diff --git a/backends/arm/test/models/test_mobilenet_v2_arm.py b/backends/arm/test/models/test_mobilenet_v2_arm.py index ee136d1b480..6c247ac10e9 100644 --- a/backends/arm/test/models/test_mobilenet_v2_arm.py +++ b/backends/arm/test/models/test_mobilenet_v2_arm.py @@ -9,11 +9,11 @@ import unittest import torch -import torchvision.models as models from executorch.backends.arm.test import common from executorch.backends.arm.test.tester.arm_tester import ArmTester from executorch.backends.xnnpack.test.tester.tester import Quantize +from torchvision import models from torchvision.models.mobilenetv2 import MobileNet_V2_Weights diff --git a/backends/xnnpack/test/models/inception_v3.py b/backends/xnnpack/test/models/inception_v3.py index b861afc5cd5..ddadbdd2f81 100644 --- a/backends/xnnpack/test/models/inception_v3.py +++ b/backends/xnnpack/test/models/inception_v3.py @@ -7,9 +7,9 @@ import unittest import torch -import torchvision.models as models from executorch.backends.xnnpack.test.tester import Tester from executorch.backends.xnnpack.test.tester.tester import Quantize +from torchvision import models class TestInceptionV3(unittest.TestCase): diff --git a/backends/xnnpack/test/models/mobilenet_v2.py b/backends/xnnpack/test/models/mobilenet_v2.py index 53bcedd0a90..c2bc364b9c4 100644 --- a/backends/xnnpack/test/models/mobilenet_v2.py +++ b/backends/xnnpack/test/models/mobilenet_v2.py @@ -7,9 +7,9 @@ import unittest import torch -import torchvision.models as models from executorch.backends.xnnpack.test.tester import Tester from executorch.backends.xnnpack.test.tester.tester import Quantize +from torchvision import models from torchvision.models.mobilenetv2 import MobileNet_V2_Weights diff --git a/backends/xnnpack/test/models/mobilenet_v3.py b/backends/xnnpack/test/models/mobilenet_v3.py index 3da2e3bf42c..d990fa0e3bf 100644 --- a/backends/xnnpack/test/models/mobilenet_v3.py +++ b/backends/xnnpack/test/models/mobilenet_v3.py @@ -7,9 +7,9 @@ import unittest import torch -import torchvision.models as models from executorch.backends.xnnpack.test.tester import Tester from executorch.backends.xnnpack.test.tester.tester import Quantize +from torchvision import models class TestMobileNetV3(unittest.TestCase): diff --git a/backends/xnnpack/test/models/torchvision_vit.py b/backends/xnnpack/test/models/torchvision_vit.py index e4b387e0f79..836a9056857 100644 --- a/backends/xnnpack/test/models/torchvision_vit.py +++ b/backends/xnnpack/test/models/torchvision_vit.py @@ -7,8 +7,8 @@ import unittest import torch -import torchvision.models as models from executorch.backends.xnnpack.test.tester import Tester +from torchvision import models class TestViT(unittest.TestCase): diff --git a/examples/qualcomm/oss_scripts/ssd300_vgg16.py b/examples/qualcomm/oss_scripts/ssd300_vgg16.py index 6457b68f7d6..936db49d0a1 100644 --- a/examples/qualcomm/oss_scripts/ssd300_vgg16.py +++ b/examples/qualcomm/oss_scripts/ssd300_vgg16.py @@ -109,7 +109,11 @@ def SSD300VGG16(pretrained_weight_model): from model import SSD300 model = SSD300(n_classes=21) - checkpoint = torch.load(pretrained_weight_model, map_location="cpu") + # TODO: If possible, it's better to set weights_only to True + # https://pytorch.org/docs/stable/generated/torch.load.html + checkpoint = torch.load( + pretrained_weight_model, map_location="cpu", weights_only=False + ) model.load_state_dict(checkpoint["model"].state_dict()) return model.eval() diff --git a/examples/qualcomm/scripts/mobilebert_fine_tune.py b/examples/qualcomm/scripts/mobilebert_fine_tune.py index 84d130d4244..cb067690f94 100755 --- a/examples/qualcomm/scripts/mobilebert_fine_tune.py +++ b/examples/qualcomm/scripts/mobilebert_fine_tune.py @@ -204,6 +204,8 @@ def get_fine_tuned_mobilebert(artifacts_dir, pretrained_weight, batch_size): ) model.load_state_dict( + # TODO: If possible, it's better to set weights_only to True + # https://pytorch.org/docs/stable/generated/torch.load.html torch.load( ( f"{artifacts_dir}/finetuned_mobilebert_epoch_{epochs}.model" @@ -211,6 +213,7 @@ def get_fine_tuned_mobilebert(artifacts_dir, pretrained_weight, batch_size): else pretrained_weight ), map_location=torch.device("cpu"), + weights_only=False, ), ) diff --git a/exir/serde/export_serialize.py b/exir/serde/export_serialize.py index fef2b2411fa..87691dfbee2 100644 --- a/exir/serde/export_serialize.py +++ b/exir/serde/export_serialize.py @@ -242,7 +242,9 @@ def deserialize_torch_artifact(serialized: bytes): return {} buffer = io.BytesIO(serialized) buffer.seek(0) - return torch.load(buffer) + # TODO: If possible, it's better to set weights_only to True + # https://pytorch.org/docs/stable/generated/torch.load.html + return torch.load(buffer, weights_only=False) def _sympy_int_to_int(val: sympy.Expr): diff --git a/requirements-lintrunner.txt b/requirements-lintrunner.txt index c72ec10f35e..da10dd53cab 100644 --- a/requirements-lintrunner.txt +++ b/requirements-lintrunner.txt @@ -10,7 +10,7 @@ flake8-comprehensions==3.12.0 flake8-pyi==23.5.0 mccabe==0.7.0 pycodestyle==2.10.0 -torchfix==0.1.1 +torchfix==0.5.0 # UFMT black==24.2.0