-
Notifications
You must be signed in to change notification settings - Fork 185
/
model.py
304 lines (244 loc) · 12.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn as nn
from torch import Tensor
from torch.nn import functional as F
from torchao.utils import find_multiple
# TODO remove suplerfluous arg
def prepare_inputs_for_model(inps, max_new_tokens=1):
# this is because input from lm-eval is 2d
if inps.dim() > 2:
raise ValueError(f"Expected input to be of dim 1 or 2, but got {inps.dim()}")
input_pos = torch.arange(0, inps.numel(), device=inps.device)
return (inps.view(1, -1), input_pos)
@dataclass
class ModelArgs:
block_size: int = 2048
vocab_size: int = 32000
n_layer: int = 32
n_head: int = 32
dim: int = 4096
intermediate_size: int = None
n_local_heads: int = -1
head_dim: int = 64
rope_base: float = 10000
norm_eps: float = 1e-5
def __post_init__(self):
if self.n_local_heads == -1:
self.n_local_heads = self.n_head
if self.intermediate_size is None:
hidden_dim = 4 * self.dim
n_hidden = int(2 * hidden_dim / 3)
self.intermediate_size = find_multiple(n_hidden, 256)
self.head_dim = self.dim // self.n_head
@classmethod
def from_name(cls, name: str):
if name in transformer_configs:
return cls(**transformer_configs[name])
# fuzzy search
config = [config for config in transformer_configs if config in str(name).upper() or config in str(name)]
# We may have two or more configs matched (e.g. "7B" and "Mistral-7B"). Find the best config match,
# take longer name (as it have more symbols matched)
if len(config) > 1:
config.sort(key=len, reverse=True)
assert len(config[0]) != len(config[1]), name # make sure only one 'best' match
return cls(**transformer_configs[config[0]])
transformer_configs = {
"CodeLlama-7b-Python-hf": dict(block_size=16384, vocab_size=32000, n_layer=32, dim = 4096, rope_base=1000000),
"7B": dict(n_layer=32, n_head=32, dim=4096),
"13B": dict(n_layer=40, n_head=40, dim=5120),
"30B": dict(n_layer=60, n_head=52, dim=6656),
"34B": dict(n_layer=48, n_head=64, dim=8192, vocab_size=32000, n_local_heads=8, intermediate_size=22016, rope_base=1000000), # CodeLlama-34B-Python-hf
"70B": dict(n_layer=80, n_head=64, dim=8192, n_local_heads=8, intermediate_size=28672),
"Mistral-7B": dict(n_layer=32, n_head=32, n_local_heads=8, dim=4096, intermediate_size=14336, vocab_size=32000),
"stories15M": dict(n_layer=6, n_head=6, dim=288),
"stories110M": dict(n_layer=12, n_head=12, dim=768),
"Llama-3-8B": dict(block_size=8192, n_layer=32, n_head=32, n_local_heads=8, dim=4096, intermediate_size=14336, vocab_size=128256),
}
# this is a model specific variable that controls whether index_put is used for the kv_cache update,
# it is needed for GPTQ but otherwise attenuates perf so the default is to not use it
use_index_put_for_kv_cache = False
class KVCache(nn.Module):
def __init__(self, max_batch_size, max_seq_length, n_heads, head_dim, dtype=torch.bfloat16):
super().__init__()
cache_shape = (max_batch_size, n_heads, max_seq_length, head_dim)
self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype))
self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype))
def update(self, input_pos, k_val, v_val):
# input_pos: [S], k_val: [B, H, S, D]
assert input_pos.shape[0] == k_val.shape[2]
if use_index_put_for_kv_cache:
k_out = torch.ops.aten.index_put_(self.k_cache, [None, None, input_pos], k_val)
v_out = torch.ops.aten.index_put_(self.v_cache, [None, None, input_pos], v_val)
else:
k_out = self.k_cache
v_out = self.v_cache
k_out[:, :, input_pos] = k_val
v_out[:, :, input_pos] = v_val
return k_out, v_out
from torchao.quantization.quant_primitives import quantize_affine, dequantize_affine
from torchao.quantization.utils import quantize_activation_per_token_absmax
class AffineQuantizedKVCache(nn.Module):
def __init__(self, max_batch_size, max_seq_length, n_heads, head_dim, scale_dtype=torch.bfloat16):
super().__init__()
cache_shape = (max_batch_size, n_heads, max_seq_length, head_dim)
scale_shape = (max_batch_size, n_heads, max_seq_length, 1)
self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=torch.int8))
self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=torch.int8))
self.register_buffer('k_cache_scale', torch.ones(scale_shape, dtype=scale_dtype))
self.register_buffer('v_cache_scale', torch.ones(scale_shape, dtype=scale_dtype))
def update(self, input_pos, k_val, v_val):
# quantize current k_val and store it in the cache
q_k_val, k_scale = quantize_activation_per_token_absmax(k_val)
self.k_cache[:, :, input_pos] = q_k_val
self.k_cache_scale[:, :, input_pos] = k_scale.unsqueeze(-1)
k_out = self.k_cache*self.k_cache_scale
k_out[:, :, input_pos] = k_val
q_v_val, v_scale = quantize_activation_per_token_absmax(v_val)
self.v_cache[:, :, input_pos] = q_v_val
self.v_cache_scale[:, :, input_pos] = v_scale.unsqueeze(-1)
v_out = self.v_cache*self.v_cache_scale
v_out[:, :, input_pos] = v_val
return k_out, v_out
@classmethod
def from_float(cls, kv_cache):
cache_shape = kv_cache.k_cache.shape
max_batch_size, n_heads, max_seq_length, head_dim = cache_shape
scale_dtype = kv_cache.k_cache.dtype
return cls(max_batch_size, max_seq_length, n_heads, head_dim, scale_dtype)
class Transformer(nn.Module):
def __init__(self, config: ModelArgs) -> None:
super().__init__()
self.config = config
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim)
self.layers = nn.ModuleList(TransformerBlock(config) for _ in range(config.n_layer))
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
self.output = nn.Linear(config.dim, config.vocab_size, bias=False)
self.freqs_cis: Optional[Tensor] = None
self.mask_cache: Optional[Tensor] = None
self.max_batch_size = -1
self.max_seq_length = -1
def setup_caches(self, max_batch_size, max_seq_length):
if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size:
return
head_dim = self.config.dim // self.config.n_head
max_seq_length = find_multiple(max_seq_length, 8)
self.max_seq_length = max_seq_length
self.max_batch_size = max_batch_size
dtype = self.output.weight.dtype
# For quantized layers, dtype is encoded in scales
if hasattr(self.output, "scales"):
dtype = self.output.scales.dtype
elif hasattr(self.output, "scales_and_zeros"):
dtype = self.output.scales_and_zeros.dtype
for b in self.layers:
b.attention.kv_cache = KVCache(max_batch_size, max_seq_length, self.config.n_local_heads, head_dim, dtype)
self.freqs_cis = precompute_freqs_cis(self.config.block_size, self.config.dim // self.config.n_head, self.config.rope_base, dtype)
self.causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool))
def forward(self, idx: Tensor, input_pos: Optional[Tensor] = None) -> Tensor:
assert self.freqs_cis is not None, "Caches must be initialized first"
mask = self.causal_mask[None, None, input_pos]
freqs_cis = self.freqs_cis[input_pos]
x = self.tok_embeddings(idx)
for i, layer in enumerate(self.layers):
x = layer(x, input_pos, freqs_cis, mask)
x = self.norm(x)
logits = self.output(x)
return logits
@classmethod
def from_name(cls, name: str):
return cls(ModelArgs.from_name(name))
class TransformerBlock(nn.Module):
def __init__(self, config: ModelArgs) -> None:
super().__init__()
self.attention = Attention(config)
self.feed_forward = FeedForward(config)
self.ffn_norm = RMSNorm(config.dim, config.norm_eps)
self.attention_norm = RMSNorm(config.dim, config.norm_eps)
def forward(self, x: Tensor, input_pos: Tensor, freqs_cis: Tensor, mask: Tensor) -> Tensor:
h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos)
out = h + self.feed_forward(self.ffn_norm(h))
return out
class Attention(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
assert config.dim % config.n_head == 0
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim
# key, query, value projections for all heads, but in a batch
self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False)
self.wo = nn.Linear(config.dim, config.dim, bias=False)
self.kv_cache = None
self.n_head = config.n_head
self.head_dim = config.head_dim
self.n_local_heads = config.n_local_heads
self.dim = config.dim
self._register_load_state_dict_pre_hook(self.load_hook)
def load_hook(self, state_dict, prefix, *args):
if prefix + "wq.weight" in state_dict:
wq = state_dict.pop(prefix + "wq.weight")
wk = state_dict.pop(prefix + "wk.weight")
wv = state_dict.pop(prefix + "wv.weight")
state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])
def forward(self, x: Tensor, freqs_cis: Tensor, mask: Tensor, input_pos: Optional[Tensor] = None) -> Tensor:
bsz, seqlen, _ = x.shape
kv_size = self.n_local_heads * self.head_dim
q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)
q = q.view(bsz, seqlen, self.n_head, self.head_dim)
k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim)
v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim)
q = apply_rotary_emb(q, freqs_cis)
k = apply_rotary_emb(k, freqs_cis)
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
if self.kv_cache is not None:
k, v = self.kv_cache.update(input_pos, k, v)
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0)
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim)
y = self.wo(y)
return y
class FeedForward(nn.Module):
def __init__(self, config: ModelArgs) -> None:
super().__init__()
self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False)
self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False)
self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False)
def forward(self, x: Tensor) -> Tensor:
return self.w2(F.silu(self.w1(x)) * self.w3(x))
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
def forward(self, x: Tensor) -> Tensor:
output = self._norm(x.float()).type_as(x)
return output * self.weight
def precompute_freqs_cis(
seq_len: int, n_elem: int, base: int = 10000,
dtype: torch.dtype = torch.bfloat16
) -> Tensor:
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
t = torch.arange(seq_len, device=freqs.device)
freqs = torch.outer(t, freqs)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
return cache.to(dtype=dtype)
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor:
xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
x_out2 = torch.stack(
[
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
],
-1,
)
x_out2 = x_out2.flatten(3)
return x_out2.type_as(x)