|
| 1 | +/* |
| 2 | + * Copyright (c) Meta Platforms, Inc. and affiliates. |
| 3 | + * All rights reserved. |
| 4 | + * |
| 5 | + * This source code is licensed under the BSD-style license found in the |
| 6 | + * LICENSE file in the root directory of this source tree. |
| 7 | + */ |
| 8 | + |
| 9 | +#include <cmath> |
| 10 | +#include <tuple> |
| 11 | + |
| 12 | +#include <executorch/kernels/portable/cpu/util/normalization_ops_util.h> |
| 13 | +#include <executorch/runtime/kernel/kernel_includes.h> |
| 14 | +#include <executorch/runtime/platform/assert.h> |
| 15 | + |
| 16 | +namespace torch { |
| 17 | +namespace executor { |
| 18 | +namespace native { |
| 19 | + |
| 20 | +using Tensor = exec_aten::Tensor; |
| 21 | + |
| 22 | +std::tuple<Tensor&, Tensor&, Tensor&> _native_batch_norm_legit_no_training_out( |
| 23 | + RuntimeContext& ctx, |
| 24 | + const Tensor& in, |
| 25 | + const exec_aten::optional<Tensor>& weight, |
| 26 | + const exec_aten::optional<Tensor>& bias, |
| 27 | + const Tensor& running_mean, |
| 28 | + const Tensor& running_var, |
| 29 | + double momentum, |
| 30 | + double eps, |
| 31 | + Tensor& out, |
| 32 | + Tensor& mean_out, |
| 33 | + Tensor& var_out) { |
| 34 | + (void)ctx; |
| 35 | + |
| 36 | + ET_CHECK(resize_tensor(out, in.sizes()) == Error::Ok); |
| 37 | + |
| 38 | + check_batch_norm_args( |
| 39 | + in, weight, bias, running_mean, running_var, momentum, eps, out); |
| 40 | + // For now, only support the default dim order |
| 41 | + ET_CHECK(is_default_dim_order(in.dim_order().data(), in.dim_order().size())); |
| 42 | + |
| 43 | + size_t C_dim = in.dim() >= 1 ? 1 : 0; |
| 44 | + size_t C = in.size(C_dim); |
| 45 | + size_t outer = getLeadingDims(in, C_dim); |
| 46 | + size_t inner = getTrailingDims(in, C_dim); |
| 47 | + |
| 48 | + ET_SWITCH_FLOAT_TYPES( |
| 49 | + in.scalar_type(), ctx, "native_batch_norm_legit_no_training", CTYPE, [&] { |
| 50 | + const CTYPE* in_data = in.const_data_ptr<CTYPE>(); |
| 51 | + CTYPE* out_data = out.mutable_data_ptr<CTYPE>(); |
| 52 | + |
| 53 | + const CTYPE* const mean_data = running_mean.const_data_ptr<CTYPE>(); |
| 54 | + const CTYPE* const var_data = running_var.const_data_ptr<CTYPE>(); |
| 55 | + |
| 56 | + for (size_t i = 0; i < outer; ++i) { |
| 57 | + for (size_t c = 0; c < C; ++c) { |
| 58 | + CTYPE mean = mean_data[c]; |
| 59 | + CTYPE var = var_data[c]; |
| 60 | + CTYPE invstd = 1.0 / std::sqrt(var + eps); |
| 61 | + CTYPE weight_val = 1; |
| 62 | + if (weight.has_value()) { |
| 63 | + weight_val = weight.value().const_data_ptr<CTYPE>()[c]; |
| 64 | + } |
| 65 | + CTYPE bias_val = 0; |
| 66 | + if (bias.has_value()) { |
| 67 | + bias_val = bias.value().const_data_ptr<CTYPE>()[c]; |
| 68 | + } |
| 69 | + for (size_t j = 0; j < inner; ++j) { |
| 70 | + *out_data = (*in_data - mean) * invstd * weight_val + bias_val; |
| 71 | + out_data++; |
| 72 | + in_data++; |
| 73 | + } |
| 74 | + } |
| 75 | + } |
| 76 | + }); |
| 77 | + |
| 78 | + return {out, mean_out, var_out}; |
| 79 | +} |
| 80 | + |
| 81 | +} // namespace native |
| 82 | +} // namespace executor |
| 83 | +} // namespace torch |
0 commit comments