Skip to content

Commit 72d7ba8

Browse files
GregoryComerroman-janik-nxpmergennachinrobert-kalmarSS-JIA
authored
Bulk cherry-pick doc updates (#15338)
### Summary Bulk pick doc updates using https://github.com/pytorch/executorch/blob/main/scripts/pick_doc_commits.py. I also manually included eb05056, which has some example changes, since it's a doc update PR. I sanity checked this by running `git diff HEAD upstream/main -- docs/source` and the diff didn't show any surprises. There were some changes on main related to larger PRs that haven't been picked (NXP visualizer, for example). --------- Co-authored-by: roman-janik-nxp <[email protected]> Co-authored-by: Mergen Nachin <[email protected]> Co-authored-by: robert-kalmar <[email protected]> Co-authored-by: Sicheng Stephen Jia <[email protected]> Co-authored-by: Siddartha Pothapragada <[email protected]> Co-authored-by: Scott Roy <[email protected]> Co-authored-by: Jack <[email protected]> Co-authored-by: Anthony Shoumikhin <[email protected]> Co-authored-by: Manuel Candales <[email protected]> Co-authored-by: lucylq <[email protected]> Co-authored-by: Abhinayk <[email protected]> Co-authored-by: JP <[email protected]>
1 parent 4b18555 commit 72d7ba8

File tree

87 files changed

+3358
-1332
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

87 files changed

+3358
-1332
lines changed

.gitignore

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -62,7 +62,6 @@ xcuserdata/
6262
/include/
6363
/share/
6464
/version.py
65-
*.csv
6665
*_etdump
6766

6867
# Android

CONTRIBUTING.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -24,17 +24,17 @@ For Apple, please refer to the [iOS documentation](docs/source/using-executorch-
2424
executorch
2525
├── <a href="backends">backends</a> - Backend delegate implementations for various hardware targets. Each backend uses partitioner to split the graph into subgraphs that can be executed on specific hardware, quantizer to optimize model precision, and runtime components to execute the graph on target hardware. For details refer to the <a href="docs/source/backend-delegates-integration.md">backend documentation</a> and the <a href="docs/source/using-executorch-export.md">Export and Lowering tutorial</a> for more information.
2626
│ ├── <a href="backends/apple">apple</a> - Apple-specific backends.
27-
│ │ ├── <a href="backends/apple/coreml">coreml</a> - CoreML backend for Apple devices. See <a href="docs/source/backends-coreml.md">doc</a>.
28-
│ │ └── <a href="backends/apple/mps">mps</a> - Metal Performance Shaders backend for Apple devices. See <a href="docs/source/backends-mps.md">doc</a>.
27+
│ │ ├── <a href="backends/apple/coreml">coreml</a> - CoreML backend for Apple devices. See <a href="docs/source/backends/coreml/coreml-overview.md">doc</a>.
28+
│ │ └── <a href="backends/apple/mps">mps</a> - Metal Performance Shaders backend for Apple devices. See <a href="docs/source/backends/mps/mps-overview.md">doc</a>.
2929
│ ├── <a href="backends/arm">arm</a> - ARM architecture backends. See <a href="docs/source/backends-arm-ethos-u.md">doc</a>.
3030
│ ├── <a href="backends/cadence">cadence</a> - Cadence-specific backends. See <a href="docs/source/backends-cadence.md">doc</a>.
3131
│ ├── <a href="backends/example">example</a> - Example backend implementations.
3232
│ ├── <a href="backends/mediatek">mediatek</a> - MediaTek-specific backends. See <a href="docs/source/backends-mediatek.md">doc</a>.
3333
│ ├── <a href="backends/openvino">openvino</a> - OpenVINO backend for Intel hardware.
3434
│ ├── <a href="backends/qualcomm">qualcomm</a> - Qualcomm-specific backends. See <a href="docs/source/backends-qualcomm.md">doc</a>.
3535
│ ├── <a href="backends/transforms">transforms</a> - Transformations for backend optimization.
36-
│ ├── <a href="backends/vulkan">vulkan</a> - Vulkan backend for cross-platform GPU support. See <a href="docs/source/backends-vulkan.md">doc</a>.
37-
│ └── <a href="backends/xnnpack">xnnpack</a> - XNNPACK backend for optimized neural network operations. See <a href="docs/source/backends-xnnpack.md">doc</a>.
36+
│ ├── <a href="backends/vulkan">vulkan</a> - Vulkan backend for cross-platform GPU support. See <a href="docs/source/backends/vulkan/vulkan-overview.md">doc</a>.
37+
│ └── <a href="backends/xnnpack">xnnpack</a> - XNNPACK backend for optimized neural network operations. See <a href="docs/source/backends/xnnpack/xnnpack-overview.md">doc</a>.
3838
├── <a href="codegen">codegen</a> - Tooling to autogenerate bindings between kernels and the runtime.
3939
├── <a href="configurations">configurations</a> - Configuration files.
4040
├── <a href="devtools">devtools</a> - Model profiling, debugging, and inspection. Please refer to the <a href="docs/source/devtools-overview.md">tools documentation</a> for more information.

README-wheel.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -11,8 +11,8 @@ The `executorch` pip package is in beta.
1111
The prebuilt `executorch.runtime` module included in this package provides a way
1212
to run ExecuTorch `.pte` files, with some restrictions:
1313
* Only [core ATen operators](docs/source/ir-ops-set-definition.md) are linked into the prebuilt module
14-
* Only the [XNNPACK backend delegate](docs/source/backends-xnnpack.md) is linked into the prebuilt module.
15-
* \[macOS only] [Core ML](docs/source/backends-coreml.md) and [MPS](docs/source/backends-mps.md) backend
14+
* Only the [XNNPACK backend delegate](docs/source/backends/xnnpack/xnnpack-overview.md) is linked into the prebuilt module.
15+
* \[macOS only] [Core ML](docs/source/backends/coreml/coreml-overview.md) and [MPS](docs/source/backends/mps/mps-overview.md) backend
1616
are also linked into the prebuilt module.
1717

1818
Please visit the [ExecuTorch website](https://pytorch.org/executorch) for

README.md

Lines changed: 4 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -104,16 +104,14 @@ outputs = method.execute([torch.randn(1, 3, 224, 224)])
104104

105105
Module module("model.pte");
106106
auto tensor = make_tensor_ptr({2, 2}, {1.0f, 2.0f, 3.0f, 4.0f});
107-
auto outputs = module.forward(tensor);
107+
auto outputs = module.forward({tensor});
108108
```
109109
110110
**[Swift (iOS)](https://docs.pytorch.org/executorch/main/ios-section.html)**
111111
```swift
112-
import ExecuTorch
113-
114112
let module = Module(filePath: "model.pte")
115-
let input = Tensor<Float>([1.0, 2.0, 3.0, 4.0], shape: [2, 2])
116-
let outputs = try module.forward(input)
113+
let input = Tensor<Float>([1.0, 2.0, 3.0, 4.0])
114+
let outputs: [Value] = try module.forward([input])
117115
```
118116

119117
**[Kotlin (Android)](https://docs.pytorch.org/executorch/main/android-section.html)**
@@ -153,8 +151,6 @@ runner->generate("Hello, how are you?", config);
153151
154152
**[Swift (iOS)](https://docs.pytorch.org/executorch/main/llm/run-on-ios.html)**
155153
```swift
156-
import ExecuTorchLLM
157-
158154
let runner = TextRunner(modelPath: "llama.pte", tokenizerPath: "tiktoken.bin")
159155
try runner.generate("Hello, how are you?", Config {
160156
$0.sequenceLength = 128
@@ -202,7 +198,7 @@ ExecuTorch powers on-device AI at scale across Meta's family of apps, VR/AR devi
202198

203199
**LLMs:** [Llama 3.2/3.1/3](examples/models/llama/README.md), [Qwen 3](examples/models/qwen3/README.md), [Phi-4-mini](examples/models/phi_4_mini/README.md), [LiquidAI LFM2](examples/models/lfm2/README.md)
204200

205-
**Multimodal:** [Llava](examples/models/llava/README.md) (vision-language), [Voxtral](examples/models/voxtral/README.md) (audio-language)
201+
**Multimodal:** [Llava](examples/models/llava/README.md) (vision-language), [Voxtral](examples/models/voxtral/README.md) (audio-language), [Gemma](examples/models/gemma3) (vision-language)
206202

207203
**Vision/Speech:** [MobileNetV2](https://github.com/meta-pytorch/executorch-examples/tree/main/mv2), [DeepLabV3](https://github.com/meta-pytorch/executorch-examples/tree/main/dl3), [Whisper](https://github.com/meta-pytorch/executorch-examples/tree/main/whisper/android/WhisperApp)
208204

backends/apple/coreml/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
# ExecuTorch Core ML Delegate
22

33
This subtree contains the Core ML Delegate implementation for ExecuTorch.
4-
Core ML is an optimized framework for running machine learning models on Apple devices. The delegate is the mechanism for leveraging the Core ML framework to accelerate operators when running on Apple devices. To learn how to use the CoreML delegate, see the [documentation](https://github.com/pytorch/executorch/blob/main/docs/source/backends-coreml.md).
4+
Core ML is an optimized framework for running machine learning models on Apple devices. The delegate is the mechanism for leveraging the Core ML framework to accelerate operators when running on Apple devices. To learn how to use the CoreML delegate, see the [documentation](https://github.com/pytorch/executorch/blob/main/docs/source/backends/coreml/coreml-overview.md).
55

66
## Layout
77
- `compiler/` : Lowers a module to Core ML backend.

backends/cadence/build_cadence_fusionG3.sh

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ set -euo pipefail
99

1010
unset CMAKE_PREFIX_PATH
1111
unset XTENSA_CORE
12-
export XTENSA_CORE=FCV_FG3GP
12+
export XTENSA_CORE=VANILLA_G3
1313
git submodule sync
1414
git submodule update --init
1515
./backends/cadence/install_requirements.sh

backends/cadence/build_cadence_hifi4.sh

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ set -euo pipefail
99

1010
unset CMAKE_PREFIX_PATH
1111
unset XTENSA_CORE
12-
export XTENSA_CORE=nxp_rt600_RI23_11_newlib
12+
export XTENSA_CORE=VANILLA_HIFI
1313
git submodule sync
1414
git submodule update --init
1515
./backends/cadence/install_requirements.sh

backends/nxp/README.md

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -5,14 +5,14 @@ This subtree contains the ExecuTorch Backend implementation for the
55

66
The eIQ® Neutron NPU is a highly scalable accelerator core architecture providing machine learning (ML) acceleration,
77
able to support common and critical tasks for edge AI such as anomaly detection, speech recognition,
8-
image classification, object detection, facial recognition, image segmentation, and generative AI use cases like
8+
image classification, object detection, facial recognition, image segmentation, and generative AI use cases like
99
large and small language models (LLMs & SLMs) and text-to-speech (TTS).
10-
The architecture provides power and performance optimized NPUs integrated with NXP's broad portfolio of
10+
The architecture provides power and performance optimized NPUs integrated with NXP's broad portfolio of
1111
microcontrollers and applications processors.
1212

13-
The eIQ Neutron NPUs offer support for a wide variety of neural network types such as CNN, RNN, TCN and Transformer
13+
The eIQ Neutron NPUs offer support for a wide variety of neural network types such as CNN, RNN, TCN and Transformer
1414
networks, as well as the ability to adapt and scale to new model architectures, topologies and layer types introduced
15-
to AI workloads. ML application development with the eIQ Neutron NPU is fully supported by the
15+
to AI workloads. ML application development with the eIQ Neutron NPU is fully supported by the
1616
[eIQ machine learning software development environment](https://www.nxp.com/design/design-center/software/eiq-ml-development-environment/eiq-toolkit-for-end-to-end-model-development-and-deployment:EIQ-TOOLKIT).
1717
The eIQ AI SW Stack provides a streamlined development experience for developers and end-users of NXP products.
1818

@@ -22,7 +22,7 @@ At this moment following eIQ® Neutron NPU variants and NXP platforms are suppor
2222

2323
* **eIQ Neutron N3-64**, available on [i.MX RT700](https://www.nxp.com/products/i.MX-RT700)
2424

25-
In the future the NXP eIQ Neutron Backend will be extended to support [i.MX 9 Application Processors](https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-9-processors:IMX9-PROCESSORS)
25+
In the future the NXP eIQ Neutron Backend will be extended to support [i.MX 9 Application Processors](https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-9-processors:IMX9-PROCESSORS)
2626
with eIQ Neutron NPU, like the [i.MX 95](https://www.nxp.com/products/iMX95).
2727

2828

@@ -33,7 +33,7 @@ The eIQ Neutron NPU Backend should be considered as prototype quality at this mo
3333
improvements. NXP and the ExecuTorch community is actively developing this codebase.
3434

3535
## Neutron Backend implementation and SW architecture
36-
Neutron Backend uses the eIQ Neutron Converter as ML compiler to compile the delegated subgraph to Neutron microcode.
36+
Neutron Backend uses the eIQ Neutron Converter as ML compiler to compile the delegated subgraph to Neutron microcode.
3737
The Neutron Converter accepts the ML model in LiteRT format, for the **eIQ Neutron N3** class therefore the Neutron Backend
3838
uses the LiteRT flatbuffers format as IR between the ExecuTorch and Neutron Converter ML compiler.
3939

@@ -44,10 +44,10 @@ uses the LiteRT flatbuffers format as IR between the ExecuTorch and Neutron Conv
4444
`node_conveters` is structured as single module for each Edge operator.
4545
* `backend/ir/lib` - automatically generated handlers from LiteRT flatbuffers schema.
4646
* `backend/ir/tflite_generator` and `backend/ir/tflite_optimizer` handle the serialization
47-
of the in-memory built subgraph for delegation into LiteRT/TFLite flatbuffers
47+
of the in-memory built subgraph for delegation into LiteRT/TFLite flatbuffers
4848
representation. Code taken from the onnx2tflite tool.
49-
* `edge_passes` - Various passes operating on Edge dialect level.
50-
* `quantizer` - Neutron Backend quantizer implementation.
49+
* `edge_passes` - Various passes operating on Edge dialect level.
50+
* `quantizer` - Neutron Backend quantizer implementation.
5151
* `runtime` - Neutron Backend runtime implementation. For running compiled on device.
5252
* `tests/` - Unit tests for Neutron backend.
5353
* `tests/converter/node_converter` - Operator level unit tests.

0 commit comments

Comments
 (0)