedd\\anaconda3\\envs\\ptorch\\Lib\\site-packages\\torch\\utils\\_contextlib.py:115\u001b[0m, in \u001b[0;36mcontext_decorator.<locals>.decorate_context\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m    112\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[0;32m    113\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdecorate_context\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m    114\u001b[0m     \u001b[38;5;28;01mwith\u001b[39;00m ctx_factory():\n\u001b[1;32m--> 115\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
					"File \u001b[1;32mc:\\Users\\snedd\\anaconda3\\envs\\ptorch\\Lib\\site-packages\\torcheval\\metrics\\functional\\regression\\r2_score.py:79\u001b[0m, in \u001b[0;36mr2_score\u001b[1;34m(input, target, multioutput, num_regressors)\u001b[0m\n\u001b[0;32m     75\u001b[0m _r2_score_param_check(multioutput, num_regressors)\n\u001b[0;32m     76\u001b[0m sum_squared_obs, sum_obs, sum_squared_residual, num_obs \u001b[38;5;241m=\u001b[39m _r2_score_update(\n\u001b[0;32m     77\u001b[0m     \u001b[38;5;28minput\u001b[39m, target\n\u001b[0;32m     78\u001b[0m )\n\u001b[1;32m---> 79\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_r2_score_compute\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m     80\u001b[0m \u001b[43m    \u001b[49m\u001b[43msum_squared_obs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m     81\u001b[0m \u001b[43m    \u001b[49m\u001b[43msum_obs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m     82\u001b[0m \u001b[43m    \u001b[49m\u001b[43msum_squared_residual\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m     83\u001b[0m \u001b[43m    \u001b[49m\u001b[43mnum_obs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m     84\u001b[0m \u001b[43m    \u001b[49m\u001b[43mmultioutput\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m     85\u001b[0m \u001b[43m    \u001b[49m\u001b[43mnum_regressors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m     86\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
					"File \u001b[1;32mc:\\Users\\snedd\\anaconda3\\envs\\ptorch\\Lib\\site-packages\\torcheval\\metrics\\functional\\regression\\r2_score.py:126\u001b[0m, in \u001b[0;36m_r2_score_compute\u001b[1;34m(sum_squared_obs, sum_obs, rss, num_obs, multioutput, num_regressors)\u001b[0m\n\u001b[0;32m    121\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m num_regressors \u001b[38;5;241m>\u001b[39m\u001b[38;5;241m=\u001b[39m num_obs \u001b[38;5;241m-\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[0;32m    122\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[0;32m    123\u001b[0m         \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe `num_regressors` must be smaller than n_samples - 1, \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m    124\u001b[0m         \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mgot num_regressors=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnum_regressors\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m, n_samples=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnum_obs\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m    125\u001b[0m     )\n\u001b[1;32m--> 126\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_compute\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m    127\u001b[0m \u001b[43m    \u001b[49m\u001b[43msum_squared_obs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    128\u001b[0m \u001b[43m    \u001b[49m\u001b[43msum_obs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    129\u001b[0m \u001b[43m    \u001b[49m\u001b[43mrss\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    130\u001b[0m \u001b[43m    \u001b[49m\u001b[43mnum_obs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    131\u001b[0m \u001b[43m    \u001b[49m\u001b[43mmultioutput\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    132\u001b[0m \u001b[43m    \u001b[49m\u001b[43mnum_regressors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    133\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
					"\u001b[1;31mRuntimeError\u001b[0m: nvrtc: error: failed to open nvrtc-builtins64_121.dll.\n  Make sure that nvrtc-builtins64_121.dll is installed correctly.\nnvrtc compilation failed: \n\n#define NAN __int_as_float(0x7fffffff)\n#define POS_INFINITY __int_as_float(0x7f800000)\n#define NEG_INFINITY __int_as_float(0xff800000)\n\n\ntemplate<typename T>\n__device__ T maximum(T a, T b) {\n  return isnan(a) ? a : (a > b ? a : b);\n}\n\ntemplate<typename T>\n__device__ T minimum(T a, T b) {\n  return isnan(a) ? a : (a < b ? a : b);\n}\n\nextern \"C\" __global__\nvoid fused_sub_div_neg_add(float* trss_1, float* tsum_squared_obs_1, float* tv_, float* aten_add, float* aten_sub) {\n{\n  float tsum_squared_obs_1_1 = __ldg(tsum_squared_obs_1 + 0ll);\n  float tv__1 = __ldg(tv_ + 0ll);\n  aten_sub[0ll] = tsum_squared_obs_1_1 - tv__1;\n  float v = __ldg(trss_1 + 0ll);\n  aten_add[0ll] = (0.f - v / (tsum_squared_obs_1_1 - tv__1)) + 1.f;\n}\n}\n"
				]
			}

Versions

PyTorch version: 2.2.2
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Microsoft Windows 11 Pro
GCC version: Could not collect
Clang version: Could not collect
CMake version: Could not collect
Libc version: N/A

Python version: 3.12.2 | packaged by Anaconda, Inc. | (main, Feb 27 2024, 17:28:07) [MSC v.1916 64 bit (AMD64)] (64-bit runtime)
Python platform: Windows-11-10.0.22631-SP0
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3070
Nvidia driver version: 552.12
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture=9
CurrentClockSpeed=3792
DeviceID=CPU0
Family=198
L2CacheSize=2048
L2CacheSpeed=
Manufacturer=GenuineIntel
MaxClockSpeed=3792
Name=Intel(R) Core(TM) i7-10700K CPU @ 3.80GHz
ProcessorType=3
Revision=

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] torch==2.2.2
[pip3] torchaudio==2.2.2
[pip3] torcheval==0.0.7
[pip3] torchvision==0.17.2
[conda] blas                      1.0                         mkl
[conda] mkl                       2023.1.0         h6b88ed4_46358
[conda] mkl-service               2.4.0           py312h2bbff1b_1
[conda] mkl_fft                   1.3.8           py312h2bbff1b_0
[conda] mkl_random                1.2.4           py312h59b6b97_0
[conda] numpy                     1.26.4          py312hfd52020_0
[conda] numpy-base                1.26.4          py312h4dde369_0
[conda] pytorch                   2.2.2           py3.12_cuda12.1_cudnn8_0    pytorch
[conda] pytorch-cuda              12.1                 hde6ce7c_5    pytorch
[conda] pytorch-mutex             1.0                        cuda    pytorch
[conda] torchaudio                2.2.2                    pypi_0    pypi
[conda] torcheval                 0.0.7                    pypi_0    pypi
[conda] torchvision               0.17.2                   pypi_0    pypi
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant