-
Notifications
You must be signed in to change notification settings - Fork 673
/
Copy pathtorchscript_consistency_impl.py
815 lines (666 loc) · 27.3 KB
/
torchscript_consistency_impl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
"""Test suites for jit-ability and its numerical compatibility"""
import unittest
import torch
import torchaudio.functional as F
from parameterized import parameterized
from torchaudio_unittest import common_utils
from torchaudio_unittest.common_utils import skipIfRocm, TempDirMixin, TestBaseMixin, torch_script
class Functional(TempDirMixin, TestBaseMixin):
"""Implements test for `functional` module that are performed for different devices"""
def _assert_consistency(self, func, inputs, shape_only=False):
inputs_ = []
for i in inputs:
if torch.is_tensor(i):
i = i.to(device=self.device, dtype=self.dtype)
inputs_.append(i)
ts_func = torch_script(func)
torch.random.manual_seed(40)
output = func(*inputs_)
torch.random.manual_seed(40)
ts_output = ts_func(*inputs_)
if shape_only:
ts_output = ts_output.shape
output = output.shape
self.assertEqual(ts_output, output)
def _assert_consistency_complex(self, func, inputs):
inputs_ = []
for i in inputs:
if torch.is_tensor(i):
i = i.to(dtype=self.complex_dtype if i.is_complex() else self.dtype, device=self.device)
inputs_.append(i)
ts_func = torch_script(func)
torch.random.manual_seed(40)
output = func(*inputs_)
torch.random.manual_seed(40)
ts_output = ts_func(*inputs_)
self.assertEqual(ts_output, output)
@parameterized.expand(
[
(True,),
(False,),
("window",),
("frame_length",),
]
)
def test_spectrogram(self, normalize):
waveform = common_utils.get_whitenoise()
n_fft = 400
ws = 400
hop = 200
pad = 0
window = torch.hann_window(ws, device=waveform.device, dtype=waveform.dtype)
power = None
self._assert_consistency(
F.spectrogram, (waveform, pad, window, n_fft, hop, ws, power, normalize, True, "reflect", True, True)
)
@parameterized.expand(
[
(True,),
(False,),
("window",),
("frame_length",),
]
)
def test_inverse_spectrogram(self, normalize):
waveform = common_utils.get_whitenoise(sample_rate=8000, duration=0.05)
specgram = common_utils.get_spectrogram(waveform, n_fft=400, hop_length=200)
length = 400
n_fft = 400
hop = 200
ws = 400
pad = 0
window = torch.hann_window(ws, device=specgram.device, dtype=torch.float64)
self._assert_consistency_complex(
F.inverse_spectrogram, (specgram, length, pad, window, n_fft, hop, ws, normalize, True, "reflect", True)
)
@skipIfRocm
def test_griffinlim(self):
tensor = torch.rand((1, 201, 6))
n_fft = 400
ws = 400
hop = 200
window = torch.hann_window(ws, device=tensor.device, dtype=tensor.dtype)
power = 2.0
momentum = 0.99
n_iter = 32
length = 1000
rand_int = False
self._assert_consistency(
F.griffinlim, (tensor, window, n_fft, hop, ws, power, n_iter, momentum, length, rand_int)
)
def test_compute_deltas(self):
channel = 13
n_mfcc = channel * 3
time = 1021
tensor = torch.randn(channel, n_mfcc, time)
win_length = 2 * 7 + 1
self._assert_consistency(F.compute_deltas, (tensor, win_length, "replicate"))
def test_detect_pitch_frequency(self):
waveform = common_utils.get_sinusoid(sample_rate=44100)
def func(tensor):
sample_rate = 44100
return F.detect_pitch_frequency(tensor, sample_rate)
self._assert_consistency(func, (waveform,))
def test_measure_loudness(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
sample_rate = 44100
waveform = common_utils.get_sinusoid(sample_rate=sample_rate, device=self.device)
self._assert_consistency(F.loudness, (waveform, sample_rate))
def test_melscale_fbanks(self):
if self.device != torch.device("cpu"):
raise unittest.SkipTest("No need to perform test on device other than CPU")
n_stft = 100
f_min = 0.0
f_max = 20.0
n_mels = 10
sample_rate = 16000
norm = "slaney"
self._assert_consistency(F.melscale_fbanks, (n_stft, f_min, f_max, n_mels, sample_rate, norm, "htk"))
def test_linear_fbanks(self):
if self.device != torch.device("cpu"):
raise unittest.SkipTest("No need to perform test on device other than CPU")
n_stft = 100
f_min = 0.0
f_max = 20.0
n_filter = 10
sample_rate = 16000
self._assert_consistency(F.linear_fbanks, (n_stft, f_min, f_max, n_filter, sample_rate))
def test_amplitude_to_DB(self):
tensor = torch.rand((6, 201))
multiplier = 10.0
amin = 1e-10
db_multiplier = 0.0
top_db = 80.0
self._assert_consistency(F.amplitude_to_DB, (tensor, multiplier, amin, db_multiplier, top_db))
def test_DB_to_amplitude(self):
tensor = torch.rand((1, 100))
ref = 1.0
power = 1.0
self._assert_consistency(F.DB_to_amplitude, (tensor, ref, power))
def test_create_dct(self):
if self.device != torch.device("cpu"):
raise unittest.SkipTest("No need to perform test on device other than CPU")
n_mfcc = 40
n_mels = 128
norm = "ortho"
self._assert_consistency(F.create_dct, (n_mfcc, n_mels, norm))
def test_mu_law_encoding(self):
def func(tensor):
qc = 256
return F.mu_law_encoding(tensor, qc)
waveform = common_utils.get_whitenoise()
self._assert_consistency(func, (waveform,))
def test_mu_law_decoding(self):
def func(tensor):
qc = 256
return F.mu_law_decoding(tensor, qc)
tensor = torch.rand((1, 10))
self._assert_consistency(func, (tensor,))
def test_mask_along_axis(self):
def func(tensor):
mask_param = 100
mask_value = 30.0
axis = 2
return F.mask_along_axis(tensor, mask_param, mask_value, axis)
tensor = torch.randn(2, 1025, 400)
self._assert_consistency(func, (tensor,))
def test_mask_along_axis_iid(self):
def func(tensor):
mask_param = 100
mask_value = 30.0
axis = 2
return F.mask_along_axis_iid(tensor, mask_param, mask_value, axis)
tensor = torch.randn(4, 2, 1025, 400)
self._assert_consistency(func, (tensor,))
def test_gain(self):
def func(tensor):
gainDB = 2.0
return F.gain(tensor, gainDB)
tensor = torch.rand((1, 1000))
self._assert_consistency(func, (tensor,))
def test_dither_TPDF(self):
def func(tensor):
return F.dither(tensor, "TPDF")
tensor = common_utils.get_whitenoise(n_channels=2)
self._assert_consistency(func, (tensor,), shape_only=True)
def test_dither_RPDF(self):
def func(tensor):
return F.dither(tensor, "RPDF")
tensor = common_utils.get_whitenoise(n_channels=2)
self._assert_consistency(func, (tensor,), shape_only=True)
def test_dither_GPDF(self):
def func(tensor):
return F.dither(tensor, "GPDF")
tensor = common_utils.get_whitenoise(n_channels=2)
self._assert_consistency(func, (tensor,), shape_only=True)
def test_dither_noise_shaping(self):
def func(tensor):
return F.dither(tensor, noise_shaping=True)
tensor = common_utils.get_whitenoise(n_channels=2)
self._assert_consistency(func, (tensor,))
def test_lfilter(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise()
# Design an IIR lowpass filter using scipy.signal filter design
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirdesign.html#scipy.signal.iirdesign
#
# Example
# >>> from scipy.signal import iirdesign
# >>> b, a = iirdesign(0.2, 0.3, 1, 60)
b_coeffs = torch.tensor(
[
0.00299893,
-0.0051152,
0.00841964,
-0.00747802,
0.00841964,
-0.0051152,
0.00299893,
],
device=waveform.device,
dtype=waveform.dtype,
)
a_coeffs = torch.tensor(
[
1.0,
-4.8155751,
10.2217618,
-12.14481273,
8.49018171,
-3.3066882,
0.56088705,
],
device=waveform.device,
dtype=waveform.dtype,
)
self._assert_consistency(F.lfilter, (waveform, a_coeffs, b_coeffs, True, True))
def test_filtfilt(self):
waveform = common_utils.get_whitenoise(sample_rate=8000)
b_coeffs = torch.rand(4, device=waveform.device, dtype=waveform.dtype)
a_coeffs = torch.rand(4, device=waveform.device, dtype=waveform.dtype)
self._assert_consistency(F.filtfilt, (waveform, a_coeffs, b_coeffs, True))
def test_lowpass(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
cutoff_freq = 3000.0
return F.lowpass_biquad(tensor, sample_rate, cutoff_freq)
self._assert_consistency(func, (waveform,))
def test_highpass(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
cutoff_freq = 2000.0
return F.highpass_biquad(tensor, sample_rate, cutoff_freq)
self._assert_consistency(func, (waveform,))
def test_allpass(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
central_freq = 1000.0
q = 0.707
return F.allpass_biquad(tensor, sample_rate, central_freq, q)
self._assert_consistency(func, (waveform,))
def test_bandpass_with_csg(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
central_freq = 1000.0
q = 0.707
const_skirt_gain = True
return F.bandpass_biquad(tensor, sample_rate, central_freq, q, const_skirt_gain)
self._assert_consistency(func, (waveform,))
def test_bandpass_without_csg(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
central_freq = 1000.0
q = 0.707
const_skirt_gain = True
return F.bandpass_biquad(tensor, sample_rate, central_freq, q, const_skirt_gain)
self._assert_consistency(func, (waveform,))
def test_bandreject(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
central_freq = 1000.0
q = 0.707
return F.bandreject_biquad(tensor, sample_rate, central_freq, q)
self._assert_consistency(func, (waveform,))
def test_band_with_noise(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
central_freq = 1000.0
q = 0.707
noise = True
return F.band_biquad(tensor, sample_rate, central_freq, q, noise)
self._assert_consistency(func, (waveform,))
def test_band_without_noise(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
central_freq = 1000.0
q = 0.707
noise = False
return F.band_biquad(tensor, sample_rate, central_freq, q, noise)
self._assert_consistency(func, (waveform,))
def test_treble(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
gain = 40.0
central_freq = 1000.0
q = 0.707
return F.treble_biquad(tensor, sample_rate, gain, central_freq, q)
self._assert_consistency(func, (waveform,))
def test_bass(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
gain = 40.0
central_freq = 1000.0
q = 0.707
return F.bass_biquad(tensor, sample_rate, gain, central_freq, q)
self._assert_consistency(func, (waveform,))
def test_deemph(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
return F.deemph_biquad(tensor, sample_rate)
self._assert_consistency(func, (waveform,))
def test_riaa(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
return F.riaa_biquad(tensor, sample_rate)
self._assert_consistency(func, (waveform,))
def test_equalizer(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
center_freq = 300.0
gain = 1.0
q = 0.707
return F.equalizer_biquad(tensor, sample_rate, center_freq, gain, q)
self._assert_consistency(func, (waveform,))
def test_perf_biquad_filtering(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise()
def func(tensor):
a = torch.tensor([0.7, 0.2, 0.6], device=tensor.device, dtype=tensor.dtype)
b = torch.tensor([0.4, 0.2, 0.9], device=tensor.device, dtype=tensor.dtype)
return F.lfilter(tensor, a, b)
self._assert_consistency(func, (waveform,))
def test_sliding_window_cmn(self):
def func(tensor):
cmn_window = 600
min_cmn_window = 100
center = False
norm_vars = False
a = torch.tensor(
[[-1.915875792503357, 1.147700309753418], [1.8242558240890503, 1.3869990110397339]],
device=tensor.device,
dtype=tensor.dtype,
)
return F.sliding_window_cmn(a, cmn_window, min_cmn_window, center, norm_vars)
b = torch.tensor([[-1.8701, -0.1196], [1.8701, 0.1196]])
self._assert_consistency(func, (b,))
def test_contrast(self):
waveform = common_utils.get_whitenoise()
def func(tensor):
enhancement_amount = 80.0
return F.contrast(tensor, enhancement_amount)
self._assert_consistency(func, (waveform,))
def test_dcshift(self):
waveform = common_utils.get_whitenoise()
def func(tensor):
shift = 0.5
limiter_gain = 0.05
return F.dcshift(tensor, shift, limiter_gain)
self._assert_consistency(func, (waveform,))
def test_overdrive(self):
waveform = common_utils.get_whitenoise()
def func(tensor):
gain = 30.0
colour = 50.0
return F.overdrive(tensor, gain, colour)
self._assert_consistency(func, (waveform,))
def test_phaser(self):
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
gain_in = 0.5
gain_out = 0.8
delay_ms = 2.0
decay = 0.4
speed = 0.5
sample_rate = 44100
return F.phaser(tensor, sample_rate, gain_in, gain_out, delay_ms, decay, speed, sinusoidal=True)
self._assert_consistency(func, (waveform,))
def test_flanger(self):
waveform = torch.rand(2, 100) - 0.5
def func(tensor):
delay = 0.8
depth = 0.88
regen = 3.0
width = 0.23
speed = 1.3
phase = 60.0
sample_rate = 44100
return F.flanger(
tensor,
sample_rate,
delay,
depth,
regen,
width,
speed,
phase,
modulation="sinusoidal",
interpolation="linear",
)
self._assert_consistency(func, (waveform,))
def test_spectral_centroid(self):
def func(tensor):
sample_rate = 44100
n_fft = 400
ws = 400
hop = 200
pad = 0
window = torch.hann_window(ws, device=tensor.device, dtype=tensor.dtype)
return F.spectral_centroid(tensor, sample_rate, pad, window, n_fft, hop, ws)
tensor = common_utils.get_whitenoise(sample_rate=44100)
self._assert_consistency(func, (tensor,))
def test_resample_sinc(self):
def func(tensor):
sr1, sr2 = 16000, 8000
return F.resample(tensor, sr1, sr2, resampling_method="sinc_interp_hann")
tensor = common_utils.get_whitenoise(sample_rate=16000)
self._assert_consistency(func, (tensor,))
@parameterized.expand(
[
(None,),
(6.0,),
]
)
def test_resample_kaiser(self, beta):
tensor = common_utils.get_whitenoise(sample_rate=16000)
sr1, sr2 = 16000, 8000
lowpass_filter_width = 6
rolloff = 0.99
self._assert_consistency(
F.resample, (tensor, sr1, sr2, lowpass_filter_width, rolloff, "sinc_interp_kaiser", beta)
)
def test_phase_vocoder(self):
tensor = torch.view_as_complex(torch.randn(2, 1025, 400, 2))
n_freq = tensor.size(-2)
rate = 0.5
hop_length = 256
phase_advance = torch.linspace(
0,
3.14 * hop_length,
n_freq,
dtype=torch.real(tensor).dtype,
device=tensor.device,
)[..., None]
self._assert_consistency_complex(F.phase_vocoder, (tensor, rate, phase_advance))
def test_psd(self):
batch_size = 2
channel = 4
n_fft_bin = 10
frame = 10
normalize = True
eps = 1e-10
tensor = torch.rand(batch_size, channel, n_fft_bin, frame, dtype=self.complex_dtype)
self._assert_consistency_complex(F.psd, (tensor, None, normalize, eps))
def test_psd_with_mask(self):
batch_size = 2
channel = 4
n_fft_bin = 10
frame = 10
normalize = True
eps = 1e-10
specgram = torch.rand(batch_size, channel, n_fft_bin, frame, dtype=self.complex_dtype)
mask = torch.rand(batch_size, n_fft_bin, frame, device=self.device)
self._assert_consistency_complex(F.psd, (specgram, mask, normalize, eps))
def test_mvdr_weights_souden(self):
channel = 4
n_fft_bin = 10
diagonal_loading = True
diag_eps = 1e-7
eps = 1e-8
psd_speech = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
psd_noise = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
self._assert_consistency_complex(
F.mvdr_weights_souden, (psd_speech, psd_noise, 0, diagonal_loading, diag_eps, eps)
)
def test_mvdr_weights_souden_with_tensor(self):
channel = 4
n_fft_bin = 10
diagonal_loading = True
diag_eps = 1e-7
eps = 1e-8
psd_speech = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
psd_noise = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
reference_channel = torch.zeros(channel)
reference_channel[..., 0].fill_(1)
self._assert_consistency_complex(
F.mvdr_weights_souden, (psd_speech, psd_noise, reference_channel, diagonal_loading, diag_eps, eps)
)
def test_mvdr_weights_rtf(self):
channel = 4
n_fft_bin = 10
diagonal_loading = True
diag_eps = 1e-7
eps = 1e-8
rtf = torch.rand(n_fft_bin, channel, dtype=self.complex_dtype)
psd_noise = torch.rand(n_fft_bin, channel, channel, dtype=self.complex_dtype)
reference_channel = 0
self._assert_consistency_complex(
F.mvdr_weights_rtf, (rtf, psd_noise, reference_channel, diagonal_loading, diag_eps, eps)
)
def test_mvdr_weights_rtf_with_tensor(self):
channel = 4
n_fft_bin = 10
diagonal_loading = True
diag_eps = 1e-7
eps = 1e-8
rtf = torch.rand(n_fft_bin, channel, dtype=self.complex_dtype)
psd_noise = torch.rand(n_fft_bin, channel, channel, dtype=self.complex_dtype)
reference_channel = torch.zeros(channel)
reference_channel[..., 0].fill_(1)
self._assert_consistency_complex(
F.mvdr_weights_rtf, (rtf, psd_noise, reference_channel, diagonal_loading, diag_eps, eps)
)
def test_rtf_evd(self):
batch_size = 2
channel = 4
n_fft_bin = 129
tensor = torch.rand(batch_size, n_fft_bin, channel, channel, dtype=self.complex_dtype)
self._assert_consistency_complex(F.rtf_evd, (tensor,))
@parameterized.expand(
[
(1, True),
(3, False),
]
)
def test_rtf_power(self, n_iter, diagonal_loading):
channel = 4
n_fft_bin = 10
psd_speech = torch.rand(n_fft_bin, channel, channel, dtype=self.complex_dtype)
psd_noise = torch.rand(n_fft_bin, channel, channel, dtype=self.complex_dtype)
reference_channel = 0
diag_eps = 1e-7
self._assert_consistency_complex(
F.rtf_power, (psd_speech, psd_noise, reference_channel, n_iter, diagonal_loading, diag_eps)
)
@parameterized.expand(
[
(1, True),
(3, False),
]
)
def test_rtf_power_with_tensor(self, n_iter, diagonal_loading):
channel = 4
n_fft_bin = 10
psd_speech = torch.rand(n_fft_bin, channel, channel, dtype=self.complex_dtype)
psd_noise = torch.rand(n_fft_bin, channel, channel, dtype=self.complex_dtype)
reference_channel = torch.zeros(channel)
reference_channel[..., 0].fill_(1)
diag_eps = 1e-7
self._assert_consistency_complex(
F.rtf_power, (psd_speech, psd_noise, reference_channel, n_iter, diagonal_loading, diag_eps)
)
def test_apply_beamforming(self):
num_channels = 4
n_fft_bin = 201
num_frames = 10
beamform_weights = torch.rand(n_fft_bin, num_channels, dtype=self.complex_dtype, device=self.device)
specgram = torch.rand(num_channels, n_fft_bin, num_frames, dtype=self.complex_dtype, device=self.device)
self._assert_consistency_complex(F.apply_beamforming, (beamform_weights, specgram))
@common_utils.nested_params(
["convolve", "fftconvolve"],
["full", "valid", "same"],
)
def test_convolve(self, fn, mode):
leading_dims = (2, 3, 2)
L_x, L_y = 32, 55
x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device)
y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device)
self._assert_consistency(getattr(F, fn), (x, y, mode))
@common_utils.nested_params([True, False])
def test_add_noise(self, use_lengths):
leading_dims = (2, 3)
L = 31
waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True)
noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True)
if use_lengths:
lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True)
else:
lengths = None
snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) * 10
self._assert_consistency(F.add_noise, (waveform, noise, snr, lengths))
@common_utils.nested_params([True, False])
def test_speed(self, use_lengths):
leading_dims = (3, 2)
T = 200
waveform = torch.rand(*leading_dims, T, dtype=self.dtype, device=self.device, requires_grad=True)
if use_lengths:
lengths = torch.randint(1, T, leading_dims, dtype=self.dtype, device=self.device)
else:
lengths = None
self._assert_consistency(F.speed, (waveform, 1000, 1.1, lengths))
def test_preemphasis(self):
waveform = torch.rand(3, 2, 100, device=self.device, dtype=self.dtype)
coeff = 0.9
self._assert_consistency(F.preemphasis, (waveform, coeff))
def test_deemphasis(self):
waveform = torch.rand(3, 2, 100, device=self.device, dtype=self.dtype)
coeff = 0.9
self._assert_consistency(F.deemphasis, (waveform, coeff))
class FunctionalFloat32Only(TestBaseMixin):
def test_rnnt_loss(self):
def func(tensor):
targets = torch.tensor([[1, 2]], device=tensor.device, dtype=torch.int32)
logit_lengths = torch.tensor([2], device=tensor.device, dtype=torch.int32)
target_lengths = torch.tensor([2], device=tensor.device, dtype=torch.int32)
return F.rnnt_loss(tensor, targets, logit_lengths, target_lengths)
logits = torch.tensor(
[
[
[[0.1, 0.6, 0.1, 0.1, 0.1], [0.1, 0.1, 0.6, 0.1, 0.1], [0.1, 0.1, 0.2, 0.8, 0.1]],
[[0.1, 0.6, 0.1, 0.1, 0.1], [0.1, 0.1, 0.2, 0.1, 0.1], [0.7, 0.1, 0.2, 0.1, 0.1]],
]
]
)
tensor = logits.to(device=self.device, dtype=torch.float32)
self._assert_consistency(func, (tensor,))