Skip to content

Commit 4f3786b

Browse files
skirpicheveendebakptmdickinson
authored
gh-101773: Optimize creation of Fractions in private methods (#101780)
This PR adds a private `Fraction._from_coprime_ints` classmethod for internal creations of `Fraction` objects, replacing the use of `_normalize=False` in the existing constructor. This speeds up creation of `Fraction` objects arising from calculations. The `_normalize` argument to the `Fraction` constructor has been removed. Co-authored-by: Pieter Eendebak <[email protected]> Co-authored-by: Mark Dickinson <[email protected]>
1 parent bb0cf8f commit 4f3786b

File tree

4 files changed

+50
-34
lines changed

4 files changed

+50
-34
lines changed

Lib/fractions.py

+46-33
Original file line numberDiff line numberDiff line change
@@ -183,7 +183,7 @@ class Fraction(numbers.Rational):
183183
__slots__ = ('_numerator', '_denominator')
184184

185185
# We're immutable, so use __new__ not __init__
186-
def __new__(cls, numerator=0, denominator=None, *, _normalize=True):
186+
def __new__(cls, numerator=0, denominator=None):
187187
"""Constructs a Rational.
188188
189189
Takes a string like '3/2' or '1.5', another Rational instance, a
@@ -279,12 +279,11 @@ def __new__(cls, numerator=0, denominator=None, *, _normalize=True):
279279

280280
if denominator == 0:
281281
raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
282-
if _normalize:
283-
g = math.gcd(numerator, denominator)
284-
if denominator < 0:
285-
g = -g
286-
numerator //= g
287-
denominator //= g
282+
g = math.gcd(numerator, denominator)
283+
if denominator < 0:
284+
g = -g
285+
numerator //= g
286+
denominator //= g
288287
self._numerator = numerator
289288
self._denominator = denominator
290289
return self
@@ -301,7 +300,7 @@ def from_float(cls, f):
301300
elif not isinstance(f, float):
302301
raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
303302
(cls.__name__, f, type(f).__name__))
304-
return cls(*f.as_integer_ratio())
303+
return cls._from_coprime_ints(*f.as_integer_ratio())
305304

306305
@classmethod
307306
def from_decimal(cls, dec):
@@ -313,7 +312,19 @@ def from_decimal(cls, dec):
313312
raise TypeError(
314313
"%s.from_decimal() only takes Decimals, not %r (%s)" %
315314
(cls.__name__, dec, type(dec).__name__))
316-
return cls(*dec.as_integer_ratio())
315+
return cls._from_coprime_ints(*dec.as_integer_ratio())
316+
317+
@classmethod
318+
def _from_coprime_ints(cls, numerator, denominator, /):
319+
"""Convert a pair of ints to a rational number, for internal use.
320+
321+
The ratio of integers should be in lowest terms and the denominator
322+
should be positive.
323+
"""
324+
obj = super(Fraction, cls).__new__(cls)
325+
obj._numerator = numerator
326+
obj._denominator = denominator
327+
return obj
317328

318329
def is_integer(self):
319330
"""Return True if the Fraction is an integer."""
@@ -380,9 +391,9 @@ def limit_denominator(self, max_denominator=1000000):
380391
# the distance from p1/q1 to self is d/(q1*self._denominator). So we
381392
# need to compare 2*(q0+k*q1) with self._denominator/d.
382393
if 2*d*(q0+k*q1) <= self._denominator:
383-
return Fraction(p1, q1, _normalize=False)
394+
return Fraction._from_coprime_ints(p1, q1)
384395
else:
385-
return Fraction(p0+k*p1, q0+k*q1, _normalize=False)
396+
return Fraction._from_coprime_ints(p0+k*p1, q0+k*q1)
386397

387398
@property
388399
def numerator(a):
@@ -703,13 +714,13 @@ def _add(a, b):
703714
nb, db = b._numerator, b._denominator
704715
g = math.gcd(da, db)
705716
if g == 1:
706-
return Fraction(na * db + da * nb, da * db, _normalize=False)
717+
return Fraction._from_coprime_ints(na * db + da * nb, da * db)
707718
s = da // g
708719
t = na * (db // g) + nb * s
709720
g2 = math.gcd(t, g)
710721
if g2 == 1:
711-
return Fraction(t, s * db, _normalize=False)
712-
return Fraction(t // g2, s * (db // g2), _normalize=False)
722+
return Fraction._from_coprime_ints(t, s * db)
723+
return Fraction._from_coprime_ints(t // g2, s * (db // g2))
713724

714725
__add__, __radd__ = _operator_fallbacks(_add, operator.add)
715726

@@ -719,13 +730,13 @@ def _sub(a, b):
719730
nb, db = b._numerator, b._denominator
720731
g = math.gcd(da, db)
721732
if g == 1:
722-
return Fraction(na * db - da * nb, da * db, _normalize=False)
733+
return Fraction._from_coprime_ints(na * db - da * nb, da * db)
723734
s = da // g
724735
t = na * (db // g) - nb * s
725736
g2 = math.gcd(t, g)
726737
if g2 == 1:
727-
return Fraction(t, s * db, _normalize=False)
728-
return Fraction(t // g2, s * (db // g2), _normalize=False)
738+
return Fraction._from_coprime_ints(t, s * db)
739+
return Fraction._from_coprime_ints(t // g2, s * (db // g2))
729740

730741
__sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
731742

@@ -741,15 +752,17 @@ def _mul(a, b):
741752
if g2 > 1:
742753
nb //= g2
743754
da //= g2
744-
return Fraction(na * nb, db * da, _normalize=False)
755+
return Fraction._from_coprime_ints(na * nb, db * da)
745756

746757
__mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
747758

748759
def _div(a, b):
749760
"""a / b"""
750761
# Same as _mul(), with inversed b.
751-
na, da = a._numerator, a._denominator
752762
nb, db = b._numerator, b._denominator
763+
if nb == 0:
764+
raise ZeroDivisionError('Fraction(%s, 0)' % db)
765+
na, da = a._numerator, a._denominator
753766
g1 = math.gcd(na, nb)
754767
if g1 > 1:
755768
na //= g1
@@ -761,7 +774,7 @@ def _div(a, b):
761774
n, d = na * db, nb * da
762775
if d < 0:
763776
n, d = -n, -d
764-
return Fraction(n, d, _normalize=False)
777+
return Fraction._from_coprime_ints(n, d)
765778

766779
__truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
767780

@@ -798,17 +811,17 @@ def __pow__(a, b):
798811
if b.denominator == 1:
799812
power = b.numerator
800813
if power >= 0:
801-
return Fraction(a._numerator ** power,
802-
a._denominator ** power,
803-
_normalize=False)
804-
elif a._numerator >= 0:
805-
return Fraction(a._denominator ** -power,
806-
a._numerator ** -power,
807-
_normalize=False)
814+
return Fraction._from_coprime_ints(a._numerator ** power,
815+
a._denominator ** power)
816+
elif a._numerator > 0:
817+
return Fraction._from_coprime_ints(a._denominator ** -power,
818+
a._numerator ** -power)
819+
elif a._numerator == 0:
820+
raise ZeroDivisionError('Fraction(%s, 0)' %
821+
a._denominator ** -power)
808822
else:
809-
return Fraction((-a._denominator) ** -power,
810-
(-a._numerator) ** -power,
811-
_normalize=False)
823+
return Fraction._from_coprime_ints((-a._denominator) ** -power,
824+
(-a._numerator) ** -power)
812825
else:
813826
# A fractional power will generally produce an
814827
# irrational number.
@@ -832,15 +845,15 @@ def __rpow__(b, a):
832845

833846
def __pos__(a):
834847
"""+a: Coerces a subclass instance to Fraction"""
835-
return Fraction(a._numerator, a._denominator, _normalize=False)
848+
return Fraction._from_coprime_ints(a._numerator, a._denominator)
836849

837850
def __neg__(a):
838851
"""-a"""
839-
return Fraction(-a._numerator, a._denominator, _normalize=False)
852+
return Fraction._from_coprime_ints(-a._numerator, a._denominator)
840853

841854
def __abs__(a):
842855
"""abs(a)"""
843-
return Fraction(abs(a._numerator), a._denominator, _normalize=False)
856+
return Fraction._from_coprime_ints(abs(a._numerator), a._denominator)
844857

845858
def __int__(a, _index=operator.index):
846859
"""int(a)"""

Lib/test/test_fractions.py

+1
Original file line numberDiff line numberDiff line change
@@ -488,6 +488,7 @@ def testArithmetic(self):
488488
self.assertEqual(F(5, 6), F(2, 3) * F(5, 4))
489489
self.assertEqual(F(1, 4), F(1, 10) / F(2, 5))
490490
self.assertEqual(F(-15, 8), F(3, 4) / F(-2, 5))
491+
self.assertRaises(ZeroDivisionError, operator.truediv, F(1), F(0))
491492
self.assertTypedEquals(2, F(9, 10) // F(2, 5))
492493
self.assertTypedEquals(10**23, F(10**23, 1) // F(1))
493494
self.assertEqual(F(5, 6), F(7, 3) % F(3, 2))

Lib/test/test_numeric_tower.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -145,7 +145,7 @@ def test_fractions(self):
145145
# The numbers ABC doesn't enforce that the "true" division
146146
# of integers produces a float. This tests that the
147147
# Rational.__float__() method has required type conversions.
148-
x = F(DummyIntegral(1), DummyIntegral(2), _normalize=False)
148+
x = F._from_coprime_ints(DummyIntegral(1), DummyIntegral(2))
149149
self.assertRaises(TypeError, lambda: x.numerator/x.denominator)
150150
self.assertEqual(float(x), 0.5)
151151

Original file line numberDiff line numberDiff line change
@@ -0,0 +1,2 @@
1+
Optimize :class:`fractions.Fraction` for small components. The private argument
2+
``_normalize`` of the :class:`fractions.Fraction` constructor has been removed.

0 commit comments

Comments
 (0)