|
| 1 | +/* |
| 2 | + * Copyright (c) Meta Platforms, Inc. and affiliates. |
| 3 | + * All rights reserved. |
| 4 | + * Copyright 2025 Arm Limited and/or its affiliates. |
| 5 | + * |
| 6 | + * This source code is licensed under the BSD-style license found in the |
| 7 | + * LICENSE file in the root directory of this source tree. |
| 8 | + */ |
| 9 | + |
| 10 | +#include "cortex_m_ops_common.h" |
| 11 | + |
| 12 | +// Include CMSIS-NN headers with C linkage |
| 13 | +extern "C" { |
| 14 | +#include "arm_nnfunctions.h" |
| 15 | +} |
| 16 | + |
| 17 | +namespace cortex_m { |
| 18 | +namespace native { |
| 19 | + |
| 20 | +using KernelRuntimeContext = torch::executor::KernelRuntimeContext; |
| 21 | + |
| 22 | +Tensor& minimum_out( |
| 23 | + KernelRuntimeContext& context, |
| 24 | + const Tensor& input1, |
| 25 | + const Tensor& input2, |
| 26 | + Tensor& out) { |
| 27 | + validate_cmsis_nn_tensor_requirements( |
| 28 | + input1, |
| 29 | + input2, |
| 30 | + out, |
| 31 | + ScalarType::Char, |
| 32 | + /*require_channels_last=*/false, |
| 33 | + /*require_same_sizes=*/false); |
| 34 | + |
| 35 | + auto resize_error = resize_to_broadcast_target_size(input1, input2, out); |
| 36 | + if (resize_error != Error::Ok) { |
| 37 | + ET_LOG(Error, "minimum_out: broadcast shape mismatch between inputs"); |
| 38 | + context.fail(resize_error); |
| 39 | + return out; |
| 40 | + } |
| 41 | + |
| 42 | + const int8_t* input1_data = input1.const_data_ptr<int8_t>(); |
| 43 | + const int8_t* input2_data = input2.const_data_ptr<int8_t>(); |
| 44 | + int8_t* output_data = out.mutable_data_ptr<int8_t>(); |
| 45 | + |
| 46 | + // Create CMSIS-NN dims directly from tensor sizes |
| 47 | + const auto input1_rank = input1.dim(); |
| 48 | + const auto input1_sizes = input1.sizes(); |
| 49 | + const cmsis_nn_dims input1_dims{ |
| 50 | + static_cast<int32_t>( |
| 51 | + input1_rank >= 4 ? input1_sizes[input1_rank - 4] : 1), |
| 52 | + static_cast<int32_t>( |
| 53 | + input1_rank >= 3 ? input1_sizes[input1_rank - 3] : 1), |
| 54 | + static_cast<int32_t>( |
| 55 | + input1_rank >= 2 ? input1_sizes[input1_rank - 2] : 1), |
| 56 | + static_cast<int32_t>( |
| 57 | + input1_rank >= 1 ? input1_sizes[input1_rank - 1] : 1)}; |
| 58 | + |
| 59 | + const auto input2_rank = input2.dim(); |
| 60 | + const auto input2_sizes = input2.sizes(); |
| 61 | + const cmsis_nn_dims input2_dims{ |
| 62 | + static_cast<int32_t>( |
| 63 | + input2_rank >= 4 ? input2_sizes[input2_rank - 4] : 1), |
| 64 | + static_cast<int32_t>( |
| 65 | + input2_rank >= 3 ? input2_sizes[input2_rank - 3] : 1), |
| 66 | + static_cast<int32_t>( |
| 67 | + input2_rank >= 2 ? input2_sizes[input2_rank - 2] : 1), |
| 68 | + static_cast<int32_t>( |
| 69 | + input2_rank >= 1 ? input2_sizes[input2_rank - 1] : 1)}; |
| 70 | + |
| 71 | + const auto output_rank = out.dim(); |
| 72 | + const auto output_sizes = out.sizes(); |
| 73 | + const cmsis_nn_dims output_dims{ |
| 74 | + static_cast<int32_t>( |
| 75 | + output_rank >= 4 ? output_sizes[output_rank - 4] : 1), |
| 76 | + static_cast<int32_t>( |
| 77 | + output_rank >= 3 ? output_sizes[output_rank - 3] : 1), |
| 78 | + static_cast<int32_t>( |
| 79 | + output_rank >= 2 ? output_sizes[output_rank - 2] : 1), |
| 80 | + static_cast<int32_t>( |
| 81 | + output_rank >= 1 ? output_sizes[output_rank - 1] : 1)}; |
| 82 | + |
| 83 | + const arm_cmsis_nn_status status = arm_minimum_s8( |
| 84 | + /* ctx */ nullptr, |
| 85 | + input1_data, |
| 86 | + &input1_dims, |
| 87 | + input2_data, |
| 88 | + &input2_dims, |
| 89 | + output_data, |
| 90 | + &output_dims); |
| 91 | + |
| 92 | + if (status != ARM_CMSIS_NN_SUCCESS) { |
| 93 | + ET_LOG( |
| 94 | + Error, |
| 95 | + "minimum_out: arm_minimum_s8 failed with status [%d]", |
| 96 | + static_cast<int>(status)); |
| 97 | + context.fail(Error::Internal); |
| 98 | + } |
| 99 | + |
| 100 | + return out; |
| 101 | +} |
| 102 | + |
| 103 | +} // namespace native |
| 104 | +} // namespace cortex_m |
0 commit comments