-
Notifications
You must be signed in to change notification settings - Fork 202
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
"Where is the overloaded function for torch.nn.functional.linear(aqt, original_weight_tensor, bias)? " #1397
Comments
You can take a look at this function, I think. ao/torchao/dtypes/affine_quantized_tensor_ops.py Lines 147 to 177 in f258d82
|
this might be helpful as well: https://pytorch.org/ao/stable/contributor_guide.html#dynamic-activation-and-weight-quantization |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Here is an example
int8_dynamic_activation_int8_weight
aqt:
AffineQuantizedTensor(tensor_impl=PlainAQTTensorImpl(data=tensor([[ 5, -2, 24, ..., 17, 73, 54],
[ -30, -19, -53, ..., -9, -33, 55],
[ -7, -20, -28, ..., 47, 71, -15],
...,
[ 36, 8, 40, ..., 13, -10, 45],
[ -38, -12, 47, ..., -22, 0, -29],
[ 20, -127, 52, ..., 18, 27, -36]], dtype=torch.int8)... , scale=tensor([0.0293, 0.0233, 0.0271, 0.0234, 0.0209, 0.0227, 0.0247, 0.0328, 0.0270,
0.0215, 0.0245, 0.0209, 0.0325, 0.0232, 0.0238, 0.0267, 0.0237, 0.0202,
0.0249, 0.0239, 0.0255, 0.0246, 0.0225, 0.0288, 0.0194, 0.0215, 0.0224,
0.0210, 0.0253, 0.0189, 0.0240, 0.0228, 0.0208, 0.0211, 0.0295, 0.0275,
0.0200, 0.0250, 0.0202, 0.0269, 0.0266, 0.0203, 0.0223, 0.0246, 0.0212,
0.0217, 0.0246, 0.0203, 0.0219, 0.0237, 0.0216, 0.0191, 0.0213, 0.0227,
0.0330, 0.0194, 0.0226, 0.0162, 0.0203, 0.0284, 0.0218, 0.0208, 0.0254,
0.0220, 0.0357, 0.0288, 0.0290, 0.0235, 0.0218, 0.0188, 0.0279, 0.0232,
0.0238, 0.0195, 0.0256, 0.0255, 0.0204, 0.0198, 0.0211, 0.0219, 0.0262,
0.0253, 0.0246, 0.0177, 0.0209, 0.0216, 0.0253, 0.0261, 0.0215, 0.0257,
0.0240, 0.0197, 0.0206, 0.0270, 0.0243, 0.0218, 0.0261, 0.0350, 0.0238,
0.0243])... , zero_point=tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0.])... , _layout=PlainLayout()), block_size=[1, 200], shape=torch.Size([100, 200]), device=cpu, dtype=torch.float32, requires_grad=False)
original_weight_tensor:
AffineQuantizedTensor(tensor_impl=PlainAQTTensorImpl(data=tensor([[ 127, 0, 0, ..., 0, 0, 0],
[ 127, 0, 0, ..., 0, 0, 0],
[ 127, 0, 0, ..., 0, 0, 0],
...,
[ 47, 36, -70, ..., 49, 71, 5],
[ 117, -2, -91, ..., -112, 9, -81],
[ -67, -91, 114, ..., 51, 11, -126]], dtype=torch.int8)... , scale=tensor([7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01, 7.8431e+01,
2.3313e-02, 2.3492e-02, 2.3277e-02, 2.3458e-02, 2.3438e-02, 2.3528e-02,
2.3352e-02, 2.3522e-02, 2.3500e-02, 2.3332e-02, 2.3376e-02, 2.3481e-02,
2.3275e-02, 2.3509e-02, 2.3453e-02, 2.3460e-02, 2.3525e-02, 2.3489e-02,
2.3482e-02, 2.3436e-02, 2.3499e-02, 2.3523e-02, 2.3519e-02, 2.3320e-02,
2.3503e-02, 2.3453e-02, 2.3514e-02, 2.3496e-02, 2.3330e-02, 2.3444e-02,
2.3483e-02, 2.3428e-02, 2.3495e-02, 2.3445e-02, 2.3437e-02, 2.3505e-02,
2.3338e-02, 2.3517e-02, 2.3205e-02, 2.3469e-02, 2.3469e-02, 2.3506e-02,
2.3467e-02, 2.3497e-02, 2.3512e-02, 2.3497e-02, 2.3469e-02, 2.3511e-02,
2.3529e-02, 2.3445e-02, 2.3493e-02, 2.3527e-02, 2.3376e-02, 2.3366e-02,
2.3408e-02, 2.3410e-02, 2.3403e-02, 2.3441e-02, 2.3501e-02, 2.3426e-02,
2.3444e-02, 2.3502e-02, 2.3352e-02, 2.3501e-02, 2.3428e-02, 2.3424e-02,
2.3464e-02, 2.3414e-02, 2.3183e-02, 2.3088e-02, 2.3446e-02, 2.3220e-02,
2.3274e-02, 2.3457e-02, 2.3157e-02, 2.3419e-02, 2.3296e-02, 2.3498e-02,
2.3434e-02, 2.3407e-02, 2.3385e-02, 2.3437e-02, 2.3466e-02, 2.3503e-02,
2.3421e-02, 2.3364e-02, 2.3465e-02, 2.3410e-02, 2.3330e-02, 2.3472e-02,
2.3430e-02, 2.3522e-02, 2.3423e-02, 2.3422e-02, 2.3455e-02, 2.3503e-02,
2.3250e-02, 2.3400e-02, 2.3445e-02, 2.3399e-02, 2.3343e-02, 2.3464e-02,
2.3387e-02, 2.3443e-02, 2.3334e-02, 2.3378e-02, 2.3495e-02, 2.3394e-02,
2.3513e-02, 2.3255e-02, 2.3506e-02, 2.3516e-02, 2.3433e-02, 2.3354e-02,
2.3512e-02, 2.3358e-02, 2.3422e-02, 2.3400e-02, 2.3174e-02, 2.3437e-02,
2.3511e-02, 2.3354e-02, 2.3465e-02, 2.3322e-02, 2.3225e-02, 2.3226e-02,
2.3374e-02, 2.3380e-02, 2.3528e-02, 2.3435e-02, 2.3277e-02, 2.3491e-02,
2.3361e-02, 2.3392e-02, 2.3468e-02, 2.3253e-02, 2.3134e-02, 2.3092e-02,
2.3456e-02, 2.3519e-02, 2.3257e-02, 2.3524e-02, 2.3427e-02, 2.3493e-02,
2.3495e-02, 2.3376e-02, 2.3464e-02, 2.3408e-02, 2.3523e-02, 2.3171e-02])... , zero_point=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])... , _layout=PlainLayout()), block_size=(1, 200), shape=torch.Size([300, 200]), device=cpu, dtype=torch.float32, requires_grad=False)
The computation result of torch.nn.functional.linear(aqt, original_weight_tensor, bias) is consistent with that of torch.nn.functional.linear(aqt.dequantize(), original_weight_tensor.dequantize(), bias).
However, I cannot find the implementation of the overloaded function for torch.nn.functional.linear; where is it located?
The text was updated successfully, but these errors were encountered: