|
| 1 | +# Summary |
| 2 | + |
| 3 | +This example demonstrates how to export and run Google's [Gemma 3](https://huggingface.co/google/gemma-3-4b-it) vision-language multimodal model locally on ExecuTorch with CUDA backend support. |
| 4 | + |
| 5 | +# Exporting the model |
| 6 | +To export the model, we use [Optimum ExecuTorch](https://github.com/huggingface/optimum-executorch), a repo that enables exporting models straight from the source - from HuggingFace's Transformers repo. |
| 7 | + |
| 8 | +## Setting up Optimum ExecuTorch |
| 9 | +Install through pip package: |
| 10 | +``` |
| 11 | +pip install optimum-executorch |
| 12 | +``` |
| 13 | + |
| 14 | +Or install from source: |
| 15 | +``` |
| 16 | +git clone https://github.com/huggingface/optimum-executorch.git |
| 17 | +cd optimum-executorch |
| 18 | +python install_dev.py |
| 19 | +``` |
| 20 | + |
| 21 | +## CUDA Support |
| 22 | +This guide focuses on CUDA backend support for Gemma3, which provides accelerated performance on NVIDIA GPUs. |
| 23 | + |
| 24 | +### Exporting with CUDA |
| 25 | +```bash |
| 26 | +optimum-cli export executorch \ |
| 27 | + --model "google/gemma-3-4b-it" \ |
| 28 | + --task "multimodal-text-to-text" \ |
| 29 | + --recipe "cuda" \ |
| 30 | + --dtype bfloat16 \ |
| 31 | + --device cuda \ |
| 32 | + --output_dir="path/to/output/dir" |
| 33 | +``` |
| 34 | + |
| 35 | +This will generate: |
| 36 | +- `model.pte` - The exported model |
| 37 | +- `aoti_cuda_blob.ptd` - The CUDA kernel blob required for runtime |
| 38 | + |
| 39 | +### Exporting with INT4 Quantization (Tile Packed) |
| 40 | +For improved performance and reduced memory footprint, you can export Gemma3 with INT4 weight quantization using tile-packed format: |
| 41 | + |
| 42 | +```bash |
| 43 | +optimum-cli export executorch \ |
| 44 | + --model "google/gemma-3-4b-it" \ |
| 45 | + --task "multimodal-text-to-text" \ |
| 46 | + --recipe "cuda" \ |
| 47 | + --dtype bfloat16 \ |
| 48 | + --device cuda \ |
| 49 | + --qlinear 4w \ |
| 50 | + --qlinear_encoder 4w \ |
| 51 | + --qlinear_packing_format tile_packed_to_4d \ |
| 52 | + --qlinear_encoder_packing_format tile_packed_to_4d \ |
| 53 | + --output_dir="path/to/output/dir" |
| 54 | +``` |
| 55 | + |
| 56 | +This will generate the same files (`model.pte` and `aoti_cuda_blob.ptd`) in the `int4` directory. |
| 57 | + |
| 58 | +See the "Building the Gemma3 runner" section below for instructions on building with CUDA support, and the "Running the model" section for runtime instructions. |
| 59 | + |
| 60 | +# Running the model |
| 61 | +To run the model, we will use the Gemma3 runner, which utilizes ExecuTorch's MultiModal runner API. |
| 62 | +The Gemma3 runner will do the following: |
| 63 | + |
| 64 | +- **Image Input**: Load image files (PNG, JPG, etc.) and format them as input tensors for the model |
| 65 | +- **Text Input**: Process text prompts using the tokenizer |
| 66 | +- **Feed the formatted inputs** to the multimodal runner for inference |
| 67 | + |
| 68 | +## Obtaining the tokenizer |
| 69 | +You can download the `tokenizer.json` file from [Gemma 3's HuggingFace repo](https://huggingface.co/unsloth/gemma-3-1b-it): |
| 70 | +```bash |
| 71 | +curl -L https://huggingface.co/unsloth/gemma-3-1b-it/resolve/main/tokenizer.json -o tokenizer.json |
| 72 | +``` |
| 73 | + |
| 74 | +## Building the Gemma3 runner |
| 75 | + |
| 76 | +### Prerequisites |
| 77 | +Ensure you have a CUDA-capable GPU and CUDA toolkit installed on your system. |
| 78 | + |
| 79 | +### Building for CUDA |
| 80 | +```bash |
| 81 | +# Install ExecuTorch. |
| 82 | +./install_executorch.sh |
| 83 | + |
| 84 | +# Build the multimodal runner with CUDA |
| 85 | +cmake --preset llm \ |
| 86 | + -DEXECUTORCH_BUILD_CUDA=ON \ |
| 87 | + -DCMAKE_INSTALL_PREFIX=cmake-out \ |
| 88 | + -DCMAKE_BUILD_TYPE=Release \ |
| 89 | + -Bcmake-out -S. |
| 90 | +cmake --build cmake-out -j$(nproc) --target install --config Release |
| 91 | + |
| 92 | +# Build the Gemma3 runner |
| 93 | +cmake -DEXECUTORCH_BUILD_CUDA=ON \ |
| 94 | + -DCMAKE_BUILD_TYPE=Release \ |
| 95 | + -Sexamples/models/gemma3 \ |
| 96 | + -Bcmake-out/examples/models/gemma3/ |
| 97 | +cmake --build cmake-out/examples/models/gemma3 --target gemma3_e2e_runner --config Release |
| 98 | +``` |
| 99 | + |
| 100 | +## Running the model |
| 101 | +You need to provide the following files to run Gemma3: |
| 102 | +- `model.pte` - The exported model file |
| 103 | +- `aoti_cuda_blob.ptd` - The CUDA kernel blob |
| 104 | +- `tokenizer.json` - The tokenizer file |
| 105 | +- An image file (PNG, JPG, etc.) |
| 106 | + |
| 107 | +### Example usage |
| 108 | +```bash |
| 109 | +./cmake-out/examples/models/gemma3/gemma3_e2e_runner \ |
| 110 | + --model_path path/to/model.pte \ |
| 111 | + --data_path path/to/aoti_cuda_blob.ptd \ |
| 112 | + --tokenizer_path path/to/tokenizer.json \ |
| 113 | + --image_path docs/source/_static/img/et-logo.png \ # here we use the ExecuTorch logo as an example |
| 114 | + --temperature 0 |
| 115 | +``` |
| 116 | + |
| 117 | +# Example output |
| 118 | +``` |
| 119 | +Okay, let's break down what's in the image! |
| 120 | +
|
| 121 | +It appears to be a stylized graphic combining: |
| 122 | +
|
| 123 | +* **A Microchip:** The core shape is a representation of a microchip (the integrated circuit). |
| 124 | +* **An "On" Symbol:** There's an "On" symbol (often represented as a circle with a vertical line) incorporated into the microchip design. |
| 125 | +* **Color Scheme:** The microchip is colored in gray, and |
| 126 | +PyTorchObserver {"prompt_tokens":271,"generated_tokens":99,"model_load_start_ms":0,"model_load_end_ms":0,"inference_start_ms":1761118126790,"inference_end_ms":1761118128385,"prompt_eval_end_ms":1761118127175,"first_token_ms":1761118127175,"aggregate_sampling_time_ms":86,"SCALING_FACTOR_UNITS_PER_SECOND":1000} |
| 127 | +``` |
0 commit comments