You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am trying to quantize a model and I am running this on a 4090. Since many of the available quantization benchmarks are done on higher gpus, I am trying to establish a baseline perfromance gain I can expect from quantization.
I tried the tutorial at torchao_demo on a gpu and it worked great. My model has similar kind of transformer layers with q, k, v projections but I am not able to see the same kind of performance with a large chunk of aten::_copy() operations in profile log.
To debug, I wanted to benchmark on a single linear layer as the majority of modified layers seem to be of this type. But I am not able to see any performance gain in this experiment of mine. I would appreciate if I can get more context into the specific layers that gets optimized by torchao.
torchao quantizes Linear layers. However depending on batch-size and layer shape you may see different levels of performance improvements for different techniques. Eg. weight-only works best for bs=1 while dynamic quant is preferred for bs=n scenarios.
I am trying to quantize a model and I am running this on a 4090. Since many of the available quantization benchmarks are done on higher gpus, I am trying to establish a baseline perfromance gain I can expect from quantization.
I tried the tutorial at torchao_demo on a gpu and it worked great. My model has similar kind of transformer layers with q, k, v projections but I am not able to see the same kind of performance with a large chunk of
aten::_copy()
operations in profile log.To debug, I wanted to benchmark on a single linear layer as the majority of modified layers seem to be of this type. But I am not able to see any performance gain in this experiment of mine. I would appreciate if I can get more context into the specific layers that gets optimized by
torchao
.The text was updated successfully, but these errors were encountered: