diff --git a/docs/source/learn/core_notebooks/pymc_aesara.ipynb b/docs/source/learn/core_notebooks/pymc_aesara.ipynb index 93d212d4ed..5cd1264883 100644 --- a/docs/source/learn/core_notebooks/pymc_aesara.ipynb +++ b/docs/source/learn/core_notebooks/pymc_aesara.ipynb @@ -33,7 +33,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 7, "metadata": { "hidden": true, "pycharm": { @@ -46,8 +46,8 @@ "output_type": "stream", "text": [ "\n", - "# Aesara version: 2.6.6\n", - "# PyMC version: 4.0.0\n", + "# Aesara version: 2.7.9\n", + "# PyMC version: 4.1.4\n", "\n" ] } @@ -110,7 +110,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 8, "metadata": { "pycharm": { "name": "#%%\n" @@ -159,7 +159,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 9, "metadata": { "pycharm": { "name": "#%%\n" @@ -184,7 +184,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 10, "metadata": { "pycharm": { "name": "#%%\n" @@ -209,7 +209,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 11, "metadata": { "pycharm": { "name": "#%%\n" @@ -230,16 +230,16 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 5, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "aesara.dprint(obj=w)" + "aesara.dprint(w)" ] }, { @@ -255,7 +255,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 12, "metadata": { "pycharm": { "name": "#%%\n" @@ -279,7 +279,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 13, "metadata": { "pycharm": { "name": "#%%\n" @@ -292,7 +292,7 @@ "array([0., 1.])" ] }, - "execution_count": 7, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -316,7 +316,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 14, "metadata": { "pycharm": { "name": "#%%\n" @@ -329,7 +329,7 @@ "array([0., 1.])" ] }, - "execution_count": 8, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -351,7 +351,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 15, "metadata": { "pycharm": { "name": "#%%\n" @@ -364,7 +364,7 @@ "array([0., 1.])" ] }, - "execution_count": 9, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -388,7 +388,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 16, "metadata": { "pycharm": { "name": "#%%\n" @@ -407,10 +407,10 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 10, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -438,7 +438,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 17, "metadata": { "pycharm": { "name": "#%%\n" @@ -459,10 +459,10 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 11, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -487,7 +487,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 18, "metadata": { "pycharm": { "name": "#%%\n" @@ -505,10 +505,10 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 12, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -547,7 +547,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 19, "metadata": { "pycharm": { "name": "#%%\n" @@ -595,7 +595,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 20, "metadata": { "pycharm": { "name": "#%%\n" @@ -660,7 +660,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 21, "metadata": { "pycharm": { "name": "#%%\n" @@ -681,10 +681,10 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 15, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -708,7 +708,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 22, "metadata": { "pycharm": { "name": "#%%\n" @@ -721,7 +721,7 @@ "[x, y]" ] }, - "execution_count": 16, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -744,7 +744,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 23, "metadata": { "pycharm": { "name": "#%%\n" @@ -770,7 +770,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 24, "metadata": { "pycharm": { "name": "#%%\n" @@ -791,10 +791,10 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 18, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -816,7 +816,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 25, "metadata": { "pycharm": { "name": "#%%\n" @@ -838,10 +838,10 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 19, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -865,7 +865,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 26, "metadata": { "pycharm": { "name": "#%%\n" @@ -878,7 +878,7 @@ "array([1. , 2.71828183])" ] }, - "execution_count": 20, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -913,7 +913,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 27, "metadata": { "pycharm": { "name": "#%%\n" @@ -933,10 +933,10 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 21, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -949,7 +949,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 28, "metadata": { "pycharm": { "name": "#%%\n" @@ -962,7 +962,7 @@ "array([1. , 2.71828183])" ] }, - "execution_count": 22, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -988,7 +988,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 29, "metadata": { "pycharm": { "name": "#%%\n" @@ -997,7 +997,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAF1CAYAAAAeOhj3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfwUlEQVR4nO3deZxkZX3v8c+X1V2WaRGY0SGKJogmeieEJCQXJcYF4xCv4UJEUUm4GterURFURMVgTFyiiQmRVQhIQCMJeCPiFhNBB0VkU0ccZBCYEUQEFQV/949zJhZN90zPTFdV99Of9+vVr66z1Dm/U1Vd3zrP89TpVBWSJGl+22LcBUiSpM1noEuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0w0DUWSd6c5LRZ3maSnJTk+0m+OJvbXkiSPD/J5zdi/VVJfq+/fWSSD85iLbcn+aX+9slJ3jaL2/77JG+cre1trtl+7LTwbDXuAjRaSfYB/hJ4DHA3cBXwyqr60lgLmx37AE8GFlfVHeMuZiGqqrfPZL0knwFOq6r1BlhVPWA26kryfOBPqmqfgW2/aDa2PVtm+thJ0zHQF5AkDwL+DXgxcBawDfA7wJ3jrGsWPRxYNV2YJ9mqqu4acU1D1+JxtXhM0rDZ5L6wPAqgqs6oqrur6sdV9YmqugwgySOSfCrJzUm+l+T0JNutu3PftPqaJJcluSPJCUl2SvLxJD9M8skk2/frLk1SSQ5P8t0kNyT58+kKS7J3kv9KcmuSrybZd2DZ85Nc0+/j20meM8X9DwM+CPxm30x7TJJ9k6xO8rokNwInJdk2yXv6mr7b396238a69V+bZE1f8wFJnp7kG0luSXLkeo5h/yRfSXJbkuuSvHk9667b16sH9vWCgeUPTnJqkrVJrk3yhiRbDDwe/5nk3UluBt7cN0f/Xf9c3N4vf2h/fN9PcnWSxw9s/4gk3+of0yuT/OF0tU5R+3P7mm5OctSkZf/dlZLkPklO69e7NcmX+tfLsXQfJN/f1/r+fv1K8pIk3wS+OTDvkQO7WJTkgr7uzyZ5eL/eutfbVgO1fCbJnyT5FeDv+cVr49Z++T2a8JP8aZKV/fN8bpJdBpZVkhcl+WZ/LH+bJNM8PpO3u2+S1QPTr0tyfX8MX0+y3xSP3brjOTTJd9L9PR41sI37Jjmlf26v6l+zq5nG+urPpO6vyY9l/zi+Ld3f5+1J/jXJjuneH27rn9elk/b18nR/s99L8s4kWyTZpn9sHzuw7kOS/CjJxHS1a+YM9IXlG8Dd/RvB09KH74AAfwHsAvwKsAR486R1/hdds/ajgD8APg4cCUzQvZ5ePmn9JwK7A78PvC59X+s9dprsCpwHvA3YAfhz4JwkE0nuD/wN8LSqeiDwW8Clk7dRVScALwK+UFUPqKqj+0UP7bf5cOBw4Chgb+DXgF8F9gLeMLCphwL3AXYF3gT8I3AI8D/oQuiNSXabvP/eHcDzgO2A/YEXJzlgmnXX7evB/b4OA/524Dl5X7/sl4D/2W/3BQP3/Q3gGmAn4Nh+3oH9sSyia3X5AvDlfvps4F0D9/9WfzwPBo4BTkuy83pqBSDJHsAHgOfSvU52BBZPs/qh/faX9Ou9CPhxVR0F/Afw0v65eunAfQ7oj22Pabb5HOCt/TFdCpy+oZqr6iru+drYborjehLda/9AYGfgWuDMSas9A/h14HH9ek/Z0L6n2M+jgZcCv96/np8CrFrPXfYBHg3sB7yp/3ACcDSwlO718WS61+iGbE79B9E957sCj6B7bZ1E97d1VV/PoD8ElgFPAJYDL6yqn9I9poO1HgxcWFVrN6IWTcNAX0Cq6ja6N4iiC6q1/ZnITv3ylVV1QVXd2f+BvYsuTAa9r6puqqrr6d6UL66qr1TVT4CPAo+ftP4xVXVHVX2N7g3g4ClKOwQ4v6rOr6qfV9UFwArg6f3ynwN7JrlvVd1QVVdsxGH/HDi6P6Yf0wXCW6pqTX+Mx9C9Ua3zM+DYqvoZ3ZvPIuC9VfXDfr9X0n0QuJeq+kxVfa0/hsuAM7j34zfoZ30tP6uq84HbgUcn2ZLuDfT1/X5XAX89qc7vVtX7ququ/rgAPlpVlww8Fz+pqlOr6m7gwww8N1X1z1X13b7WD9OdEe+1gccS4NnAv1XV56rqTuCNdI/xdMe3I/DIvkXokv41uD5/UVW3DBzTZOcN7PsourPuJTOoe0OeA5xYVV/ut/36fttLB9Y5rqpurarvAJ+m+1C4se4GtgX2SLJ1Va2qqm+tZ/1j+pa0rwJf5RevvQOBt1fV96tqNd2H3g3ZnPpPqqpvVdUP6D7Ef6uqPtl3i/wz9/67f0f/PH4HeA+/+Ls/BTh4oHXjucCHNqIOrYeBvsBU1VVV9fyqWgzsSXeW9R6Avjn0zL458DbgNLpAG3TTwO0fTzE9eRDTdQO3r+33N9nDgT/qmwJv7ZtE9wF27vvD/zfdGdYNSc5L8sszP2LW9gG3zi59HdPVdHMfgOuOBzZ8jAAk+Y0kn07XTP6DvubJj9+gmyf1E/+o3/YiYOsp6tx1YHrwcV1nxs9NkucluXTg8d5zA7Wus8vgvvvn5+Zp1v0Q8O/Amem6N/4yydYb2P5UxzXl8qq6HbiFqV9TG+ser4t+2zdzz8f8xoHb656rjVJVK4FX0rV8ren/3tZX/3T7vMfzwIYft/VtayZm5e++qi7u971v/3f8SODcjahD62GgL2BVdTVwMt2bOcDb6c7eH1tVD6I7c56yn3AjDJ49PQz47hTrXAd8qKq2G/i5f1Ud19f571X1ZLqm0KvpWhdmavK/E/wu3QeIDdW0Kf6J7s1pSVU9mK7fdlMev+/Rnd1OrvP6gelN/jeJ6fqd/5Gu6XfHvgn6cmZW6w0MPKdJ7kd3Fn4vfcvDMVW1B11XyTPoug7WV/+Gjmtw3w+ga/L9Ll13B8D9BtZ96EZs9x6vi76rZ0fu+ZjP1B3rqYOq+qd+tP3D+7resQn7uIF7dnVsTivFeuvdROv7uz+F7r3lucDZkz5wazMY6AtIkl9ONwhrcT+9hK4p7KJ+lQfSNfv+oO/Xfs0s7PaNSe6X5DF0fcAfnmKd04A/SPKUJFumG0y1b5LFfavB8v4N9s6+vumaeGfiDOANff/8Irp+8tn6PvwDgVuq6idJ9gL+eFM20rcQnAUcm+SBfQC/ahbrvD9dkKwFSDcYb8/13uMXzgaekWSfJNsAb2Ga95EkT0zy2L4L4Ta6Dynrnrub6Pp/N9bTB/b9VuCiqrqu7z65Hjikfw29kK6vd52bgMX9/aZyBvCCJL+WbpDk2+m6k1ZtQo2X9nXukOShdGfkQNeHnuRJ/T5+Qnd2uymv57OA1yfZvv9bfemG7rCBen83ycOSPJiuu2FzvaavbQnwCu75d38aXR/7IcCps7Av9Qz0heWHdAOOLk5yB12QXw68ul9+DN0glh/QDVL7yCzs87PASuBC4K+q6hOTV6iq6+gGzhxJFzLX0X2Y2KL/eRXdJ/xb6PqkX7wZ9byNrn/+MuBrdIPGZutiJX8GvCXJD+k+KJy1Gdt6Gd2Z0zXA5+nO/k/c7AqBqrqSrk/+C3RB91jgP2d43yuAl/T13AB8H5hudPVD6T4A3EY3cOqz/KK/9L3As9ON0p5J/+86/0Q3AOsWuoGKgwOs/pTudXMz3XUW/mtg2aeAK4Abk3xviuP6JN14gHP643oE3TiGTfEhuv7uVcAnuGeYbQscR9cKcyPwEDYtQN9C97h/G/gk3eO8SV8/7cesfJjub+ISuq+2bq6P9du6lO695ISB/V1H93dXdONwNEtStcktd9K0+sFE3wa2Lr9PLA1VkhcDB1XV+gZhjqqWAnbvxwtMt86JdAM73zDdOtp4XlhGkuaZ/iuGv0TXyrI7XSvb+8da1Az1H/afxb1Hxmsz2eQuSfPPNsA/0HWjfYquifvvxlrRDCR5K1033zur6tvjrqc1NrlLktQAz9AlSWqAgS5JUgPm9aC4RYsW1dKlS8ddhiRJI3PJJZd8r6ru9Q9t5nWgL126lBUrVoy7DEmSRibJtVPNt8ldkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0w0CVJasC8/m9rkjbf0iPOG9m+Vh23/8j2JS00nqFLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGeOlXaQ4a5eVYJbXBM3RJkhpgoEuS1AADXZKkBgwt0JOcmGRNkssnzX9ZkquTXJHkLwfmvz7JyiRfT/KUYdUlSVKLhjko7mTg/cCp62YkeSKwHPjVqrozyUP6+XsABwGPAXYBPpnkUVV19xDrkySpGUM7Q6+qzwG3TJr9YuC4qrqzX2dNP385cGZV3VlV3wZWAnsNqzZJkloz6j70RwG/k+TiJJ9N8uv9/F2B6wbWW93Pu5ckhydZkWTF2rVrh1yuJEnzw6gDfStgB2Bv4DXAWUmyMRuoquOrallVLZuYmBhGjZIkzTujDvTVwEeq80Xg58Ai4HpgycB6i/t5kiRpBkYd6P8CPBEgyaOAbYDvAecCByXZNsluwO7AF0dcmyRJ89bQRrknOQPYF1iUZDVwNHAicGL/VbafAodWVQFXJDkLuBK4C3iJI9wlSZq5oQV6VR08zaJDpln/WODYYdUjSVLLvFKcJEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGjC0QE9yYpI1SS6fYtmrk1SSRf10kvxNkpVJLkvyhGHVJUlSi7Ya4rZPBt4PnDo4M8kS4PeB7wzMfhqwe//zG8AH+t+SGrL0iPNGtq9Vx+0/sn1Jc8HQztCr6nPALVMsejfwWqAG5i0HTq3ORcB2SXYeVm2SJLVmpH3oSZYD11fVVyct2hW4bmB6dT9vqm0cnmRFkhVr164dUqWSJM0vIwv0JPcDjgTetDnbqarjq2pZVS2bmJiYneIkSZrnhtmHPtkjgN2AryYBWAx8OclewPXAkoF1F/fzJEnSDIzsDL2qvlZVD6mqpVW1lK5Z/QlVdSNwLvC8frT73sAPquqGUdUmSdJ8N8yvrZ0BfAF4dJLVSQ5bz+rnA9cAK4F/BP5sWHVJktSioTW5V9XBG1i+dOB2AS8ZVi2SJLXOK8VJktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBhjokiQ1wECXJKkBW427AEkahqVHnDeyfa06bv+R7UuajmfokiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSAwx0SZIaMLRAT3JikjVJLh+Y984kVye5LMlHk2w3sOz1SVYm+XqSpwyrLkmSWjTMM/STgadOmncBsGdVPQ74BvB6gCR7AAcBj+nv83dJthxibZIkNWVogV5VnwNumTTvE1V1Vz95EbC4v70cOLOq7qyqbwMrgb2GVZskSa0ZZx/6C4GP97d3Ba4bWLa6nydJkmZgLJd+TXIUcBdw+ibc93DgcICHPexhs1yZNL1RXkpUkjbWyM/QkzwfeAbwnKqqfvb1wJKB1Rb38+6lqo6vqmVVtWxiYmKotUqSNF+MNNCTPBV4LfDMqvrRwKJzgYOSbJtkN2B34IujrE2SpPlsaE3uSc4A9gUWJVkNHE03qn1b4IIkABdV1Yuq6ookZwFX0jXFv6Sq7h5WbZIktWZogV5VB08x+4T1rH8scOyw6pEkqWVeKU6SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNGFqgJzkxyZoklw/M2yHJBUm+2f/evp+fJH+TZGWSy5I8YVh1SZLUomGeoZ8MPHXSvCOAC6tqd+DCfhrgacDu/c/hwAeGWJckSc0ZWqBX1eeAWybNXg6c0t8+BThgYP6p1bkI2C7JzsOqTZKk1oy6D32nqrqhv30jsFN/e1fguoH1Vvfz7iXJ4UlWJFmxdu3a4VUqSdI8MrZBcVVVQG3C/Y6vqmVVtWxiYmIIlUmSNP+MOtBvWteU3v9e08+/HlgysN7ifp4kSZqBUQf6ucCh/e1DgY8NzH9eP9p9b+AHA03zkiRpA7Ya1oaTnAHsCyxKsho4GjgOOCvJYcC1wIH96ucDTwdWAj8CXjCsuiRJatHQAr2qDp5m0X5TrFvAS4ZViyRJrfNKcZIkNcBAlySpATMK9CQXzmSeJEkaj/X2oSe5D3A/uoFt2wPpFz2IaS78IkmSRm9Dg+L+D/BKYBfgEn4R6LcB7x9eWZIkaWOsN9Cr6r3Ae5O8rKreN6KaJEnSRprR19aq6n1JfgtYOnifqjp1SHVJkqSNMKNAT/Ih4BHApcDd/ewCDHRJkuaAmV5YZhmwR38BGEmSNMfM9HvolwMPHWYhkiRp0830DH0RcGWSLwJ3rptZVc8cSlWSJGmjzDTQ3zzMIiRJ0uaZ6Sj3zw67EEmStOlmOsr9h3Sj2gG2AbYG7qiqBw2rMEmSNHMzPUN/4LrbSQIsB/YeVlGSJGnjbPR/W6vOvwBPmf1yJEnSpphpk/uzBia3oPte+k+GUpEkSdpoMx3l/gcDt+8CVtE1u0uSpDlgpn3oLxh2IZIkadPNqA89yeIkH02ypv85J8niYRcnSZJmZqaD4k4CzqX7v+i7AP/az5MkSXPATAN9oqpOqqq7+p+TgYkh1iVJkjbCTAP95iSHJNmy/zkEuHmYhUmSpJmbaaC/EDgQuBG4AXg28Pwh1SRJkjbSTL+29hbg0Kr6PkCSHYC/ogt6SZI0ZjMN9MetC3OAqrolyeOHVJM0Y0uPOG/cJUjSnDDTJvctkmy/bqI/Q5/phwFJkjRkMw3lvwa+kOSf++k/Ao7d1J0m+b/An9D9B7evAS8AdgbOBHYELgGeW1U/3dR9SJK0kMzoDL2qTgWeBdzU/zyrqj60KTtMsivwcmBZVe0JbAkcBLwDeHdVPRL4PnDYpmxfkqSFaMbN5lV1JXDlLO73vkl+BtyPbuT8k4A/7pefArwZ+MAs7U+SpKZt9L9P3VxVdT3dCPnv0AX5D+ia2G+tqrv61VYDu466NkmS5quRB3o/uG45sBvdZWTvDzx1I+5/eJIVSVasXbt2SFVKkjS/jDzQgd8Dvl1Va6vqZ8BHgN8GtkuyrgtgMXD9VHeuquOrallVLZuY8OqzkiTBeAL9O8DeSe6XJMB+dH3zn6a7Ah3AocDHxlCbJEnz0jj60C8Gzga+TPeVtS2A44HXAa9KspLuq2snjLo2SZLmq7FcHKaqjgaOnjT7GmCvMZQjSdK8N44md0mSNMsMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQH+T3NJ2kxLjzhvZPtaddz+I9uX5hfP0CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBowl0JNsl+TsJFcnuSrJbybZIckFSb7Z/95+HLVJkjQfjesM/b3A/6uqXwZ+FbgKOAK4sKp2By7spyVJ0gyMPNCTPBj4XeAEgKr6aVXdCiwHTulXOwU4YNS1SZI0X43jDH03YC1wUpKvJPlgkvsDO1XVDf06NwI7TXXnJIcnWZFkxdq1a0dUsiRJc9s4An0r4AnAB6rq8cAdTGper6oCaqo7V9XxVbWsqpZNTEwMvVhJkuaDcQT6amB1VV3cT59NF/A3JdkZoP+9Zgy1SZI0L4080KvqRuC6JI/uZ+0HXAmcCxzazzsU+Nioa5Mkab7aakz7fRlwepJtgGuAF9B9uDgryWHAtcCBY6pNkqR5ZyyBXlWXAsumWLTfiEuRJKkJXilOkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQFjC/QkWyb5SpJ/66d3S3JxkpVJPpxkm3HVJknSfDPOM/RXAFcNTL8DeHdVPRL4PnDYWKqSJGkeGkugJ1kM7A98sJ8O8CTg7H6VU4ADxlGbJEnz0bjO0N8DvBb4eT+9I3BrVd3VT68Gdh1DXZIkzUsjD/QkzwDWVNUlm3j/w5OsSLJi7dq1s1ydJEnz0zjO0H8beGaSVcCZdE3t7wW2S7JVv85i4Pqp7lxVx1fVsqpaNjExMYp6JUma80Ye6FX1+qpaXFVLgYOAT1XVc4BPA8/uVzsU+Nioa5Mkab6aS99Dfx3wqiQr6frUTxhzPZIkzRtbbXiV4amqzwCf6W9fA+w1znokSZqv5tIZuiRJ2kQGuiRJDTDQJUlqgIEuSVIDxjooTpK0cZYecd7I9rXquP1Hti9tPs/QJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ3wwjKadaO88IUkqeMZuiRJDTDQJUlqgIEuSVIDDHRJkhrgoLgFwoFqktQ2z9AlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqwMgDPcmSJJ9OcmWSK5K8op+/Q5ILknyz/739qGuTJGm+GscZ+l3Aq6tqD2Bv4CVJ9gCOAC6sqt2BC/tpSZI0AyMP9Kq6oaq+3N/+IXAVsCuwHDilX+0U4IBR1yZJ0nw11j70JEuBxwMXAztV1Q39ohuBnaa5z+FJViRZsXbt2tEUKknSHDe2QE/yAOAc4JVVddvgsqoqoKa6X1UdX1XLqmrZxMTECCqVJGnuG0ugJ9maLsxPr6qP9LNvSrJzv3xnYM04apMkaT4axyj3ACcAV1XVuwYWnQsc2t8+FPjYqGuTJGm+2moM+/xt4LnA15Jc2s87EjgOOCvJYcC1wIFjqE2SpHlp5IFeVZ8HMs3i/UZZiyRJrfBKcZIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDVgHJd+lSTNA0uPOG9k+1p13P4j21erPEOXJKkBBrokSQ0w0CVJaoCBLklSAxwUJ0kaOwfgbT7P0CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAX4PXZK0oLT6nXfP0CVJaoCBLklSA2xyH6NRNvtIktrmGbokSQ2Yc4Ge5KlJvp5kZZIjxl2PJEnzwZwK9CRbAn8LPA3YAzg4yR7jrUqSpLlvrvWh7wWsrKprAJKcCSwHrhzFzu3TliTNV3PqDB3YFbhuYHp1P0+SJK3HXDtD36AkhwOH95O3J/n6GMtZBHxvjPsfJ499YfLYF6aFfOywGcefd8xyJZ2HTzVzrgX69cCSgenF/bz/VlXHA8ePsqjpJFlRVcvGXcc4eOwe+0LjsS/MY4f5c/xzrcn9S8DuSXZLsg1wEHDumGuSJGnOm1Nn6FV1V5KXAv8ObAmcWFVXjLksSZLmvDkV6ABVdT5w/rjrmKE50fQ/Jh77wuSxL0wL+dhhnhx/qmrcNUiSpM001/rQJUnSJjDQN0OStya5LMmlST6RZJdx1zQqSd6Z5Or++D+aZLtx1zRKSf4oyRVJfp5kzo9+nQ0L9bLMSU5MsibJ5eOuZdSSLEny6SRX9q/3V4y7plFJcp8kX0zy1f7Yjxl3TRtik/tmSPKgqrqtv/1yYI+qetGYyxqJJL8PfKofyPgOgKp63ZjLGpkkvwL8HPgH4M+rasWYSxqq/rLM3wCeTHfBpy8BB1fVSK7iOE5Jfhe4HTi1qvYcdz2jlGRnYOeq+nKSBwKXAAcskOc9wP2r6vYkWwOfB15RVReNubRpeYa+GdaFee/+wIL5dFRVn6iqu/rJi+iuGbBgVNVVVTXOixqN2n9flrmqfgqsuyxz86rqc8At465jHKrqhqr6cn/7h8BVLJCrd1bn9n5y6/5nTr/HG+ibKcmxSa4DngO8adz1jMkLgY+PuwgNlZdlXuCSLAUeD1w85lJGJsmWSS4F1gAXVNWcPnYDfQOSfDLJ5VP8LAeoqqOqaglwOvDS8VY7uzZ07P06RwF30R1/U2Zy/NJCkOQBwDnAKye1TDatqu6uql+ja4HcK8mc7nKZc99Dn2uq6vdmuOrpdN+fP3qI5YzUho49yfOBZwD7VYODMTbiuV8INnhZZrWp7z8+Bzi9qj4y7nrGoapuTfJp4KnAnB0c6Rn6Zkiy+8DkcuDqcdUyakmeCrwWeGZV/Wjc9WjovCzzAtQPDDsBuKqq3jXuekYpycS6b+8kuS/dgNA5/R7vKPfNkOQc4NF0o52vBV5UVQvirCXJSmBb4OZ+1kULZYQ/QJI/BN4HTAC3ApdW1VPGWtSQJXk68B5+cVnmY8db0WgkOQPYl+4/bt0EHF1VJ4y1qBFJsg/wH8DX6N7nAI7sr+jZtCSPA06he71vAZxVVW8Zb1XrZ6BLktQAm9wlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDfj/5JXosFuF6EMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAF1CAYAAAAeOhj3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAenElEQVR4nO3deZhkdX3v8feH1Ygo6EzYcZSgCS7BZEK8ueglGiOCEfUmBK4aUJMRryT6ZBNBZVEMxj2aaDAgIIiQEBIS8AZEozERddAR2VTAISwDDIPIohKB7/3jnA41Pd0zPUtVdf/6/XqefrrqV6fO+Z5Ty6fO7/zqVKoKSZI0t2027gIkSdLGM9AlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOgaiyTHJTlzE88zST6R5PtJvrop5z2fJDk8yZfWY/rlSX6tv3x0kr/ZhLXcl+TJ/eXTkrxzE877Y0netqnmt7E29bbT/LPFuAvQaCXZF/hz4GnAQ8A1wJuq6mtjLWzT2Bd4AbBrVd0/7mLmo6p610ymS/KvwJlVtdYAq6rHbIq6khwO/G5V7Tsw7yM2xbw3lZluO2k6Bvo8kuSxwD8DrwfOBbYCngM8MM66NqEnAsunC/MkW1TVgyOuaehaXK8W10kaNrvc55enAFTV2VX1UFX9qKourqorAJLskeRzSVYluTPJWUm2m7hz37X6J0muSHJ/klOS7JDkM0nuTfLZJNv30y5KUkmWJLk1yYokfzxdYUmeneQ/ktyd5JtJ9hu47fAkN/TL+F6SV0xx/9cCfwP8j76b9vgk+yW5Ocmbk9wGfCLJ1kk+2Nd0a395634eE9P/aZI7+ppfmuSAJN9JcleSo9eyDgcm+UaSe5LclOS4tUw7saw/GljWqwduf1ySM5KsTHJjkrcm2Wxge/x7kg8kWQUc13dH/1X/WNzX375jv37fT3JtkmcNzP+oJNf32/TqJC+brtYpan9VX9OqJMdMuu2/D6UkeVSSM/vp7k7ytf75ciLdB8mP9LV+pJ++krwhyXeB7w60/czAIhYkuaSv+wtJnthPN/F822Kgln9N8rtJfg74GI88N+7ub1+tCz/J7yW5rn+cL0iy88BtleSIJN/t1+Uvk2Sa7TN5vvsluXng+puT3NKvw7eTPH+KbTexPocl+c90r8djBubxU0lO7x/ba/rn7M1MY231Z9Lhr8nbst+O70z3+rwvyT8leUK694d7+sd10aRl/UG61+ydSd6TZLMkW/Xb9hkD0/50kh8mWThd7Zo5A31++Q7wUP9G8KL04TsgwJ8BOwM/B+wGHDdpmv9N1639FOA3gM8ARwML6Z5PfzBp+l8F9gR+HXhz+mOtqy002QW4EHgn8Hjgj4HzkixMsg3wF8CLqmpb4FeAZZPnUVWnAEcAX66qx1TVsf1NO/bzfCKwBDgGeDawN/DzwD7AWwdmtSPwKGAX4O3Ax4FXAr9IF0JvS/Kkycvv3Q/8DrAdcCDw+iQvnWbaiWU9rl/Wa4G/HHhMPtzf9mTgf/XzffXAfX8ZuAHYATixbzu4X5cFdL0uXwa+3l//O+D9A/e/vl+fxwHHA2cm2WkttQKQZC/go8Cr6J4nTwB2nWbyw/r579ZPdwTwo6o6Bvg34Mj+sTpy4D4v7ddtr2nm+QrgHf06LQPOWlfNVXUNqz83tptivZ5H99w/GNgJuBH49KTJXgz8EvDMfroXrmvZUyznqcCRwC/1z+cXAsvXcpd9gacCzwfe3n84ATgWWET3/HgB3XN0XTam/kPoHvNdgD3onlufoHttXdPXM+hlwGLgF4CDgNdU1X/RbdPBWg8FLq2qletRi6ZhoM8jVXUP3RtE0QXVyn5PZIf+9uuq6pKqeqB/gb2fLkwGfbiqbq+qW+jelL9SVd+oqh8D5wPPmjT98VV1f1V9i+4N4NApSnslcFFVXVRVD1fVJcBS4ID+9oeBpyf5qapaUVVXrcdqPwwc26/Tj+gC4YSquqNfx+Pp3qgm/AQ4sap+QvfmswD4UFXd2y/3aroPAmuoqn+tqm/163AFcDZrbr9BP+lr+UlVXQTcBzw1yeZ0b6Bv6Ze7HHjfpDpvraoPV9WD/XoBnF9Vlw88Fj+uqjOq6iHgHAYem6r626q6ta/1HLo94n3WsS0BfhP456r6YlU9ALyNbhtPt35PAH6m7xG6vH8Ors2fVdVdA+s02YUDyz6Gbq97txnUvS6vAE6tqq/3835LP+9FA9OcVFV3V9V/Ap+n+1C4vh4Ctgb2SrJlVS2vquvXMv3xfU/aN4Fv8shz72DgXVX1/aq6me5D77psTP2fqKrrq+oHdB/ir6+qz/aHRf6WNV/37+4fx/8EPsgjr/vTgUMHejdeBXxyPerQWhjo80xVXVNVh1fVrsDT6fayPgjQd4d+uu8OvAc4ky7QBt0+cPlHU1yfPIjppoHLN/bLm+yJwG/1XYF3912i+wI79cfDf5tuD2tFkguT/OzM15iVfcBN2LmvY7qaVvUBOLE+sO51BCDJLyf5fLpu8h/0NU/efoNWTTpO/MN+3guALaeoc5eB64PbdcKMH5skv5Nk2cD2fvo6ap2w8+Cy+8dn1TTTfhL4F+DT6Q5v/HmSLdcx/6nWa8rbq+o+4C6mfk6tr9WeF/28V7H6Nr9t4PLEY7Vequo64E10PV939K+3tdU/3TJXexxY93Zb27xmYpO87qvqK/2y9+tfxz8DXLAedWgtDPR5rKquBU6jezMHeBfd3vszquqxdHvOUx4nXA+De0+7A7dOMc1NwCeraruBv22q6qS+zn+pqhfQdYVeS9e7MFOTf07wVroPEOuqaUN8iu7NabeqehzdcdsN2X530u3dTq7zloHrG/wziemOO3+cruv3CX0X9JXMrNYVDDymSR5Ntxe+hr7n4fiq2ovuUMmL6Q4drK3+da3X4LIfQ9fleyvd4Q6ARw9Mu+N6zHe150V/qOcJrL7NZ+r+tdRBVX2qH23/xL6ud2/AMlaw+qGOjemlWGu9G2htr/vT6d5bXgX83aQP3NoIBvo8kuRn0w3C2rW/vhtdV9hl/STb0nX7/qA/rv0nm2Cxb0vy6CRPozsGfM4U05wJ/EaSFybZPN1gqv2S7Nr3GhzUv8E+0Nc3XRfvTJwNvLU/Pr+A7jj5pvo+/LbAXVX14yT7AP9nQ2bS9xCcC5yYZNs+gP9wE9a5DV2QrARINxjv6Wu9xyP+Dnhxkn2TbAWcwDTvI0l+Nckz+kMI99B9SJl47G6nO/67vg4YWPY7gMuq6qb+8MktwCv759Br6I71Trgd2LW/31TOBl6dZO90gyTfRXc4afkG1Lisr/PxSXak2yMHumPoSZ7XL+PHdHu3G/J8Phd4S5Lt+9fqkeu6wzrqfW6S3ZM8ju5ww8b6k7623YA3svrr/ky6Y+yvBM7YBMtSz0CfX+6lG3D0lST30wX5lcAf9bcfTzeI5Qd0g9T+fhMs8wvAdcClwHur6uLJE1TVTXQDZ46mC5mb6D5MbNb//SHdJ/y76I5Jv34j6nkn3fH5K4Bv0Q0a21QnK/m/wAlJ7qX7oHDuRszr9+n2nG4AvkS393/qRlcIVNXVdMfkv0wXdM8A/n2G970KeENfzwrg+8B0o6t3pPsAcA/dwKkv8Mjx0g8Bv5lulPZMjv9O+BTdAKy76AYqDg6w+j26580quvMs/MfAbZ8DrgJuS3LnFOv1WbrxAOf167UH3TiGDfFJuuPdy4GLWT3MtgZOouuFuQ34aTYsQE+g2+7fAz5Lt5036Oun/ZiVc+heE5fTfbV1Y/1jP69ldO8lpwws7ya6113RjcPRJpKqDe65k6bVDyb6HrBl+X1iaaiSvB44pKrWNghzVLUUsGc/XmC6aU6lG9j51umm0frzxDKSNMf0XzF8Ml0vy550vWwfGWtRM9R/2H85a46M10ayy12S5p6tgL+mO4z2Obou7r8aa0UzkOQddIf53lNV3xt3Pa2xy12SpAa4hy5JUgMMdEmSGjCnB8UtWLCgFi1aNO4yJEkamcsvv/zOqlrjB23mdKAvWrSIpUuXjrsMSZJGJsmNU7Xb5S5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQFDC/Qkpya5I8mVA23nJFnW/y1PsqxvX5TkRwO3fWxYdUmS1KJhfg/9NLpf//nvH7Cvqt+euJzkfXS/uz3h+qrae4j1SJLUrKEFelV9sf+ZvDUkCXAw8LxhLV+SpPlkXMfQnwPcXlXfHWh7UpJvJPlCkueMqS5JkuakcZ369VDg7IHrK4Ddq2pVkl8E/iHJ06rqnsl3TLIEWAKw++67j6RYSZJmu5HvoSfZAng5cM5EW1U9UFWr+suXA9cDT5nq/lV1clUtrqrFCxeucW56SZLmpXF0uf8acG1V3TzRkGRhks37y08G9gRuGENtkiTNSUPrck9yNrAfsCDJzcCxVXUKcAird7cDPBc4IclPgIeBI6rqrmHVJs12i466cGTLWn7SgSNblqThGeYo90OnaT98irbzgPOGVYskSa3zTHGSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0w0CVJasDQAj3JqUnuSHLlQNtxSW5Jsqz/O2DgtrckuS7Jt5O8cFh1SZLUomHuoZ8G7D9F+weqau/+7yKAJHsBhwBP6+/zV0k2H2JtkiQ1ZWiBXlVfBO6a4eQHAZ+uqgeq6nvAdcA+w6pNkqTWjOMY+pFJrui75Lfv23YBbhqY5ua+bQ1JliRZmmTpypUrh12rJElzwqgD/aPAHsDewArgfes7g6o6uaoWV9XihQsXbuLyJEmam0Ya6FV1e1U9VFUPAx/nkW71W4DdBibdtW+TJEkzMNJAT7LTwNWXARMj4C8ADkmydZInAXsCXx1lbZIkzWVbDGvGSc4G9gMWJLkZOBbYL8neQAHLgdcBVNVVSc4FrgYeBN5QVQ8NqzZJkloztECvqkOnaD5lLdOfCJw4rHokSWqZZ4qTJKkBBrokSQ0w0CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBhjokiQ1wECXJKkBW4y7AGmuWHTUheMuQZKm5R66JEkNMNAlSWqAgS5JUgM8hi5pZEY5DmH5SQeObFnSbOAeuiRJDTDQJUlqgIEuSVIDDHRJkhrgoDhpnvOEOVIb3EOXJKkBQwv0JKcmuSPJlQNt70lybZIrkpyfZLu+fVGSHyVZ1v99bFh1SZLUomHuoZ8G7D+p7RLg6VX1TOA7wFsGbru+qvbu/44YYl2SJDVnaIFeVV8E7prUdnFVPdhfvQzYdVjLlyRpPhnnMfTXAJ8ZuP6kJN9I8oUkz5nuTkmWJFmaZOnKlSuHX6UkSXPAWAI9yTHAg8BZfdMKYPeqehbwh8Cnkjx2qvtW1clVtbiqFi9cuHA0BUuSNMuNPNCTHA68GHhFVRVAVT1QVav6y5cD1wNPGXVtkiTNVSMN9CT7A38KvKSqfjjQvjDJ5v3lJwN7AjeMsjZJkuayoZ1YJsnZwH7AgiQ3A8fSjWrfGrgkCcBl/Yj25wInJPkJ8DBwRFXdNeWMJUnSGoYW6FV16BTNp0wz7XnAecOqRZKk1nmmOEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBhjokiQ1YKiBnuTUJHckuXKg7fFJLkny3f7/9n17kvxFkuuSXJHkF4ZZmyRJLRn2HvppwP6T2o4CLq2qPYFL++sALwL27P+WAB8dcm2SJDVjqIFeVV8E7prUfBBwen/5dOClA+1nVOcyYLskOw2zPkmSWjGOY+g7VNWK/vJtwA795V2Amwamu7lvW02SJUmWJlm6cuXK4VYqSdIcMdZBcVVVQK3nfU6uqsVVtXjhwoVDqkySpLllHIF++0RXev//jr79FmC3gel27dskSdI6jCPQLwAO6y8fBvzjQPvv9KPdnw38YKBrXpIkrcUWw5x5krOB/YAFSW4GjgVOAs5N8lrgRuDgfvKLgAOA64AfAq8eZm2SJLVkRoGe5NKqev662iarqkOnuWmN+/XH098wk3okSdLq1hroSR4FPJpuD3t7IP1Nj2WKEeiSJGk81rWH/jrgTcDOwOU8Euj3AB8ZXlmSJGl9rDXQq+pDwIeS/H5VfXhENUmSpPU0o2PoVfXhJL8CLBq8T1WdMaS6JEnSepjpoLhPAnsAy4CH+uYCDHRJkmaBmX5tbTGwVz8SXZIkzTIzPbHMlcCOwyxEkiRtuJnuoS8Ark7yVeCBicaqeslQqpIkSetlpoF+3DCLkCRJG2emo9y/MOxCJEnShpvpKPd7eeRnTrcCtgTur6rHDqswSZI0czPdQ9924nKSAAcBzx5WUZIkaf2s98+nVucfgBdu+nIkSdKGmGmX+8sHrm5G9730Hw+lIkmStN5mOsr9NwYuPwgsp+t2l8Zq0VEXjrsESZoVZnoM/dXDLkSSJG24GR1DT7JrkvOT3NH/nZdk12EXJ0mSZmamg+I+AVxA97voOwP/1LdJkqRZYKaBvrCqPlFVD/Z/pwELh1iXJElaDzMN9FVJXplk8/7vlcCqYRYmSZJmbqaB/hrgYOA2YAXwm8DhQ6pJkiStp5l+be0E4LCq+j5AkscD76ULekmadUb5lcblJx04smVJ05npHvozJ8IcoKruAp41nJIkSdL6mmmgb5Zk+4kr/R76TPfuJUnSkM00lN8HfDnJ3/bXfws4cTglSZKk9TXTM8WdkWQp8Ly+6eVVdfXwypIkSetjxt3mfYAb4pIkzULr/fOpkiRp9jHQJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0Y+Q+sJHkqcM5A05OBtwPbAb8HrOzbj66qi0ZbnSRJc9PIA72qvg3sDZBkc+AW4Hzg1cAHquq9o65JkqS5btxd7s8Hrq+qG8dchyRJc9q4A/0Q4OyB60cmuSLJqYO/vz4oyZIkS5MsXbly5VSTSJI074wt0JNsBbwEmPiN9Y8Ce9B1x6+g+w32NVTVyVW1uKoWL1y4cBSlSpI0641zD/1FwNer6naAqrq9qh6qqoeBjwP7jLE2SZLmlHEG+qEMdLcn2WngtpcBV468IkmS5qiRj3IHSLIN8ALgdQPNf55kb6CA5ZNukyRJazGWQK+q+4EnTGp71ThqkSSpBeMe5S5JkjYBA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgPG8j10SWrJoqMuHNmylp904MiWpbnFPXRJkhpgoEuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUgC3GXYDas+ioC8ddgiTNO+6hS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhpgoEuS1ICxnSkuyXLgXuAh4MGqWpzk8cA5wCJgOXBwVX1/XDVKkjRXjHsP/Verau+qWtxfPwq4tKr2BC7tr0uSpHUYd6BPdhBwen/5dOCl4ytFkqS5Y5yBXsDFSS5PsqRv26GqVvSXbwN2mHynJEuSLE2ydOXKlaOqVZKkWW2cv7a2b1XdkuSngUuSXDt4Y1VVkpp8p6o6GTgZYPHixWvcLknSfDS2PfSquqX/fwdwPrAPcHuSnQD6/3eMqz5JkuaSsQR6km2SbDtxGfh14ErgAuCwfrLDgH8cR32SJM014+py3wE4P8lEDZ+qqv+X5GvAuUleC9wIHDym+iRJmlPGEuhVdQPw81O0rwKeP/qKJEma22bb19YkSdIGMNAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBozr99AlSRtg0VEXjmxZy086cGTL0sZzD12SpAYY6JIkNcBAlySpAQa6JEkNcFDcPDHKgTSSpNFzD12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhow8kBPsluSzye5OslVSd7Ytx+X5JYky/q/A0ZdmyRJc9UWY1jmg8AfVdXXk2wLXJ7kkv62D1TVe8dQkyRJc9rIA72qVgAr+sv3JrkG2GXUdUiS1JKxHkNPsgh4FvCVvunIJFckOTXJ9uOrTJKkuWVsgZ7kMcB5wJuq6h7go8AewN50e/Dvm+Z+S5IsTbJ05cqVoypXkqRZbSyBnmRLujA/q6r+HqCqbq+qh6rqYeDjwD5T3beqTq6qxVW1eOHChaMrWpKkWWwco9wDnAJcU1XvH2jfaWCylwFXjro2SZLmqnGMcv+fwKuAbyVZ1rcdDRyaZG+ggOXA68ZQmyRJc9I4Rrl/CcgUN1006lokSdNbdNSFI1vW8pMOHNmyWuWZ4iRJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDdhi3AVIkrToqAtHtqzlJx04smWNknvokiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSAwx0SZIaYKBLktQAv4c+id+FlCTNRQb6GI3yw4MkqdPqjptd7pIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQGzLtCT7J/k20muS3LUuOuRJGkumFWBnmRz4C+BFwF7AYcm2Wu8VUmSNPvNqkAH9gGuq6obquq/gE8DB425JkmSZr3ZFui7ADcNXL+5b5MkSWsx534+NckSYEl/9b4k3540yQLgztFWNSe4Xabmdpma22Vqbpc1uU2mtgC4M+8eyryfOFXjbAv0W4DdBq7v2rf9t6o6GTh5uhkkWVpVi4dT3tzldpma22VqbpepuV3W5DaZ2ji2y2zrcv8asGeSJyXZCjgEuGDMNUmSNOvNqj30qnowyZHAvwCbA6dW1VVjLkuSpFlvVgU6QFVdBFy0EbOYtjt+nnO7TM3tMjW3y9TcLmtym0xt5NslVTXqZUqSpE1sth1DlyRJG6C5QE/yjiRXJFmW5OIkO4+7ptkgyXuSXNtvm/OTbDfummaDJL+V5KokDyeZ9yN1PfXympKcmuSOJFeOu5bZJMluST6f5Or+NfTGcdc0GyR5VJKvJvlmv12OH9myW+tyT/LYqrqnv/wHwF5VdcSYyxq7JL8OfK4fePhugKp685jLGrskPwc8DPw18MdVtXTMJY1Nf+rl7wAvoDup09eAQ6vq6rEWNmZJngvcB5xRVU8fdz2zRZKdgJ2q6utJtgUuB17q8yUBtqmq+5JsCXwJeGNVXTbsZTe3hz4R5r1tgLY+sWygqrq4qh7sr15G9x3/ea+qrqmqyScnmq889fIUquqLwF3jrmO2qaoVVfX1/vK9wDV4Zk+qc19/dcv+byQ51FygAyQ5MclNwCuAt4+7nlnoNcBnxl2EZh1PvawNkmQR8CzgK2MuZVZIsnmSZcAdwCVVNZLtMicDPclnk1w5xd9BAFV1TFXtBpwFHDneakdnXduln+YY4EG6bTMvzGS7SNowSR4DnAe8aVIP6bxVVQ9V1d50PaH7JBnJoZpZ9z30maiqX5vhpGfRfaf92CGWM2usa7skORx4MfD8am3wxFqsx/NlvlvnqZelQf0x4vOAs6rq78ddz2xTVXcn+TywPzD0QZVzcg99bZLsOXD1IODacdUymyTZH/hT4CVV9cNx16NZyVMva8b6wV+nANdU1fvHXc9skWThxLeIkvwU3SDTkeRQi6PczwOeSjdy+UbgiKqa93sZSa4DtgZW9U2XOfofkrwM+DCwELgbWFZVLxxrUWOU5ADggzxy6uUTx1vR+CU5G9iP7tezbgeOrapTxlrULJBkX+DfgG/Rvd8CHN2f7XPeSvJM4HS619BmwLlVdcJIlt1aoEuSNB811+UuSdJ8ZKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgP+P/kNsE2oF2YSAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1029,7 +1029,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 30, "metadata": { "pycharm": { "name": "#%%\n" @@ -1042,7 +1042,7 @@ "TensorType(float64, ())" ] }, - "execution_count": 24, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } @@ -1065,7 +1065,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 31, "metadata": { "pycharm": { "name": "#%%\n" @@ -1077,7 +1077,7 @@ "output_type": "stream", "text": [ "normal_rv{0, (0, 0), floatX, False}.1 [id A] 'y'\n", - " |RandomGeneratorSharedVariable() [id B]\n", + " |RandomGeneratorSharedVariable() [id B]\n", " |TensorConstant{[]} [id C]\n", " |TensorConstant{11} [id D]\n", " |TensorConstant{0} [id E]\n", @@ -1087,10 +1087,10 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 25, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -1129,7 +1129,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 32, "metadata": { "pycharm": { "name": "#%%\n" @@ -1139,10 +1139,10 @@ { "data": { "text/plain": [ - "array(0.92905265)" + "array(0.30189123)" ] }, - "execution_count": 26, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -1164,7 +1164,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 33, "metadata": { "pycharm": { "name": "#%%\n" @@ -1175,16 +1175,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "Sample 0: 0.929052652756385\n", - "Sample 1: 0.929052652756385\n", - "Sample 2: 0.929052652756385\n", - "Sample 3: 0.929052652756385\n", - "Sample 4: 0.929052652756385\n", - "Sample 5: 0.929052652756385\n", - "Sample 6: 0.929052652756385\n", - "Sample 7: 0.929052652756385\n", - "Sample 8: 0.929052652756385\n", - "Sample 9: 0.929052652756385\n" + "Sample 0: 0.30189122572724103\n", + "Sample 1: 0.30189122572724103\n", + "Sample 2: 0.30189122572724103\n", + "Sample 3: 0.30189122572724103\n", + "Sample 4: 0.30189122572724103\n", + "Sample 5: 0.30189122572724103\n", + "Sample 6: 0.30189122572724103\n", + "Sample 7: 0.30189122572724103\n", + "Sample 8: 0.30189122572724103\n", + "Sample 9: 0.30189122572724103\n" ] } ], @@ -1233,7 +1233,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 34, "metadata": { "pycharm": { "name": "#%%\n" @@ -1245,7 +1245,7 @@ "output_type": "stream", "text": [ "normal_rv{0, (0, 0), floatX, False}.1 [id A]\n", - " |RandomGeneratorSharedVariable() [id B]\n", + " |RandomGeneratorSharedVariable() [id B]\n", " |TensorConstant{[]} [id C]\n", " |TensorConstant{11} [id D]\n", " |TensorConstant{0} [id E]\n", @@ -1255,10 +1255,10 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 28, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } @@ -1292,7 +1292,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 35, "metadata": { "pycharm": { "name": "#%%\n" @@ -1303,16 +1303,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "Sample 0: -0.8310657629670953\n", - "Sample 1: -0.8310657629670953\n", - "Sample 2: -0.8310657629670953\n", - "Sample 3: -0.8310657629670953\n", - "Sample 4: -0.8310657629670953\n", - "Sample 5: -0.8310657629670953\n", - "Sample 6: -0.8310657629670953\n", - "Sample 7: -0.8310657629670953\n", - "Sample 8: -0.8310657629670953\n", - "Sample 9: -0.8310657629670953\n" + "Sample 0: -2.237598162546344\n", + "Sample 1: -2.237598162546344\n", + "Sample 2: -2.237598162546344\n", + "Sample 3: -2.237598162546344\n", + "Sample 4: -2.237598162546344\n", + "Sample 5: -2.237598162546344\n", + "Sample 6: -2.237598162546344\n", + "Sample 7: -2.237598162546344\n", + "Sample 8: -2.237598162546344\n", + "Sample 9: -2.237598162546344\n" ] } ], @@ -1334,7 +1334,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 36, "metadata": { "pycharm": { "name": "#%%\n" @@ -1343,7 +1343,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAF1CAYAAAAeOhj3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfh0lEQVR4nO3de5gkdX3v8fcHFhBQLoYRgUWXKJogmmj2EJN4EuIlojHB5FEPHC+gJESjRk+MdxNAxYMxUYnGJEQQUAQJaiBKTkBEiYmgCyJyUzeC7iKww/2iEhe/54+qkWaY3Z2d3e6e+c379Tz9TNelq75V3T2f/v2qujpVhSRJWti2GHcBkiRp0xnokiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSAwx0zQtJjkzysc28zCT5SJJbk3xlcy57MUlyaJIvbcT81yZ5en//LUk+vBlruSvJz/b3T0zyzs247L9P8ueba3mbanPvO7VvybgL0HgleQrwl8DjgHuBq4DXVtVXx1rY5vEU4BnA0qq6e9zFLEZV9a7ZzJfkC8DHqmq9AVZVD94cdSU5FPiDqnrKwLJfvjmWvbnMdt9JUwz0RSzJDsBngFcApwNbA/8TuGecdW1GjwSuXVeYJ1lSVWtHXNPQtbhdLW6TtLnZ5b64PQagqk6tqnur6odVdU5VXQaQ5FFJPp/k5iQ3JTklyU5TD+67Vl+f5LIkdyc5PsmuSf41yZ1JPpdk537eZUkqyeFJvp/k+iR/tq7Ckjw5yX8muS3J15PsPzDt0CTf6ddxTZIXzvD4w4APA7/Sd9MelWT/JKuTvDHJDcBHkmyT5P19Td/v72/TL2Nq/jckWdPX/Nwkz07yrSS3JHnLerbht5N8LckdSVYlOXI9806t63UD63rpwPQdk5ycZDLJd5O8LckWA/vjP5K8L8nNwJF9d/SH+ufirn76w/vtuzXJ1UmeOLD8NyX5r36fXpnk99ZV6wy1v7iv6eYkb5027aeHUpI8KMnH+vluS/LV/vVyNN0HyQ/2tX6wn7+SvDLJt4FvD4x79MAqdklybl/3F5M8sp9v6vW2ZKCWLyT5gyQ/D/w99702buun368LP8kfJlnZP89nJdl9YFoleXmSb/fb8rdJso79M325+ydZPTD8xiTX9dvwzSRPm2HfTW3PIUm+l+79+NaBZWyb5KT+ub2qf82uZh36Zf1JuvfRTUnek2SLJFv32/v4gXkfluQHSSayke+JJFumO3Qw9dq6OMme66pLm6iqvC3SG7ADcDNwEvAsYOdp0x9N12W9DTABXAC8f2D6tcCFwK7AHsAa4BLgicCDgM8DR/TzLgMKOBXYHng8MAk8vZ9+JF2XK/2ybgaeTfeh8xn98ET/2DuAx/bz7gY8bh3bdyjwpYHh/YG1wLv7bdoWeHu/DQ/rl/+fwDumzf8XwFbAH/Y1fxx4CN1hih8Ce61j/fv327kF8ATgRuC565l3bV/PVv22/2DqOQFOBs7s17sM+BZw2MB2rgVeTdfrti1wInAT8EsDz8U1wEuALYF3AucPrP/5wO59rf8LuBvYbab9OK3ufYC7gF/v9+l7+1pmel7/CPgXYLu+hl8CduinfYGuC3xw2QWcCzwU2HZg3KP7+ycCdw6s+9ipOrnv9bZkYHk/XcdM29Qv7539/af2++9J/bI/AFwwrbbPADsBj6B7XRywjn300+UOPNer+/uPBVYBuw/U/agZ9t3U9vxj//z+Al1P2s/3048BvgjsDCwFLptaxzpqKuD8ft8+gu71NLVvPgS8e2De1wD/Mpf3BPB64Bv9dqav+2fG/b+v1Zst9EWsqu6gO8489Y9ism+J7NpPX1lV51bVPVU1SffP+jemLeYDVXVjVV0H/DtwUVV9rap+BHyaLtwHHVVVd1fVN4CPAAfPUNqLgLOr6uyq+klVnQusoAs5gJ8A+ybZtqqur6orNmKzf0L3IeOeqvoh8ELg7VW1pt/Go4AXD8z/Y+DoqvoxcBqwC3BsVd3Zr/dKun9SD1BVX6iqb/TbcBndh5np+2/Qj/taflxVZ9MF5WOTbAkcBLy5X++1wF9Pq/P7VfWBqlrbbxfAp6vq4oHn4kdVdXJV3Qt8goHnpqr+qaq+39f6CboW8X4b2JcAzwM+U1UXVNU9wJ/T7eN1bd/P0AXyvX1td2xg+f+3qm4Z2KbpPjuw7rfStbo3RwvwhcAJVXVJv+w398teNjDPMVV1W1V9jy4cf3EO67mX7gPDPkm2qqprq+q/1jP/UdX1pH0d+Dr3vfZeALyrqm6tqtXA38xi3e/u9+33gPdz33vxJODggR6HFwMfHXjcxrwn/gB4W1V9szpfr6qbZ1Gb5sBAX+Sq6qqqOrSqlgL70rXS3g/Qd4ee1ncH3gF8jO7NO+jGgfs/nGF4+klMqwbuf7df33SPBJ7fd2Xe1neJPoWuxXg3XQvy5cD1ST6b5Odmv8VM9gE3Zfe+jnXVdHMfgFPbAxveRgCS/HKS89N1k9/e1zx9/w26ue5/nPgH/bJ3oWsNTa9zj4Hhwf06ZdbPTZKXJLl0YH/vu4Fap+w+uO7++VnXP+yPAv8GnJbu8MZfJtlqA8ufabtmnF5VdwG3MPNramPd73XRL/tm7r/Pbxi4P/VcbZSqWgm8lq41vqZ/v62v/nWt837PAxveb9Pn+enrvqou6pe9f//eejRw1sC8G/Oe2BNY3wcUbUYGun6qqq6m6x7ctx/1LrrW++Orage6lvOMxwk3wmDr6RHA92eYZxXw0araaeC2fVUd09f5b1X1DLru9qvpehdma/rPC36f7gPEhmqai4/T/SPcs6p2pDtuO5f9dxNdq2h6ndcNDM/5ZxP7487/CLyKrjt0J+ByZlfr9Qw8p0m2o2uFP0Df83BUVe0D/CrwHLpDAOurf0PbNbjuB9N1IX+f7pABdN37Ux6+Ecu93+siyfZ023XdOh+xbnevpw6q6uPVnW3/yL6ud89hHdfTdbVPmU0vxfreiyfRvd9fDJwx7UPwxlgFPGqOj9VGMtAXsSQ/l+4krKX98J503W4X9rM8hK7b9/Yke9AdD9tUf55kuySPA15K1/U73ceA30nyzP6kmgf1J+Ms7XsNDuz/wd7T17euLt7ZOBV4W3/Czy50xwY31/fhHwLcUlU/SrIf8L/nspC+NXQ6cHSSh/QB/Kebsc7t6YJkEiDdyXj7rvcR9zkDeE6SpyTZmu4cgBn/ryT5zSSP7w8h3EH3IWXqubsR+Nk51P7sgXW/A7iwqlb1h0+uA17Uv4Zexv2D5UZgaf+4mZwKvDTJL6Y7SfJddIeTrp1DjZf2dT40ycPpWuQAJHlskqf26/gRXet2Lq/n04E3J9m5f6++ahaPeX0//550x8kH34sfA36PLtRPnkM9Uz4MvCPJ3uk8IcmMH/i06Qz0xe1O4JeBi5LcTRfklwOv66cfRXdS0O3AZ4FPbYZ1fhFYCZwH/FVVnTN9hqpaBRwIvIUuZFbRfZjYor/9KV1r4ha6Y9Kv2IR63kl3fP4yupN3LunHbQ5/DLw9yZ10HxRO34RlvZqupfcd4Et0rf8TNrlCoKqupDsm/2W6oHs88B+zfOwVwCv7eq4HbgXWdXb1w+k+ANxBd72DL3Lfsdljgef1Z2nP5vjvlI8DR9C9Fn6JLoCm/CHd6+ZmupO1/nNg2ueBK4Abktw0w3Z9ju58gE/22/UouvMY5uKjdMe7rwXO4f7BuQ3dCW030XWnP4zueP3Gejvdfr8G+Bzdft7Q10/PBC6m+8DxWeD4qQn9e/ASug96/z6Heqa8l+51fw7d83483Ul9GoJUzbmnTpq1/mSia4Ctyu8TS0OV5BXAQVU140mYSQrYuz+Gv65lnEB3suXbhlSmNjMvLCNJC1yS3egOWXwZ2Juul+2Dm7C8ZcDv88BvqWges8tdkha+rYF/oDuM9nm67vQPzWVBSd5Bd+jtPVV1zWarUENnl7skSQ2whS5JUgMMdEmSGrCgT4rbZZddatmyZeMuQ5Kkkbn44otvqqqJ6eMXdKAvW7aMFStWjLsMSZJGJsl3Zxpvl7skSQ0w0CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUgAX9a2uSNoMjdxzhum4f3bqkRWZoLfQkJyRZk+TyaeNfneTqJFck+cuB8W9OsjLJN5M8c1h1SZLUomG20E8EPgicPDUiyW8CBwK/UFX3JHlYP34f4CDgccDuwOeSPKaq7h1ifZIkNWNoLfSqugC4ZdroVwDHVNU9/Txr+vEHAqdV1T1VdQ2wEthvWLVJktSaUZ8U9xjgfya5KMkXk/yPfvwewKqB+Vb34x4gyeFJViRZMTk5OeRyJUlaGEYd6EuAhwJPBl4PnJ4kG7OAqjquqpZX1fKJiYlh1ChJ0oIz6kBfDXyqOl8BfgLsAlwH7Dkw39J+nCRJmoVRB/o/A78JkOQxwNbATcBZwEFJtkmyF7A38JUR1yZJ0oI1tLPck5wK7A/skmQ1cARwAnBC/1W2/wYOqaoCrkhyOnAlsBZ4pWe4S5I0e0ML9Ko6eB2TXrSO+Y8Gjh5WPZIktcwrxUkaHa9KJw2N13KXJKkBBrokSQ0w0CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkN8NKv0nw0ykukSmqCLXRJkhpgoEuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGjC0QE9yQpI1SS6fYdrrklSSXfrhJPmbJCuTXJbkScOqS5KkFg2zhX4icMD0kUn2BH4L+N7A6GcBe/e3w4G/G2JdkiQ1Z2iBXlUXALfMMOl9wBuAGhh3IHBydS4Edkqy27BqkySpNSM9hp7kQOC6qvr6tEl7AKsGhlf342ZaxuFJViRZMTk5OaRKJUlaWEYW6Em2A94C/MWmLKeqjquq5VW1fGJiYvMUJ0nSArdkhOt6FLAX8PUkAEuBS5LsB1wH7Dkw79J+nCRJmoWRtdCr6htV9bCqWlZVy+i61Z9UVTcAZwEv6c92fzJwe1VdP6raJEla6Ib5tbVTgS8Dj02yOslh65n9bOA7wErgH4E/HlZdkiS1aGhd7lV18AamLxu4X8Arh1WLJEmt80pxkiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSA4YW6ElOSLImyeUD496T5OoklyX5dJKdBqa9OcnKJN9M8sxh1SVJUouG2UI/EThg2rhzgX2r6gnAt4A3AyTZBzgIeFz/mA8l2XKItUmS1JShBXpVXQDcMm3cOVW1th+8EFja3z8QOK2q7qmqa4CVwH7Dqk2SpNaM8xj6y4B/7e/vAawamLa6HydJkmZhLIGe5K3AWuCUOTz28CQrkqyYnJzc/MVJkrQAjTzQkxwKPAd4YVVVP/o6YM+B2Zb24x6gqo6rquVVtXxiYmKotUqStFAsGeXKkhwAvAH4jar6wcCks4CPJ3kvsDuwN/CVUdYmqTFH7jjCdd0+unVJ6zC0QE9yKrA/sEuS1cARdGe1bwOcmwTgwqp6eVVdkeR04Eq6rvhXVtW9w6pNkqTWDC3Qq+rgGUYfv575jwaOHlY9kiS1zCvFSZLUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqwNACPckJSdYkuXxg3EOTnJvk2/3fnfvxSfI3SVYmuSzJk4ZVlyRJLVoyxGWfCHwQOHlg3JuA86rqmCRv6offCDwL2Lu//TLwd/1faf44csdxVyBJ6zS0FnpVXQDcMm30gcBJ/f2TgOcOjD+5OhcCOyXZbVi1SZLUmlEfQ9+1qq7v798A7Nrf3wNYNTDf6n7cAyQ5PMmKJCsmJyeHV6kkSQvI2E6Kq6oCag6PO66qllfV8omJiSFUJknSwjPqQL9xqiu9/7umH38dsOfAfEv7cZIkaRZGHehnAYf09w8BzhwY/5L+bPcnA7cPdM1LkqQNGNpZ7klOBfYHdkmyGjgCOAY4PclhwHeBF/Sznw08G1gJ/AB46bDqkiSpRUML9Ko6eB2TnjbDvAW8cli1SJLUOq8UJ0lSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUgFkFepLzZjNOkiSNx3p/nCXJg4Dt6H4xbWcg/aQdgD2GXJskSZqlDf3a2h8BrwV2By7mvkC/A/jg8MqSJEkbY72BXlXHAscmeXVVfWBENUmSpI00q99Dr6oPJPlVYNngY6rq5CHVJUmSNsKsAj3JR4FHAZcC9/ajCzDQJUmaB2YV6MByYJ+qqmEWI0mS5ma230O/HHj4MAuRJElzN9sW+i7AlUm+AtwzNbKqfncoVUmSpI0y20A/cphFSJKkTTPbs9y/OOxCJEnS3M32LPc76c5qB9ga2Aq4u6p2GFZhkiRp9mbbQn/I1P0kAQ4EnjysoiRJ0sbZ6F9bq84/A8/c/OVIkqS5mG2X++8PDG5B9730Hw2lIkmStNFme5b77wzcXwtcS9ftLkmS5oHZHkN/6bALkaQF68gdR7iu20e3Li0oszqGnmRpkk8nWdPfPplk6bCLkyRJszPbk+I+ApxF97vouwP/0o+bkyT/J8kVSS5PcmqSByXZK8lFSVYm+USSree6fEmSFpvZBvpEVX2kqtb2txOBibmsMMkewJ8Ay6tqX2BL4CDg3cD7qurRwK3AYXNZviRJi9FsA/3mJC9KsmV/exFw8yasdwmwbZIlwHbA9cBTgTP66ScBz92E5UuStKjMNtBfBrwAuIEufJ8HHDqXFVbVdcBfAd/rl3U7cDFwW1Wt7WdbDewx0+OTHJ5kRZIVk5OTcylBkqTmzDbQ3w4cUlUTVfUwuoA/ai4rTLIz3Vfe9qI7Hr89cMBsH19Vx1XV8qpaPjExp15/SZKaM9tAf0JV3To1UFW3AE+c4zqfDlxTVZNV9WPgU8CvATv1XfAAS4Hr5rh8SZIWndkG+hZ9yxqAJA9l9helme57wJOTbNdfF/5pwJXA+XRd+QCHAGfOcfmSJC06sw3lvwa+nOSf+uHnA0fPZYVVdVGSM4BL6K469zXgOOCzwGlJ3tmPO34uy5ckaTGa7ZXiTk6ygu5MdIDfr6or57rSqjoCOGLa6O8A+811mZIkLWaz7jbvA3zOIS5JkoZno38+VZIkzT8GuiRJDTDQJUlqwFy/eibND6P82UpJmsdsoUuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhowlkBPslOSM5JcneSqJL+S5KFJzk3y7f7vzuOoTZKkhWhcLfRjgf9XVT8H/AJwFfAm4Lyq2hs4rx+WJEmzMPJAT7Ij8OvA8QBV9d9VdRtwIHBSP9tJwHNHXZskSQvVOFroewGTwEeSfC3Jh5NsD+xaVdf389wA7DqG2iRJWpDGEehLgCcBf1dVTwTuZlr3elUVUDM9OMnhSVYkWTE5OTn0YiVJWgjGEeirgdVVdVE/fAZdwN+YZDeA/u+amR5cVcdV1fKqWj4xMTGSgiVJmu9GHuhVdQOwKslj+1FPA64EzgIO6ccdApw56tokSVqoloxpva8GTkmyNfAd4KV0Hy5OT3IY8F3gBWOqTZKkBWcsgV5VlwLLZ5j0tBGXIklSE7xSnCRJDTDQJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWrAknEXoAYdueO4K5CkRccWuiRJDTDQJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSA8YW6Em2TPK1JJ/ph/dKclGSlUk+kWTrcdUmSdJCM84W+muAqwaG3w28r6oeDdwKHDaWqiRJWoDGEuhJlgK/DXy4Hw7wVOCMfpaTgOeOozZJkhaicf186vuBNwAP6Yd/Britqtb2w6uBPWZ6YJLDgcMBHvGIRwy3Skmab0b588RH3j66dWmTjbyFnuQ5wJqqunguj6+q46pqeVUtn5iY2MzVSZK0MI2jhf5rwO8meTbwIGAH4FhgpyRL+lb6UuC6MdQmSdKCNPIWelW9uaqWVtUy4CDg81X1QuB84Hn9bIcAZ466NkmSFqr59D30NwJ/mmQl3TH148dcjyRJC8a4TooDoKq+AHyhv/8dYL9x1iNJ0kI1n1rokiRpjgx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNWDJqFeYZE/gZGBXoIDjqurYJA8FPgEsA64FXlBVt466PklS78gdR7iu20e3rkaNo4W+FnhdVe0DPBl4ZZJ9gDcB51XV3sB5/bAkSZqFkbfQq+p64Pr+/p1JrgL2AA4E9u9nOwn4AvDGUdfXrFF+0pYkjdxYj6EnWQY8EbgI2LUPe4Ab6LrkZ3rM4UlWJFkxOTk5mkIlSZrnxhboSR4MfBJ4bVXdMTitqoru+PoDVNVxVbW8qpZPTEyMoFJJkua/sQR6kq3owvyUqvpUP/rGJLv103cD1oyjNkmSFqKRB3qSAMcDV1XVewcmnQUc0t8/BDhz1LVJkrRQjfykOODXgBcD30hyaT/uLcAxwOlJDgO+C7xgDLVJkrQgjeMs9y8BWcfkp42yFkmSWuGV4iRJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhqwZNwFSJI0UkfuOMJ13T6yVdlClySpAbbQJUnjN8pWc6NsoUuS1ABb6OPkJ1JJ0mZiC12SpAYY6JIkNcBAlySpAR5DH+QxbUnSAmULXZKkBsy7QE9yQJJvJlmZ5E3jrkeSpIVgXgV6ki2BvwWeBewDHJxkn/FWJUnS/DevAh3YD1hZVd+pqv8GTgMOHHNNkiTNe/Mt0PcAVg0Mr+7HSZKk9VhwZ7knORw4vB+8K8k3x1jOLsBNY1z/fOA+cB+A+wDcB+A+gOn74KgMYx2PnGnkfAv064A9B4aX9uN+qqqOA44bZVHrkmRFVS0fdx3j5D5wH4D7ANwH4D6A8e6D+dbl/lVg7yR7JdkaOAg4a8w1SZI0782rFnpVrU3yKuDfgC2BE6rqijGXJUnSvDevAh2gqs4Gzh53HbM0L7r+x8x94D4A9wG4D8B9AGPcB6mqca1bkiRtJvPtGLokSZoDA30TJHlHksuSXJrknCS7j7umUUvyniRX9/vh00l2GndNo5bk+UmuSPKTJIvqDF8v1QxJTkiyJsnl465lHJLsmeT8JFf274PXjLumUUvyoCRfSfL1fh8cNZY67HKfuyQ7VNUd/f0/AfapqpePuayRSvJbwOf7ExrfDVBVbxxzWSOV5OeBnwD/APxZVa0Yc0kj0V+q+VvAM+guAvVV4OCqunKshY1Ykl8H7gJOrqp9x13PqCXZDditqi5J8hDgYuC5i+l1kCTA9lV1V5KtgC8Br6mqC0dZhy30TTAV5r3tgUX36aiqzqmqtf3ghXTXDlhUquqqqhrnBY7GxUs1A1V1AXDLuOsYl6q6vqou6e/fCVzFIrvCZ3Xu6ge36m8jzwMDfRMlOTrJKuCFwF+Mu54xexnwr+MuQiPjpZp1P0mWAU8ELhpzKSOXZMsklwJrgHOrauT7wEDfgCSfS3L5DLcDAarqrVW1J3AK8KrxVjscG9oH/TxvBdbS7YfmzGYfSItZkgcDnwReO633clGoqnur6hfpein3SzLywy/z7nvo801VPX2Ws55C9/35I4ZYzlhsaB8kORR4DvC0avSkjI14HSwmG7xUsxaH/rjxJ4FTqupT465nnKrqtiTnAwcAIz1R0hb6Jkiy98DggcDV46plXJIcALwB+N2q+sG469FIealmTZ0QdjxwVVW9d9z1jEOSialv+CTZlu5E0ZHngWe5b4IknwQeS3eG83eBl1fVomqhJFkJbAPc3I+6cBGe6f97wAeACeA24NKqeuZYixqRJM8G3s99l2o+erwVjV6SU4H96X5l60bgiKo6fqxFjVCSpwD/DnyD7n8hwFv6q34uCkmeAJxE9z7YAji9qt4+8joMdEmSFj673CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkN+P+cyD0k4yru1wAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAF1CAYAAAAeOhj3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAftElEQVR4nO3deZhkdX3v8feHVUEFdFoEhjhE0QTRRDOXmMTkEpeIxjjGR70QF0AN0atGr8bdhEHFCzFRiUYTIgi4QIhLJGpuQESJSUAHRGRTJ4LOIDANyKqig9/7xzkNRdsz09PTVdX9m/frefrpOkud8/3V0p/6/c6p06kqJEnS4rbNuAuQJElbzkCXJKkBBrokSQ0w0CVJaoCBLklSAwx0SZIaYKBrQUiyMslH5nmbSfKhJD9I8pX53PbWJMlhSb68GetfleSJ/e03JfngPNZyW5Jf7G+flOTt87jtv0vy5/O1vS0134+d2rfduAvQeCV5HPCXwCOAO4HLgVdV1VfHWtj8eBzwJGBpVd0+7mK2RlX1jtmsl+SLwEeqaqMBVlX3mY+6khwGvLiqHjew7ZfMx7bny2wfO2mKgb4VS3I/4DPAS4HTgR2A3wbuGGdd8+jBwFUbCvMk21XV+hHXNHQttqvFNknzzSH3rdvDAKrq1Kq6s6p+VFVnVtXFAEkekuQLSW5Icn2SjybZderO/dDqa5NcnOT2JCck2T3Jvya5Ncnnk+zWr7ssSSU5Isn3k1yT5M82VFiSxyb5zyQ3Jfl6kgMHlh2W5Dv9Pq5M8twZ7v8i4IPAb/TDtEclOTDJ2iSvT3It8KEkOyZ5T1/T9/vbO/bbmFr/dUnW9TU/I8lTk3wryY1J3rSRNvx+kq8luSXJmiQrN7Lu1L5eM7CvwweW75LklCSTSb6b5C1Jthl4PP4jybuT3ACs7Iej398/F7f1yx/Ut+8HSa5I8uiB7b8hyX/3j+llSf5wQ7XOUPvz+5puSPLmacvuOpSS5F5JPtKvd1OSr/avl6PpPki+r6/1ff36leRlSb4NfHtg3kMHdrEkyVl93V9K8uB+vanX23YDtXwxyYuT/DLwd9z92ripX36PIfwkf5xkdf88n5Fkz4FlleQlSb7dt+Vvk2QDj8/07R6YZO3A9OuTXN234ZtJnjDDYzfVnkOTfC/d+/HNA9u4d5KT++f28v41u5YN6Lf1p+neR9cneWeSbZLs0Lf3kQPrPjDJD5NMZDPfE0m2TXfoYOq1dUGSvTdUl7ZQVfmzlf4A9wNuAE4GngLsNm35Q+mGrHcEJoBzgfcMLL8KOA/YHdgLWAdcCDwauBfwBeDIft1lQAGnAjsDjwQmgSf2y1fSDbnSb+sG4Kl0Hzqf1E9P9Pe9BXh4v+4ewCM20L7DgC8PTB8IrAeO7dt0b+CtfRse2G//P4G3TVv/L4DtgT/ua/4YcF+6wxQ/AvbZwP4P7Nu5DfAo4DrgGRtZd31fz/Z923849ZwApwCf7ve7DPgW8KKBdq4HXkE36nZv4CTgeuDXBp6LK4EXANsCbwfOGdj/s4E9+1r/F3A7sMdMj+O0uvcDbgN+p39M39XXMtPz+ifAvwA79TX8GnC/ftkX6YbAB7ddwFnA/YF7D8x7aH/7JODWgX0fN1Und7/ethvY3l37mKlN/fbe3t9+fP/4Pabf9nuBc6fV9hlgV+AX6F4XB23gMbpruwPP9dr+9sOBNcCeA3U/ZIbHbqo9/9A/v79CN5L2y/3yY4AvAbsBS4GLp/axgZoKOKd/bH+B7vU09di8Hzh2YN1XAv8yl/cE8FrgG30709f9gHH/7Wv1xx76VqyqbqE7zjz1h2Ky74ns3i9fXVVnVdUdVTVJ98f6f07bzHur6rqquhr4d+D8qvpaVf0Y+BRduA86qqpur6pvAB8CDpmhtOcBn6uqz1XVz6rqLGAVXcgB/AzYP8m9q+qaqrp0M5r9M7oPGXdU1Y+A5wJvrap1fRuPAp4/sP5PgaOr6qfAacAS4LiqurXf72V0f6R+TlV9saq+0bfhYroPM9Mfv0E/7Wv5aVV9ji4oH55kW+Bg4I39fq8C/npand+vqvdW1fq+XQCfqqoLBp6LH1fVKVV1J/CPDDw3VfVPVfX9vtZ/pOsRH7CJxxLgWcBnqurcqroD+HO6x3hD7XsAXSDf2dd2yya2/3+r6saBNk332YF9v5mu1z0fPcDnAidW1YX9tt/Yb3vZwDrHVNVNVfU9unD81Tns5066Dwz7Jdm+qq6qqv/eyPpHVTeS9nXg69z92nsO8I6q+kFVrQX+Zhb7PrZ/bL8HvIe734snA4cMjDg8H/jwwP025z3xYuAtVfXN6ny9qm6YRW2aAwN9K1dVl1fVYVW1FNifrpf2HoB+OPS0fjjwFuAjdG/eQdcN3P7RDNPTT2JaM3D7u/3+pnsw8Ox+KPOmfkj0cXQ9xtvpepAvAa5J8tkkvzT7FjPZB9yUPfs6NlTTDX0ATrUHNt1GAJL8epJz0g2T39zXPP3xG3RD3fM48Q/7bS+h6w1Nr3OvgenBx3XKrJ+bJC9IctHA473/JmqdsufgvvvnZ0N/sD8M/BtwWrrDG3+ZZPtNbH+mds24vKpuA25k5tfU5rrH66Lf9g3c8zG/duD21HO1WapqNfAqut74uv79trH6N7TPezwPbPpxm77OXa/7qjq/3/aB/XvrocAZA+tuzntib2BjH1A0jwx03aWqrqAbHty/n/UOut77I6vqfnQ95xmPE26Gwd7TLwDfn2GdNcCHq2rXgZ+dq+qYvs5/q6on0Q23X0E3ujBb0/+94PfpPkBsqqa5+BjdH8K9q2oXuuO2c3n8rqfrFU2v8+qB6Tn/28T+uPM/AC+nGw7dFbiE2dV6DQPPaZKd6HrhP6cfeTiqqvYDfhN4Gt0hgI3Vv6l2De77PnRDyN+nO2QA3fD+lAdtxnbv8bpIsjNdu67e4D027PaN1EFVfay6s+0f3Nd17Bz2cQ3dUPuU2YxSbOy9eDLd+/35wMenfQjeHGuAh8zxvtpMBvpWLMkvpTsJa2k/vTfdsNt5/Sr3pRv2vTnJXnTHw7bUnyfZKckjgMPphn6n+wjwB0me3J9Uc6/+ZJyl/ajBiv4P7B19fRsa4p2NU4G39Cf8LKE7Njhf34e/L3BjVf04yQHAH81lI31v6HTg6CT37QP41fNY5850QTIJkO5kvP03eo+7fRx4WpLHJdmB7hyAGf+uJPndJI/sDyHcQvchZeq5uw74xTnU/tSBfb8NOK+q1vSHT64Gnte/hl7IPYPlOmBpf7+ZnAocnuRX050k+Q66w0lXzaHGi/o675/kQXQ9cgCSPDzJ4/t9/JiudzuX1/PpwBuT7Na/V18+i/u8tl9/b7rj5IPvxY8Af0gX6qfMoZ4pHwTelmTfdB6VZMYPfNpyBvrW7Vbg14Hzk9xOF+SXAK/plx9Fd1LQzcBngU/Owz6/BKwGzgb+qqrOnL5CVa0BVgBvoguZNXQfJrbpf15N15u4ke6Y9Eu3oJ630x2fv5ju5J0L+3nz4X8Db01yK90HhdO3YFuvoOvpfQf4Ml3v/8QtrhCoqsvojsn/F13QPRL4j1ne91LgZX091wA/ADZ0dvWD6D4A3EJ3vYMvcfex2eOAZ/Vnac/m+O+UjwFH0r0Wfo0ugKb8Md3r5ga6k7X+c2DZF4BLgWuTXD9Duz5Pdz7AJ/p2PYTuPIa5+DDd8e6rgDO5Z3DuSHdC2/V0w+kPpDtev7neSve4Xwl8nu5x3tTXTz8NXED3geOzwAlTC/r34IV0H/T+fQ71THkX3ev+TLrn/QS6k/o0BKma80idNGv9yURXAtuX3yeWhirJS4GDq2rGkzCTFLBvfwx/Q9s4ke5ky7cMqUzNMy8sI0mLXJI96A5Z/BewL90o2/u2YHvLgGfy899S0QLmkLskLX47AH9PdxjtC3TD6e+fy4aSvI3u0Ns7q+rKeatQQ+eQuyRJDbCHLklSAwx0SZIasKhPiluyZEktW7Zs3GVIkjQyF1xwwfVVNTF9/qIO9GXLlrFq1apxlyFJ0sgk+e5M8x1ylySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhqwqP/bmqR5sHKXEe7r5tHtS9rK2EOXJKkBBrokSQ0w0CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUgKEFepITk6xLcsm0+a9IckWSS5P85cD8NyZZneSbSZ48rLokSWrRMP8f+knA+4BTpmYk+V1gBfArVXVHkgf28/cDDgYeAewJfD7Jw6rqziHWJ0lSM4bWQ6+qc4Ebp81+KXBMVd3Rr7Oun78COK2q7qiqK4HVwAHDqk2SpNaM+hj6w4DfTnJ+ki8l+R/9/L2ANQPrre3n/ZwkRyRZlWTV5OTkkMuVJGlxGHWgbwfcH3gs8Frg9CTZnA1U1fFVtbyqlk9MTAyjRkmSFp1hHkOfyVrgk1VVwFeS/AxYAlwN7D2w3tJ+nrR1WrnLuCuQtMiMuof+z8DvAiR5GLADcD1wBnBwkh2T7APsC3xlxLVJkrRoDa2HnuRU4EBgSZK1wJHAicCJ/VfZfgIc2vfWL01yOnAZsB54mWe4S5I0e0ML9Ko6ZAOLnreB9Y8Gjh5WPZIktcwrxUmS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSA0Z96VdJW7NRXtJ25c2j25e0ANhDlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSA4YW6ElOTLIuySUzLHtNkkqypJ9Okr9JsjrJxUkeM6y6JElq0TB76CcBB02fmWRv4PeA7w3Mfgqwb/9zBPCBIdYlSVJzhhboVXUucOMMi94NvA6ogXkrgFOqcx6wa5I9hlWbJEmtGekx9CQrgKur6uvTFu0FrBmYXtvPm2kbRyRZlWTV5OTkkCqVJGlxGVmgJ9kJeBPwF1uynao6vqqWV9XyiYmJ+SlOkqRFbrsR7ushwD7A15MALAUuTHIAcDWw98C6S/t5kiRpFkbWQ6+qb1TVA6tqWVUtoxtWf0xVXQucAbygP9v9scDNVXXNqGqTJGmxG1oPPcmpwIHAkiRrgSOr6oQNrP454KnAauCHwOHDqkuas5W7jLsCSdqgoQV6VR2yieXLBm4X8LJh1SJJUuu8UpwkSQ0w0CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSA4YW6ElOTLIuySUD896Z5IokFyf5VJJdB5a9McnqJN9M8uRh1SVJUouG2UM/CTho2ryzgP2r6lHAt4A3AiTZDzgYeER/n/cn2XaItUmS1JShBXpVnQvcOG3emVW1vp88D1ja314BnFZVd1TVlcBq4IBh1SZJUmvGeQz9hcC/9rf3AtYMLFvbz5MkSbMwlkBP8mZgPfDROdz3iCSrkqyanJyc/+IkSVqERh7oSQ4DngY8t6qqn301sPfAakv7eT+nqo6vquVVtXxiYmKotUqStFiMNNCTHAS8Dnh6Vf1wYNEZwMFJdkyyD7Av8JVR1iZJ0mK23bA2nORU4EBgSZK1wJF0Z7XvCJyVBOC8qnpJVV2a5HTgMrqh+JdV1Z3Dqk2SpNYMLdCr6pAZZp+wkfWPBo4eVj2SJLXMK8VJktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgOG9j10SRqrlbuMcF83j25f0gbYQ5ckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgOGFuhJTkyyLsklA/Pun+SsJN/uf+/Wz0+Sv0myOsnFSR4zrLokSWrRMHvoJwEHTZv3BuDsqtoXOLufBngKsG//cwTwgSHWJUlSc4YW6FV1LnDjtNkrgJP72ycDzxiYf0p1zgN2TbLHsGqTJKk1oz6GvntVXdPfvhbYvb+9F7BmYL21/byfk+SIJKuSrJqcnBxepZIkLSJjOymuqgqoOdzv+KpaXlXLJyYmhlCZJEmLz6gD/bqpofT+97p+/tXA3gPrLe3nSZKkWRh1oJ8BHNrfPhT49MD8F/Rnuz8WuHlgaF6SJG3CdsPacJJTgQOBJUnWAkcCxwCnJ3kR8F3gOf3qnwOeCqwGfggcPqy6JElq0dACvaoO2cCiJ8ywbgEvG1YtkiS1zivFSZLUAANdkqQGzCrQk5w9m3mSJGk8NnoMPcm9gJ3oTmzbDUi/6H5s4MIvkiRp9DZ1UtyfAK8C9gQu4O5AvwV43/DKkiRJm2OjgV5VxwHHJXlFVb13RDVJkqTNNKuvrVXVe5P8JrBs8D5VdcqQ6pIkSZthVoGe5MPAQ4CLgDv72QUY6JIkLQCzvbDMcmC//gIwkiRpgZnt99AvAR40zEIkSdLczbaHvgS4LMlXgDumZlbV04dSlSRJ2iyzDfSVwyxCkiRtmdme5f6lYRciSZLmbrZnud9Kd1Y7wA7A9sDtVXW/YRUmSZJmb7Y99PtO3U4SYAXw2GEVJUmSNs9m/7e16vwz8OT5L0eSJM3FbIfcnzkwuQ3d99J/PJSKpM2xcpdxVyBJC8Jsz3L/g4Hb64Gr6IbdJUnSAjDbY+iHD7sQSZI0d7M6hp5kaZJPJVnX/3wiydJhFydJkmZntifFfQg4g+7/ou8J/Es/T5IkLQCzDfSJqvpQVa3vf04CJoZYlyRJ2gyzDfQbkjwvybb9z/OAG4ZZmCRJmr3ZBvoLgecA1wLXAM8CDhtSTZIkaTPN9mtrbwUOraofACS5P/BXdEEvSZLGbLY99EdNhTlAVd0IPHo4JUmSpM0120DfJsluUxN9D322vXtJkjRksw3lvwb+K8k/9dPPBo6e606T/B/gxXT/we0bwOHAHsBpwAOAC4DnV9VP5roPSZK2JrPqoVfVKcAzgev6n2dW1YfnssMkewF/Ciyvqv2BbYGDgWOBd1fVQ4EfAC+ay/YlSdoazXrYvKouAy6bx/3eO8lPgZ3ozpx/PPBH/fKTgZXAB+Zpf5IkNW2z/33qlqqqq+nOkP8eXZDfTDfEflNVre9XWwvsNeraJElarEYe6P3JdSuAfeguI7szcNBm3P+IJKuSrJqcnBxSlZIkLS4jD3TgicCVVTVZVT8FPgn8FrBrkqlDAEuBq2e6c1UdX1XLq2r5xIRXn5UkCcYT6N8DHptkpyQBnkB3bP4cuivQARwKfHoMtUmStCiN4xj6+cDHgQvpvrK2DXA88Hrg1UlW03117YRR1yZJ0mI1lovDVNWRwJHTZn8HOGAM5UiStOiNY8hdkiTNMwNdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDxvI9dElqyspdRrivm0e3Ly0q9tAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSAwx0SZIaYKBLktSAsQR6kl2TfDzJFUkuT/IbSe6f5Kwk3+5/7zaO2iRJWozG1UM/Dvh/VfVLwK8AlwNvAM6uqn2Bs/tpSZI0CyMP9CS7AL8DnABQVT+pqpuAFcDJ/WonA88YdW2SJC1W4+ih7wNMAh9K8rUkH0yyM7B7VV3Tr3MtsPtMd05yRJJVSVZNTk6OqGRJkha2cQT6dsBjgA9U1aOB25k2vF5VBdRMd66q46tqeVUtn5iYGHqxkiQtBuMI9LXA2qo6v5/+OF3AX5dkD4D+97ox1CZJ0qI08kCvqmuBNUke3s96AnAZcAZwaD/vUODTo65NkqTFarsx7fcVwEeT7AB8Bzic7sPF6UleBHwXeM6YapMkadEZS6BX1UXA8hkWPWHEpUiS1ASvFCdJUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhpgoEuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkNMNAlSWqAgS5JUgMMdEmSGmCgS5LUgLEFepJtk3wtyWf66X2SnJ9kdZJ/TLLDuGqTJGmxGWcP/ZXA5QPTxwLvrqqHAj8AXjSWqiRJWoTGEuhJlgK/D3ywnw7weODj/SonA88YR22SJC1G4+qhvwd4HfCzfvoBwE1Vtb6fXgvsNYa6JElalEYe6EmeBqyrqgvmeP8jkqxKsmpycnKeq5MkaXEaRw/9t4CnJ7kKOI1uqP04YNck2/XrLAWununOVXV8VS2vquUTExOjqFeSpAVv5IFeVW+sqqVVtQw4GPhCVT0XOAd4Vr/aocCnR12bJEmL1UL6HvrrgVcnWU13TP2EMdcjSdKisd2mVxmeqvoi8MX+9neAA8ZZjyRJi9VC6qFLkqQ5MtAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDxnotdzVq5S7jrkCStjr20CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkN8MIykrSYjPLCTStvHt2+tMXsoUuS1AADXZKkBhjokiQ1wECXJKkBBrokSQ0w0CVJaoCBLklSA0Ye6En2TnJOksuSXJrklf38+yc5K8m3+9+7jbo2SZIWq3H00NcDr6mq/YDHAi9Lsh/wBuDsqtoXOLufliRJszDyQK+qa6rqwv72rcDlwF7ACuDkfrWTgWeMujZJkharsR5DT7IMeDRwPrB7VV3TL7oW2H0D9zkiyaokqyYnJ0dTqCRJC9zYAj3JfYBPAK+qqlsGl1VVATXT/arq+KpaXlXLJyYmRlCpJEkL31gCPcn2dGH+0ar6ZD/7uiR79Mv3ANaNozZJkhajcZzlHuAE4PKqetfAojOAQ/vbhwKfHnVtkiQtVuP496m/BTwf+EaSi/p5bwKOAU5P8iLgu8BzxlCbJEmL0sgDvaq+DGQDi58wylokSWqFV4qTJKkBBrokSQ0YxzF0jcPKXcZdgSRpiOyhS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDDHRJkhrghWXGyYu9SFrIRvk3auXNo9tXo+yhS5LUAANdkqQGGOiSJDXAQJckqQGeFCdJGj9PwNti9tAlSWqAgS5JUgMMdEmSGmCgS5LUAANdkqQGGOiSJDXAQJckqQEGuiRJDTDQJUlqgIEuSVIDFtylX5McBBwHbAt8sKqOGdnO/f/kkqRFakH10JNsC/wt8BRgP+CQJPuNtypJkha+hdZDPwBYXVXfAUhyGrACuGysVUmS2tHoP4JZUD10YC9gzcD02n6eJEnaiIXWQ9+kJEcAR/STtyX55jjrmcES4PpxFzFCW1t7wTZvDba29sLW1+bRtPeoDGOrD55p5kIL9KuBvQeml/bz7lJVxwPHj7KozZFkVVUtH3cdo7K1tRds89Zga2svbH1tbrG9C23I/avAvkn2SbIDcDBwxphrkiRpwVtQPfSqWp/k5cC/0X1t7cSqunTMZUmStOAtqEAHqKrPAZ8bdx1bYMEeDhiSra29YJu3Bltbe2Hra3Nz7U1VjbsGSZK0hRbaMXRJkjQHBvoQJHlbkouTXJTkzCR7jrumYUryziRX9G3+VJJdx13TsCV5dpJLk/wsSVNnyg5KclCSbyZZneQN465n2JKcmGRdkkvGXcsoJNk7yTlJLutfz68cd03DluReSb6S5Ot9m48ad03zxSH3IUhyv6q6pb/9p8B+VfWSMZc1NEl+D/hCf1LjsQBV9foxlzVUSX4Z+Bnw98CfVdWqMZc07/pLMX8LeBLdRZ6+ChxSVc1euTHJ7wC3AadU1f7jrmfYkuwB7FFVFya5L3AB8IzGn+MAO1fVbUm2B74MvLKqzhtzaVvMHvoQTIV5b2eg6U9NVXVmVa3vJ8+ju35A06rq8qpaaBc1mm93XYq5qn4CTF2KuVlVdS5w47jrGJWquqaqLuxv3wpcTuNX56zObf3k9v1PE3+jDfQhSXJ0kjXAc4G/GHc9I/RC4F/HXYTmhZdi3ookWQY8Gjh/zKUMXZJtk1wErAPOqqom2mygz1GSzye5ZIafFQBV9eaq2hv4KPDy8Va75TbV3n6dNwPr6dq86M2mzVILktwH+ATwqmkjjE2qqjur6lfpRhMPSNLE4ZUF9z30xaKqnjjLVT9K9736I4dYztBtqr1JDgOeBjyhGjkxYzOe41Zt8lLMWvz648ifAD5aVZ8cdz2jVFU3JTkHOAhY9CdC2kMfgiT7DkyuAK4YVy2jkOQg4HXA06vqh+OuR/PGSzE3rj9B7ATg8qp617jrGYUkE1PfxElyb7qTPpv4G+1Z7kOQ5BPAw+nOgv4u8JKqarZnk2Q1sCNwQz/rvJbP6gdI8ofAe4EJ4Cbgoqp68liLGoIkTwXew92XYj56vBUNV5JTgQPp/hPXdcCRVXXCWIsaoiSPA/4d+Abd3yuAN/VX7GxSkkcBJ9O9prcBTq+qt463qvlhoEuS1ACH3CVJaoCBLklSAwx0SZIaYKBLktQAA12SpAYY6JIkNcBAlySpAQa6JEkN+P/+mjtxVvVM6AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1395,7 +1395,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 37, "metadata": { "pycharm": { "name": "#%%\n" @@ -1407,7 +1407,7 @@ "output_type": "stream", "text": [ "normal_rv{0, (0, 0), floatX, False}.1 [id A]\n", - " |RandomGeneratorSharedVariable() [id B]\n", + " |RandomGeneratorSharedVariable() [id B]\n", " |TensorConstant{[]} [id C]\n", " |TensorConstant{11} [id D]\n", " |TensorConstant{0} [id E]\n", @@ -1417,10 +1417,10 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 31, + "execution_count": 37, "metadata": {}, "output_type": "execute_result" } @@ -1445,7 +1445,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 38, "metadata": { "pycharm": { "name": "#%%\n" @@ -1458,7 +1458,7 @@ "[z]" ] }, - "execution_count": 32, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } @@ -1469,7 +1469,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 39, "metadata": { "pycharm": { "name": "#%%\n" @@ -1481,7 +1481,7 @@ "output_type": "stream", "text": [ "normal_rv{0, (0, 0), floatX, False}.1 [id A] 'z'\n", - " |RandomGeneratorSharedVariable() [id B]\n", + " |RandomGeneratorSharedVariable() [id B]\n", " |TensorConstant{[]} [id C]\n", " |TensorConstant{11} [id D]\n", " |TensorConstant{(2,) of 0} [id E]\n", @@ -1491,10 +1491,10 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 33, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } @@ -1516,7 +1516,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 40, "metadata": { "pycharm": { "name": "#%%\n" @@ -1527,16 +1527,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "Sample 0: [-1.97758523 3.67000753]\n", - "Sample 1: [-1.97758523 3.67000753]\n", - "Sample 2: [-1.97758523 3.67000753]\n", - "Sample 3: [-1.97758523 3.67000753]\n", - "Sample 4: [-1.97758523 3.67000753]\n", - "Sample 5: [-1.97758523 3.67000753]\n", - "Sample 6: [-1.97758523 3.67000753]\n", - "Sample 7: [-1.97758523 3.67000753]\n", - "Sample 8: [-1.97758523 3.67000753]\n", - "Sample 9: [-1.97758523 3.67000753]\n" + "Sample 0: [-0.14109248 1.10120293]\n", + "Sample 1: [-0.14109248 1.10120293]\n", + "Sample 2: [-0.14109248 1.10120293]\n", + "Sample 3: [-0.14109248 1.10120293]\n", + "Sample 4: [-0.14109248 1.10120293]\n", + "Sample 5: [-0.14109248 1.10120293]\n", + "Sample 6: [-0.14109248 1.10120293]\n", + "Sample 7: [-0.14109248 1.10120293]\n", + "Sample 8: [-0.14109248 1.10120293]\n", + "Sample 9: [-0.14109248 1.10120293]\n" ] } ], @@ -1558,7 +1558,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 41, "metadata": { "pycharm": { "name": "#%%\n" @@ -1569,16 +1569,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "Sample 0: [-1.13812635 0.73080569]\n", - "Sample 1: [-2.53843834 0.63905086]\n", - "Sample 2: [ 1.23414716 -0.6985418 ]\n", - "Sample 3: [-0.07509846 0.7046108 ]\n", - "Sample 4: [-0.4407329 -3.47301204]\n", - "Sample 5: [0.34642982 1.03938203]\n", - "Sample 6: [ 0.4471714 -1.04602358]\n", - "Sample 7: [0.5208584 0.85399692]\n", - "Sample 8: [-0.79061811 -1.33057063]\n", - "Sample 9: [-1.62328737 3.10770738]\n" + "Sample 0: [-0.30763395 -0.03785518]\n", + "Sample 1: [ 1.65868277 -2.89168795]\n", + "Sample 2: [ 0.60497487 -2.01427486]\n", + "Sample 3: [-1.00668317 1.17879995]\n", + "Sample 4: [0.31450361 1.08257152]\n", + "Sample 5: [ 0.48597109 -4.1494794 ]\n", + "Sample 6: [-1.37987128 0.80704246]\n", + "Sample 7: [2.49376802 3.16863565]\n", + "Sample 8: [0.88427773 1.99857046]\n", + "Sample 9: [ 1.01287644 -0.99032698]\n" ] } ], @@ -1589,7 +1589,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 42, "metadata": { "pycharm": { "name": "#%%\n" @@ -1598,7 +1598,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeIAAAHiCAYAAAA06c+jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAeRUlEQVR4nO3deZCkd33f8c9nes5d7a6u1YF2kYSR5CgSh2uFuRwMCCxARpXEBxiIsZ3aMhU5UBEQQIkNFduhTArLBBzXGmQCUhCYw6GEFB0RmDgYgS5kCS1YHLoQ0q6kXc1eM9Pd3/zRz5JhNdqV9vmuvjPT71eVSjvbvZ/+Ps9096d/T8/044gQAACoMVI9AAAAw4wiBgCgEEUMAEAhihgAgEIUMQAAhShiAAAKUcTAImL7vbYvKbjd99j+6FN9uwAoYkCSZPvFtr9me7vth23/X9tnVc+V4fHK3XbYfqYkRcQfR8S/fgJZX7F9wOsBeOJGqwcAqtleLelySW+R9BlJ45J+QdJM5VzDxvZoRHSr5wCeaqyIAelUSYqIT0VELyJ2R8TVEXGrJNn+GdvX2X7I9lbbl9o+fO8/tv1D2++wfavtnbY/ZvtY21fanrZ9re0jmuue1KxEN9r+ke37bb/98Qaz/fxmpb7N9rds/+K8y95s+/vNbfzA9hsOdgfMXzXbnrR9SbO922x/s9meP9LgBcqHbe+w/eHm+i9srrO9+f8L5+WebPur8/bDR+bdzt598Tu275Z0XfP3f237x03eV23/03l5H7f9582+3dEcuTjO9kW2H7G92fZzD3Y/ABUoYkD6rqSe7f9u+1V7S3MeS/rPkp4m6Z9IWi/pvftc519KeoUGpf7Lkq6U9B5JazV4nP3bfa7/UkmnSHqlpH9v++x9h7J9gqQvSfpDSUdKerukz9lea3ulpA9JelVErJL0Qkm3POktX9hvSlqjwXYeJel3Je2OiAsl/R9J50fEYRFxvu0jmxk/1Fz3g5K+ZPuoJut/SPpGc9l7Jb1pgdt7iQb79Zear6/UYN8cI+kmSZfuc/1fk/QfJB2twVGLv2+ud7SkzzYzAEsGRYyhFxGPSnqxpJD0l5K22P6i7WOby++MiGsiYiYitmjwRP+SfWL+a0Q8EBH3aVBW10fEzRGxR9IXJO27SntfROyMiH+Q9FeSXr/AaG+UdEVEXBER/Yi4RtINkl7dXN6XdIbtqYi4PyJu389m/lqzuv3Jf/u57pwGxfnM5gjBjc0+WshrJP1jRHwyIroR8SlJmyX9su2nSzpL0u9HxGxE/J2kLy6Q8d5mX+yWpIi4OCKmI2JGg/J+tu01867/hWamvft2T0R8IiJ6kj6tx+5rYFGjiAFJEXFHRLw5ItZJOkOD1e9FktQclr3M9n22H5V0iQarr/kemPfn3Qt8fdg+179n3p/vam5vXydK+tV9yvPFko6PiJ2Sfl2D1er9tr9k+2f3s4mfiYjD5/+3n+t+UtJVki5rDp//ie2xx7nu05r557tL0gnNZQ9HxK55l92jx/rJ39nu2H6/7e81+/qHzUXz9/eT3dfAokYRA/uIiM2SPq5BIUvSH2uwWj4zIlZrsFJ1y5tZP+/PT5f0owWuc4+kT+5ToCsj4v3NnFdFxCskHa/BKvQvW86kJncuIt4XEadrcMj7XEn/au/F+1z9Rxq8YJjv6ZLuk3S/pCNtr5h32Xo91vzM35B0nqSzNTg8flLz9233N7BoUcQYerZ/1vYFttc1X6/X4FDx15urrJK0Q9L25n3bdyTc7H+0vaL5QaTf0uCQ6r4u0eAQ7y81K8VJ279oe12zSj+vea94ppmvnzCXbL/U9pm2O5Ie1eBQ9d7sByQ9Y97Vr5B0qu3fsD1q+9clnS7p8oi4S4ND6e+1PW77BRq8f74/q5rteUjSCg1eBAHLGkUMSNOSfl7S9bZ3alDAt0m6oLn8fZJ+TtJ2DX4w6fMJt/m3ku6U9L8l/ZeIuHrfK0TEPRqsDt8jaYsGK+R3aPC4HZH07zRYkT6swXvWb0mYS5KO0+CHnh6VdEcz6yeby/5M0q80P6H8oYh4SIMV8wUalOc7JZ0bEVub679B0guay/5Qgxcc+/u1sE9ocGj7Pknf1v9/MQQsW47Y90gTgEPF9kmSfiBpbBh/Z9b2pyVtjog/qJ4FWCxYEQM4ZGyf5cHvYY/YPkeDFf7fFI8FLCp8shaAQ+k4DQ7lHyXpXklviYiba0cCFhcOTQMAUIhD0wAAFKKIAQAoVPIe8bgnYlIrK24aAICn3LQe2RoRaxe6rKSIJ7VSP++XV9w0KniZHniJlM/PADAEro3P7vtRsD+xTJ8hAQBYGihiAAAKUcQAABSiiAEAKEQRAwBQiCIGAKAQRQwAQCGKGACAQhQxAACFKGIAAApRxAAAFKKIAQAoRBEDAFCIIgYAoBBFDABAIYoYAIBCo9UDYAhEPyfHSa8bF9s8SdzppOREr5cQkrSPgSGwuJ5JAAAYMhQxAACFKGIAAApRxAAAFKKIAQAoRBEDAFCIIgYAoBBFDABAIYoYAIBCFDEAAIUoYgAAClHEAAAUoogBAChEEQMAUIgiBgCgUEoR2z7c9mdtb7Z9h+0XZOQCALDcjSbl/Jmk/xURv2J7XNKKpNzhk3Wy+cV0YvZFtk0j4+MpOf25bkqOO52UnCwZ84xMrUyYROrv3pOSE925lByPjqXkZM2z2B5bODiti9j2Gkn/TNKbJSkiZiXNts0FAGAYZLycOlnSFkl/Zftm2x+1/ZiXw7Y32r7B9g1zmkm4WQAAlr6MIh6V9HOS/ltEPFfSTknv2vdKEbEpIjZExIYxTSTcLAAAS19GEd8r6d6IuL75+rMaFDMAADiA1kUcET+WdI/t05q/ermkb7fNBQBgGGT91PTvSbq0+Ynp70v6raRcAACWtZQijohbJG3IyAIAYJjwyVoAABSiiAEAKEQRAwBQiCIGAKAQRQwAQCGKGACAQhQxAACFKGIAAApRxAAAFKKIAQAolPVZ08gS/ZQYj46l5ER3LiFkcW1TlpHJnNN5ejTnYejx8ZScDDGzyM457pw1R8rjIVPSYwu1WBEDAFCIIgYAoBBFDABAIYoYAIBCFDEAAIUoYgAAClHEAAAUoogBAChEEQMAUIgiBgCgEEUMAEAhihgAgEIUMQAAhShiAAAKUcQAABSiiAEAKJRzRnLkSTqBeZqEeUYmJxIGkTy6uO6uPu6YnKCHt+XkTIzn5Ix22mf0eu0zJI1MpsQoZmdTcvpz3ZQcRT8nB8vCInvWBwBguFDEAAAUoogBAChEEQMAUIgiBgCgEEUMAEAhihgAgEIUMQAAhShiAAAKUcQAABSiiAEAKEQRAwBQiCIGAKAQRQwAQCGKGACAQhQxAACFFteZ1pcyJ72mSTpheHRzcjw6lpCRdDeLSInx6lUpOTGRs11x4nEpOVn7Z2THTOsMr8y5//UffiQlxxMTKTmLbeUS/ZzvefR6CSE53/NhtNjuVwAADBWKGACAQhQxAACFKGIAAApRxAAAFEorYtsd2zfbvjwrEwCA5S5zRfxWSXck5gEAsOylFLHtdZJeI+mjGXkAAAyLrBXxRZLeKYnf6AYA4EloXcS2z5X0YETceIDrbbR9g+0b5tT+k3sAAFgOMlbEL5L0Wts/lHSZpJfZvmTfK0XEpojYEBEbxpTzcXMAACx1rYs4It4dEesi4iRJr5N0XUS8sfVkAAAMAX6PGACAQqlnX4qIr0j6SmYmAADLGStiAAAKUcQAABSiiAEAKJT6HvGT4pavASLps0PazrE3ptNJyYluznaNTE3l5KxelZKTYuWKlJje2tUpObOH5/wa3tj0XErO3GE5D+fOqvbb1ZlZmTCJNHLUmpQcb5vOydm9JyWnv2NnSk7MLaLPZEh6Lk17bl9CWBEDAFCIIgYAoBBFDABAIYoYAIBCFDEAAIUoYgAAClHEAAAUoogBAChEEQMAUIgiBgCgEEUMAEAhihgAgEIUMQAAhShiAAAKUcQAABSiiAEAKJRzJvGDsVhO/pw2RyclZWRqKiXHnZx5+o+2P6H6yPHHJkwiza47IiVn9zHtT3wvSXJOTG8y5/XwzmOSvudj7TOmHs55XK36wa6UnP7qo1NyOjd+JyUny8hYzlN4f3a2fYhZ1x0s9hwAAIUoYgAAClHEAAAUoogBAChEEQMAUIgiBgCgEEUMAEAhihgAgEIUMQAAhShiAAAKUcQAABSiiAEAKEQRAwBQiCIGAKAQRQwAQCGKGACAQhQxAACFRqsHqObRsZSc6PVScjprVqfk9HftSskZOXFd64zemqmESaRtp+bkzKxJiVE/566jXetz7jsaycmZeKDTOmN82gmTSL2J9rNI0uj0TErOyJFHpORoYjwlJrY8lJLjfqTkZIikh4OinxR06LEiBgCgEEUMAEAhihgAgEIUMQAAhShiAAAKUcQAABSiiAEAKEQRAwBQiCIGAKAQRQwAQCGKGACAQhQxAACFWhex7fW2v2z727Zvt/3WjMEAABgGGWdf6kq6ICJusr1K0o22r4mIbydkAwCwrLVeEUfE/RFxU/PnaUl3SDqhbS4AAMMg9T1i2ydJeq6k6zNzAQBYrjIOTUuSbB8m6XOS3hYRjy5w+UZJGyVpUisSbjDnNUR051JysubJMrL2qJygbvuzdD905mEJg0iRc4547Twx54ThsTrnvvOi076XkvONu09MyfHa9vtny5ErEyaRojOZkjP10FhKzsoHt6XkaPt0Skx0uyk5I1Pt93NvOmebFp2s5/Z4/ItSbsH2mAYlfGlEfH7BGSI2RcSGiNgwpomMmwUAYMnL+KlpS/qYpDsi4oPtRwIAYHhkrIhfJOlNkl5m+5bmv1cn5AIAsOy1fo84Iv5OkhNmAQBg6CyunzACAGDIUMQAABSiiAEAKEQRAwBQiCIGAKAQRQwAQCGKGACAQhQxAACFKGIAAApRxAAAFKKIAQAoRBEDAFCo9UkfDlrbky1HzsndPZpzwvAsMTOTkuMjD0/J2XPiEa0zVj6Qc/LyH70w5+560uk/Ssl507rrU3J+MLM2JWf9aY+k5Dwws6p1xoNHt8+QpB/fenJKzp7DOyk5k8cflZLT2b4rJWdkJOd8O92tD6fkZMh6To7uXEpOVtfsDytiAAAKUcQAABSiiAEAKEQRAwBQiCIGAKAQRQwAQCGKGACAQhQxAACFKGIAAApRxAAAFKKIAQAoRBEDAFCIIgYAoBBFDABAIYoYAIBCFDEAAIUoYgAACo2W3XL0y276UPBY0q4cTcqZmUmJGd0x1zpj5oiphEmk0VOmU3IenF6VkvPp+zek5Fx52hUpOff1cvbP2+8+r3XG/TtWJ0wibTsj53li5V05a47Vk52UnM6OpDVQP1Ji3MnYrpx9E71eSs5SwooYAIBCFDEAAIUoYgAAClHEAAAUoogBAChEEQMAUIgiBgCgEEUMAEAhihgAgEIUMQAAhShiAAAKUcQAABSiiAEAKEQRAwBQiCIGAKAQRQwAQKGks9AfBLd8DRA5JwxPk3Uy66Sc/lE5J2bvHjbWOmPbKTmv9+Zmc+6unanZlJw/fcZfp+T8+bbTUnLOnLw3JefklVtbZ2zdsyJhEmmbjkjJGduVEqMYTVq77N6TEtPflbRhCSLrOTDrub1tx+z1FHQNK2IAAApRxAAAFEopYtvn2P6O7TttvysjEwCAYdC6iG13JH1E0qsknS7p9bZPb5sLAMAwyFgRP0/SnRHx/YiYlXSZpPMScgEAWPYyivgESffM+/re5u8AAMABPGW/vmR7o6SNkjSpnF9tAABgqctYEd8naf28r9c1f/dTImJTRGyIiA1jmki4WQAAlr6MIv6mpFNsn2x7XNLrJH0xIRcAgGWv9aHpiOjaPl/SVZI6ki6OiNtbTwYAwBBIeY84Iq6QdEVGFgAAw4RP1gIAoBBFDABAIYoYAIBCFDEAAIUoYgAAClHEAAAUeso+4vIxot/u3zvnNYRHnJMzPp6So4iUmJHpPTk5aybbh7T8Vu81OTWbkrNyIifnE4+8ICXnbUd9LSVn0p2UnIumj22dMT2TcL+RNLY953E++XDOnXB0e87jKlYlfczvgzkx0eslhCQ90LMstnn2gxUxAACFKGIAAApRxAAAFKKIAQAoRBEDAFCIIgYAoBBFDABAIYoYAIBCFDEAAIUoYgAAClHEAAAUoogBAChEEQMAUIgiBgCgEEUMAEAhihgAgEKj1QNU68/mnCS+Mz6ekiM7J2c05yTx3an2OSNzCYNI2rN5TUrOjrU5A12nU1Nyts1NpeQ8NHNYSs5d249onfHIIysTJpHWPJASo5FupOR4rpeTs+WRnJwVK1JyYq7bPiNn10jRTwpaOlgRAwBQiCIGAKAQRQwAQCGKGACAQhQxAACFKGIAAApRxAAAFKKIAQAoRBEDAFCIIgYAoBBFDABAIYoYAIBCFDEAAIUoYgAAClHEAAAUoogBACg0Wj3AQUs6ebRHx1Jyejt3peR0Vuac6Fu9nP0zdd+O1hlH93JOEj/99PGUnJ27c77n2368NiXnG8/JeT18wqrtKTkZxn4wmZLTmU2JUW/CKTmeznmcq9tLienvypknunOtM7KeS6Ob89yVxknr1Xj8i1gRAwBQiCIGAKAQRQwAQCGKGACAQhQxAACFKGIAAApRxAAAFKKIAQAoRBEDAFCIIgYAoFCrIrb9Adubbd9q+wu2D0+aCwCAodB2RXyNpDMi4lmSvivp3e1HAgBgeLQq4oi4OiK6zZdfl7Su/UgAAAyPzPeIf1vSlYl5AAAsewc8DaLtayUdt8BFF0bE/2yuc6GkrqRL95OzUdJGSZpU0qn+AABY4g5YxBFx9v4ut/1mSedKenlEPO4ZFyNik6RNkrTaR+7nzIwAAAyPAxbx/tg+R9I7Jb0kIpLOmA0AwPBoVcSSPixpQtI1tiXp6xHxu0/oX7rl29PRb/fv98Z051JyPDqWktPbmfN6ZvTR6ZQcTRzROmLqzq0Jg0i7jj0+JWfV3Skxmn66U3L2fO2olJzvTuTkdGbaZ4zlPKy0YksvJWfqvpzHVazKeVvNc90DX+mJ5MwkfLOU8/yV9Vy66CR1zf60KuKIeGbWIAAADCM+WQsAgEIUMQAAhShiAAAKUcQAABSiiAEAKEQRAwBQiCIGAKAQRQwAQCGKGACAQhQxAACFKGIAAApRxAAAFKKIAQAoRBEDAFCIIgYAoFCr8xG30vZky+Y1xP7EzGxKjqdzTqieYc33dqfkdFfk3O17E+MpOVNbeik5s6sWz2PiiM07U3Jm1+Ts4849D6TkpOnmfM+zRHeueoR8WR3RtquegMXzyAUAYAhRxAAAFKKIAQAoRBEDAFCIIgYAoBBFDABAIYoYAIBCFDEAAIUoYgAAClHEAAAUoogBAChEEQMAUIgiBgCgEEUMAEAhihgAgEIUMQAAhShiAAAKjVYPcNCiXz3BT/FIzq702ERKTuzalZLjsYTt6kf7DEkju1el5IwmzXP0jTMpOd1V4yk5Uw/2UnJmjmp/H+xNdBImkabu3p6So9Gcx2d/y9aUHE/kPM57O3ak5MgJa7JF9py86ObZD1bEAAAUoogBAChEEQMAUIgiBgCgEEUMAEAhihgAgEIUMQAAhShiAAAKUcQAABSiiAEAKEQRAwBQiCIGAKAQRQwAQCGKGACAQhQxAACFKGIAAArlnC0bafp7ck42707Oidl7j7Q/MfvIZM5J0Ecenk7J8faknInxlJzOyhUpOUq674z9Y699SNK+0c7dKTHRS9gmSf25bkqOsnKcs5bKeL6Ibj9hkuGU8l20fYHtsH10Rh4AAMOidRHbXi/plZLubj8OAADDJWNF/KeS3ikpErIAABgqrYrY9nmS7ouIbz2B6260fYPtG+aU814WAABL3QF/WMv2tZKOW+CiCyW9R4PD0gcUEZskbZKk1T6S1TMAAHoCRRwRZy/097bPlHSypG/ZlqR1km6y/byI+HHqlAAALFMH/etLEfEPko7Z+7XtH0raEBFbE+YCAGAo8IEeAAAUSvtAj4g4KSsLAIBhwYoYAIBCFDEAAIUoYgAAClHEAAAUoogBAChEEQMAUIgiBgCgUNrvEQ+7tBOGR87JtdNO0p1x4vHBR6C2FtunU3KUdJL4NDOzOTljOQ/nmN7RPmTnrvYZkmI2ad8kcaeTkzOS85jIet6J7lxKDg4OK2IAAApRxAAAFKKIAQAoRBEDAFCIIgYAoBBFDABAIYoYAIBCFDEAAIUoYgAAClHEAAAUoogBAChEEQMAUIgiBgCgEEUMAEAhihgAgEIUMQAAhShiAAAKjVYPsGxEv3qCn+ac11judFpn9HbsTJhEGhnLubt6xYqUnNi5KyVHoznb1U/az07YzzHXTZhE8ohTcvpJ82Q9ziMlBcsFK2IAAApRxAAAFKKIAQAoRBEDAFCIIgYAoBBFDABAIYoYAIBCFDEAAIUoYgAAClHEAAAUoogBAChEEQMAUIgiBgCgEEUMAEAhihgAgEIUMQAAhXLOSI7FJ+sE5t2cnAz92dmUnKxXn56YSMnpbduWkuPRsZScmOu2zvCIEyaR1Onk5CTdd9I46V6Y9DhHLVbEAAAUoogBAChEEQMAUIgiBgCgEEUMAEAhihgAgEIUMQAAhVoXse3fs73Z9u22/yRjKAAAhkWrD/Sw/VJJ50l6dkTM2D4mZywAAIZD2xXxWyS9PyJmJCkiHmw/EgAAw6NtEZ8q6RdsX2/7b22flTEUAADD4oCHpm1fK+m4BS66sPn3R0p6vqSzJH3G9jMiIhbI2ShpoyRNakWbmQEAWDYOWMQRcfbjXWb7LZI+3xTvN2z3JR0tacsCOZskbZKk1T7yMUUNAMAwanto+m8kvVSSbJ8qaVzS1paZAAAMjbanQbxY0sW2b5M0K+k3FzosDQAAFtaqiCNiVtIbk2YBAGDo8MlaAAAUantoGnjqOOd1Y392NiVHc92cnCTR66XkuNNpnZG1jz06lpKz6ES/egIsIqyIAQAoRBEDAFCIIgYAoBBFDABAIYoYAIBCFDEAAIUoYgAAClHEAAAUoogBAChEEQMAUIgiBgCgEEUMAEAhihgAgEIUMQAAhShiAAAKUcQAABQarR4AWLIW28ndk+aJXkpMiujOVY8AHHKsiAEAKEQRAwBQiCIGAKAQRQwAQCGKGACAQhQxAACFKGIAAApRxAAAFKKIAQAoRBEDAFCIIgYAoBBFDABAIYoYAIBCFDEAAIUoYgAAClHEAAAUckQ89Tdqb5F011N+w3mOlrS1eohDhG1bepbrdkls21LFtj3WiRGxdqELSop4qbN9Q0RsqJ7jUGDblp7lul0S27ZUsW1PDoemAQAoRBEDAFCIIj44m6oHOITYtqVnuW6XxLYtVWzbk8B7xAAAFGJFDABAIYr4INn+T7ZvtX2L7attP616piy2P2B7c7N9X7B9ePVMGWz/qu3bbfdtL4uf6LR9ju3v2L7T9ruq58li+2LbD9q+rXqWbLbX2/6y7W8398e3Vs+Uwfak7W/Y/lazXe+rnimb7Y7tm21fnplLER+8D0TEsyLiOZIul/T7xfNkukbSGRHxLEnflfTu4nmy3CbpX0j6avUgGWx3JH1E0qsknS7p9bZPr50qzcclnVM9xCHSlXRBRJwu6fmS/s0y+b7NSHpZRDxb0nMknWP7+bUjpXurpDuyQynigxQRj877cqWkZfNme0RcHRHd5suvS1pXOU+WiLgjIr5TPUei50m6MyK+HxGzki6TdF7xTCki4quSHq6e41CIiPsj4qbmz9MaPLGfUDtVezGwo/lyrPlv2Twv2l4n6TWSPpqdTRG3YPuPbN8j6Q1aXivi+X5b0pXVQ2BBJ0i6Z97X92oZPKEPE9snSXqupOuLR0nRHLq9RdKDkq6JiGWxXY2LJL1TUj87mCLeD9vX2r5tgf/Ok6SIuDAi1ku6VNL5tdM+OQfatuY6F2pwGO3SukmfnCeyXcBiYPswSZ+T9LZ9jrAtWRHRa96uWyfpebbPKB4phe1zJT0YETceivzRQxG6XETE2U/wqpdKukLSHxzCcVIdaNtsv1nSuZJeHkvod9yexPdsObhP0vp5X69r/g6LnO0xDUr40oj4fPU82SJim+0va/A+/3L4gbsXSXqt7VdLmpS02vYlEfHGjHBWxAfJ9inzvjxP0uaqWbLZPkeDQzCvjYhd1fPgcX1T0im2T7Y9Lul1kr5YPBMOwLYlfUzSHRHxwep5stheu/c3LGxPSXqFlsnzYkS8OyLWRcRJGjzOrssqYYkibuP9zSHPWyW9UoOfplsuPixplaRrml/P+ovqgTLY/ue275X0Aklfsn1V9UxtND9Qd76kqzT4gZ/PRMTttVPlsP0pSX8v6TTb99r+neqZEr1I0pskvax5fN3SrLSWuuMlfbl5TvymBu8Rp/6az3LFJ2sBAFCIFTEAAIUoYgAAClHEAAAUoogBAChEEQMAUIgiBgCgEEUMAEAhihgAgEL/D0EF77PI/OdGAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAHiCAYAAAA597/kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAecElEQVR4nO3debSchX3e8eeZu+hqQQIhsECSA6nBKcHrETYYp17ADo6JOW2z2DFuSNLqlFMSp8WmBtoYn2bxiXNcx7XbHMUmroGauBg7PhjKEm9NYmNjNgOSKZgdAWLTLt1lfv1jBvvmctHC+7uan2a+n3N0pHvn1TO/970z88z7ztx5HRECAAC91er1AAAAgEIGAKAEChkAgAIoZAAACqCQAQAogEIGAKAAChkoxPZFti/twfVeYPsz+/t6AfwUhQxIsv1G2/9ge5Ptp23/ve0Tej1Xhhcqedth+2WSFBF/HBH/ei+yvml7j8sB2HfDvR4A6DXbiyVdJelsSV+UNCrpFyTt6uVcg8b2cERM9noOoFfYQwakYyUpIr4QEVMRsSMirouI2yXJ9j+x/XXbT9l+0vZltg9+7j/bvt/2B23fbnub7c/afonta2xvsX2D7UO6yx7V3TNdY/tR2xtsf+CFBrN9YnfP/Vnbt9l+87TLzrL94+513Gf7vS92A0zfi7Y9ZvvS7vo+a/v73fX5I3WeqHzK9lbbn+ou/4buMpu6f79hWu7Rtr89bTt8etr1PLctfsf2g5K+3v3+/7b9WDfv27Z/flre52z/9+623do9krHc9idsP2N7ve3XvNjtAPQShQxId0uasv0/bb/jufKcxpL+RNKRkv6ppFWSLpqxzL+U9DZ1yv2XJV0j6QJJh6lzP/u9Gcu/RdIxkt4u6T/aPnXmULZXSPqapD+UtFTSByR9yfZhthdK+qSkd0TEQZLeIOnWfV7z2f2mpCXqrOehkv6tpB0RcaGk/yvpnIhYFBHn2F7anfGT3WU/Lulrtg/tZv0vSd/rXnaRpPfNcn1vUme7/mL362vU2TaHS7pZ0mUzlv81Sf9J0jJ1jmJ8p7vcMklXdGcADjgUMgZeRGyW9EZJIekvJW20/VXbL+lefk9EXB8RuyJiozoP+G+aEfPfIuLxiHhEndK6MSJuiYidkr4saeZe20ciYltE/FDSX0l6zyyjnSnp6oi4OiLaEXG9pJsk/VL38rak423Pj4gNEXHnblbz17p7uz/5s5tlJ9Qp0Jd1jxj8oLuNZvNOSf8vIi6JiMmI+IKk9ZJ+2fZLJZ0g6Q8iYjwi/k7SV2fJuKi7LXZIUkRcHBFbImKXOiX+KttLpi3/5e5Mz23bnRHx+YiYkvTXev62Bg4IFDIgKSLWRcRZEbFS0vHq7A1/QpK6h2svt/2I7c2SLlVnb2y6x6f9e8csXy+asfxD0/79QPf6ZvoZSb86o0TfKOmIiNgm6dfV2XvdYPtrtn9uN6v4xYg4ePqf3Sx7iaRrJV3ePaz+p7ZHXmDZI7vzT/eApBXdy56OiO3TLntIz/eT79kesv1R2/d2t/X93Yumb+993dbAAYFCBmaIiPWSPqdOMUvSH6uz9/yKiFiszp6rG17Nqmn/fqmkR2dZ5iFJl8wo0oUR8dHunNdGxNskHaHOXulfNpxJ3dyJiPhIRBynzqHw0yX9q+cunrH4o+o8cZjupZIekbRB0lLbC6ZdtkrPNz3zNySdIelUdQ6bH9X9ftPtDZRHIWPg2f452+faXtn9epU6h5C/213kIElbJW3qvq77wYSr/c+2F3TfsPRb6hxqnelSdQ79/mJ3z3HM9pttr+zutZ/RfS15V3e+dsJcsv0W26+wPSRpszqHsJ/LflzSz05b/GpJx9r+DdvDtn9d0nGSroqIB9Q5xH6R7VHbJ6nz+vruHNRdn6ckLVDnyRAwEChkQNoi6fWSbrS9TZ0ivkPSud3LPyLptZI2qfMGpisTrvNbku6R9LeS/iwirpu5QEQ8pM7e4gWSNqqzx/xBde63LUn/QZ091KfVeU377IS5JGm5Om+O2ixpXXfWS7qX/bmkX+m+o/mTEfGUOnvQ56pToudJOj0inuwu/15JJ3Uv+0N1nnjs7tfJPq/OIe9HJN2lnz4pAvqeI2YegQIwV2wfJek+SSOD+Du3tv9a0vqI+HCvZwGqYQ8ZwJyxfYI7v8fdsn2aOnv8X+nxWEBJfFIXgLm0XJ1D/IdKeljS2RFxS29HAmrikDUAAAVwyBoAgAIoZAAACujJa8ijnhdjWtiLqwYAYL/bomeejIjDdrdMTwp5TAv1ep/Si6sGgN5z0sHJSPksGOwHN8QVMz9i9nk4ZA0AQAEUMgAABVDIAAAUQCEDAFAAhQwAQAEUMgAABVDIAAAUQCEDAFAAhQwAQAEUMgAABVDIAAAUQCEDAFAAhQwAQAEUMgAABVDIAAAU0JPzIQMojHP1zj22DWbBHjIAAAVQyAAAFEAhAwBQAIUMAEABFDIAAAVQyAAAFEAhAwBQAIUMAEABFDIAAAVQyAAAFEAhAwBQAIUMAEABFDIAAAWkFLLtf2/7Ttt32P6C7bGMXAAABkXjQra9QtLvSVodEcdLGpL07qa5AAAMkqxD1sOS5tselrRA0qNJuQAADITGhRwRj0j6M0kPStogaVNEXNc0FwCAQZJxyPoQSWdIOlrSkZIW2j5zluXW2L7J9k0T2tX0agHMlWjn/AGwTzIOWZ8q6b6I2BgRE5KulPSGmQtFxNqIWB0Rq0c0L+FqAQDoHxmF/KCkE20vsG1Jp0hal5ALAMDAyHgN+UZJV0i6WdIPu5lrm+YCADBIhjNCIuLDkj6ckQUAwCDik7oAACiAQgYAoAAKGQCAAihkAAAKoJABACiAQgYAoAAKGQCAAihkAAAKoJABACiAQgYAoAAKGQCAAihkAAAKSDm5BAA8j4s93492rycAdqvYPQYAgMFEIQMAUACFDABAARQyAAAFUMgAABRAIQMAUACFDABAARQyAAAFUMgAABRAIQMAUACFDABAARQyAAAFUMgAABRAIQMAUACFDABAARQyAAAFUMgAABQw3OsBMEdc7LlWtHNyqq1XBrbN7mVtnywZ27naOqGEPr0HAwBwYKGQAQAogEIGAKAAChkAgAIoZAAACqCQAQAogEIGAKAAChkAgAIoZAAACqCQAQAogEIGAKCAlEK2fbDtK2yvt73O9kkZuQAADIqsk0v8uaT/ExG/YntU0oKkXAAABkLjQra9RNI/k3SWJEXEuKTxprkAAAySjEPWR0vaKOmvbN9i+zO2FybkAgAwMDIKeVjSayX9j4h4jaRtkj40cyHba2zfZPumCe1KuFoAAPpHxmvID0t6OCJu7H59hWYp5IhYK2mtJC320uAk3y+g2Enm3XJKTrRrrVeaQrfB1kjOW0Jiaionpx0pOa15Yyk5WT+r9jivyGFuNH6UjIjHJD1k++Xdb50i6a6muQAADJKsd1n/rqTLuu+w/rGk30rKBQBgIKQUckTcKml1RhYAAIOoT1/YAwDgwEIhAwBQAIUMAEABFDIAAAVQyAAAFEAhAwBQAIUMAEABFDIAAAVQyAAAFEAhAwBQAIUMAEABFDIAAAVQyAAAFJB1+sV9V+jE7mncf89v0k4yPz/pJPNTSbeboZyfVWvhgpScDDE+kZLjlBTJoyMpOe3NW1Ny0iTcz93K2cpZ989y+rEf9kL/NQgAAAcgChkAgAIoZAAACqCQAQAogEIGAKAAChkAgAIoZAAACqCQAQAogEIGAKAAChkAgAIoZAAACqCQAQAogEIGAKAAChkAgAIoZAAACqCQAQAogEIGAKCA4V4PUILrPC9xyzk5Q0M5OfPnp+TISeu1cEFKTprx8cYRcfjShEEkb9uVkqNo5+Rs3Z4S01qWs31i0+aUnKGE+8TUpk0JkyjvsSvrZ45G6jQRAAADjEIGAKAAChkAgAIoZAAACqCQAQAogEIGAKAAChkAgAIoZAAACqCQAQAogEIGAKCAtEK2PWT7FttXZWUCADAoMveQ3y9pXWIeAAADI6WQba+U9E5Jn8nIAwBg0GTtIX9C0nmSOGUIAAAvQuNCtn26pCci4gd7WG6N7Zts3zShpNPEAQDQJzL2kE+W9C7b90u6XNJbbV86c6GIWBsRqyNi9YjmJVwtAAD9Y7hpQEScL+l8SbL9ZkkfiIgzm+YekBJO8u3hsYRBJM/PyYkdO1Ny/LKXpuTE0FBKzsQhzU8yL0mtieY/89a28YRJpO2vODglZ8F9m1Jypo5YmpIz/NizKTleuCAlR/MTbjubtzTPkOSWU3KknPtVTE2l5Djpfp41z/7C7yEDAFBA4z3k6SLim5K+mZkJAMAgYA8ZAIACKGQAAAqgkAEAKIBCBgCgAAoZAIACKGQAAAqgkAEAKIBCBgCgAAoZAIACKGQAAAqgkAEAKIBCBgCgAAoZAIACKGQAAApIPf3ivsg4AXW0I2GSPBnr5JGcH4nnj+XkHLwkJUc7J1JiNr8656T3U/NyTuw+Oa95xtTYguYhkoZ35Nwfti/L2cbzNufMs2hXzm2nNZGTo8nJxhHDyw9PGESaemJjSk4a5+zjxdRUSs6Bhj1kAAAKoJABACiAQgYAoAAKGQCAAihkAAAKoJABACiAQgYAoAAKGQCAAihkAAAKoJABACiAQgYAoAAKGQCAAihkAAAKoJABACiAQgYAoAAKGQCAAihkAAAKGO7VFUc7enXVz9MaHe31CD81NJST08p5rtVesjAlZ8uxi1Nytq7IWa+dh6bEaPKgduOM9kjzDElq7czZNovvdUrOjmU5Oa3Jg1JyRpbOT8kZfXxr85D7H2meIam1aFFKTntrwjpJcivnZx5TKTEHHPaQAQAogEIGAKAAChkAgAIoZAAACqCQAQAogEIGAKAAChkAgAIoZAAACqCQAQAooHEh215l+xu277J9p+33ZwwGAMAgyfjozElJ50bEzbYPkvQD29dHxF0J2QAADITGe8gRsSEibu7+e4ukdZJWNM0FAGCQpL6GbPsoSa+RdGNmLgAA/S7tbE+2F0n6kqTfj4jNs1y+RtIaSRrTgqyrBQCgL6TsIdseUaeML4uIK2dbJiLWRsTqiFg9onkZVwsAQN/IeJe1JX1W0rqI+HjzkQAAGDwZh6xPlvQ+ST+0fWv3exdExNW7/V+RcFJ257wE3t61MyVnKONk4U46wfchOSd1n1ySczRj65E5P6utRyXcbiS1x3Jy3vTq9Y0z7t18aMIk0qpFz6bkfGfhMSk5Y4/mvCK2Y2nObWfkeS+kvTgxMtQ4ozUv6Sjh6EhKTGzekpKTJumxPaVn9qPG95iI+DtJOS0CAMCA4pO6AAAogEIGAKAAChkAgAIoZAAACqCQAQAogEIGAKAAChkAgAIoZAAACqCQAQAogEIGAKAAChkAgAIoZAAACqCQAQAogEIGAKAAChkAgAIoZAAAChju9QAVeGgoJ2f+WPOQefOaZ0iKVs5zrckFOTeRhY+1U3K2rXBKzsmvvzsl54TF9zXOOP3QW5sPIukrT742Jed9J/1DSs4lt7w+JWdoR859YmJhTs7yv9/RPOSQJc0zJGnnrpQYt3LuV9GOlBxFzuPFgYY9ZAAACqCQAQAogEIGAKAAChkAgAIoZAAACqCQAQAogEIGAKAAChkAgAIoZAAACqCQAQAogEIGAKAAChkAgAIoZAAACqCQAQAogEIGAKAAChkAgAJyzj7/YjjhuUDaSayHUlLa27Y3zvDEZMIkUrzkkJScyQU5z9k2HZ2Tc/yJ96bkPLptcUrOteM/3zjjb465NmESacw3puR8/rGTU3JWHPFMSs7jG5an5LQ2psRo50sWNs4Ya+XcH1rPbErJ8fBITk7SY3J7fDwlp1bP7Bl7yAAAFEAhAwBQAIUMAEABFDIAAAVQyAAAFEAhAwBQAIUMAEABFDIAAAWkFLLt02z/yPY9tj+UkQkAwCBpXMi2hyR9WtI7JB0n6T22j2uaCwDAIMnYQ36dpHsi4scRMS7pcklnJOQCADAwMgp5haSHpn39cPd7AABgL+23k0vYXiNpjSSNacH+uloAAA4IGXvIj0haNe3rld3v/SMRsTYiVkfE6hHNS7haAAD6R0Yhf1/SMbaPtj0q6d2SvpqQCwDAwGh8yDoiJm2fI+ladU4sfHFE3Nl4MgAABkjKa8gRcbWkq/fl/7jlxtfrodHGGZ2gnM9HiV27Gme0lixOmESampfz9oB5myZTcnYty9nGt92zas8L7YW3H39XSs6/OfxbjTM+/szLEyaRXj5vQ0rOhu0HpeQ8s21+Ss7EoTm3wSX35twnhndMNc5oPbstYRJJoyMpMR7J2TZT27an5KSJdq8n2Cd8UhcAAAVQyAAAFEAhAwBQAIUMAEABFDIAAAVQyAAAFEAhAwBQAIUMAEABFDIAAAVQyAAAFEAhAwBQAIUMAEABFDIAAAVQyAAAFEAhAwBQAIUMAEABFDIAAAUM9+JKbctDQ41z2hOTCdNIrdHRlJxoR0pOhkh6qjWxKOcmsuh+p+Ts2Jnzs/rb+cem5Gybaj5PO3K2zT0jh6fk/MxBz6TkPHx3zjyLHmr+WCFJQ+N17p8a6clD7wuK8fGUnFbSerWT5knhpAfTvbj5sYcMAEABFDIAAAVQyAAAFEAhAwBQAIUMAEABFDIAAAVQyAAAFEAhAwBQAIUMAEABFDIAAAVQyAAAFEAhAwBQAIUMAEABFDIAAAVQyAAAFEAhAwBQQE/Okh0RKSegbo3mnKxe0U6JGVqyuHFGe9PmhEmkoS1LU3KG5+fcROY/5ZScqbGc55DbH52fknPr2IrGGbEXJy7fG7t25twfhu7N2TaH3p8So53LcnLmb5xMyRl9fEvzkC3bmmdIaj/9bEqOnHO/ynhcl5Q2T8pje1I/7A32kAEAKIBCBgCgAAoZAIACKGQAAAqgkAEAKIBCBgCgAAoZAIACGhWy7Y/ZXm/7dttftn1w0lwAAAyUpnvI10s6PiJeKeluSec3HwkAgMHTqJAj4rqIeO7jb74raWXzkQAAGDyZryH/tqRrEvMAABgYe/ygYts3SFo+y0UXRsTfdJe5UNKkpMt2k7NG0hpJGtOCFzUsAAD9ao+FHBGn7u5y22dJOl3SKREv/DH5EbFW0lpJWuylSR+nDwBAf2h0Kh/bp0k6T9KbImJ7zkgAAAyepq8hf0rSQZKut32r7b9ImAkAgIHTaA85Il6WNQgAAIOMT+oCAKCARnvIvdYeH88Jcs7zktaOnSk5GXzvgyk5Yztne4P9vmuNL07J2bFsLCVn0YNOyZl6YknjjMlFCYNIGspZJS18NCcny7LbJ1Jy5m3MuX9GwoZ2u50wiaTIyWlPTO55ob3gVs6NMKamUnIONOwhAwBQAIUMAEABFDIAAAVQyAAAFEAhAwBQAIUMAEABFDIAAAVQyAAAFEAhAwBQAIUMAEABFDIAAAVQyAAAFEAhAwBQAIUMAEABFDIAAAVQyAAAFDDc6wH6SXt8vNcj/MTQ2LycoM1bU2JGn342JefwiZUpOZMLc276kXA+9meOHW0eImnRozkndR97aiIlpz2a83x/3uPbUnK8bWdKTjz5dOOM9o4dCZNInj8/JaelnHkqPQYeiNhDBgCgAAoZAIACKGQAAAqgkAEAKIBCBgCgAAoZAIACKGQAAAqgkAEAKIBCBgCgAAoZAIACKGQAAAqgkAEAKIBCBgCgAAoZAIACKGQAAAqgkAEAKCDnLO0Humjn5Lj58xu3Es54n2k852T1Gh1JiRl+4ImUHB9xaEpOa2fzE7Ivfypn27Tn5dydW9tyTjLfevLZlByNJG2fJzam5FTS3ro1JcfDOdsYzbCHDABAARQyAAAFUMgAABRAIQMAUACFDABAARQyAAAFpBSy7XNth+1lGXkAAAyaxoVse5Wkt0t6sPk4AAAMpow95P8q6TxJkZAFAMBAalTIts+Q9EhE3JY0DwAAA2mPn7Vn+wZJy2e56EJJF6hzuHqPbK+RtEaSxrRgH0YEAKD/7bGQI+LU2b5v+xWSjpZ0m21JWinpZtuvi4jHZslZK2mtJC32Ug5vAwAwzYv+NPqI+KGkw5/72vb9klZHxJMJcwEAMFD4PWQAAApIO/1iRByVlQUAwKBhDxkAgAIoZAAACkg7ZA1J0W4eMZUwh6SpzVtSclojOTeR9sRkSs7w0kNSclr3PJSS46Gh5hmjIwmTJD67buUkxdZtKTmaSrpTTObcBiNhnmgn/aJJwmOOlLNOaI49ZAAACqCQAQAogEIGAKAAChkAgAIoZAAACqCQAQAogEIGAKAAChkAgAIoZAAACqCQAQAogEIGAKAAChkAgAIoZAAACqCQAQAogEIGAKAAChkAgAJyzj4P7IFbTslpb9mSkiPnPBeNoYScrHWqJmkbpxnOebiL8fGUnBRZ2zjaOTlopNg9BgCAwUQhAwBQAIUMAEABFDIAAAVQyAAAFEAhAwBQAIUMAEABFDIAAAVQyAAAFEAhAwBQAIUMAEABFDIAAAVQyAAAFEAhAwBQAIUMAEABFDIAAAVQyAAAFDDc6wEwR6KdEtOemEzJyRLtnHncckqOCm0eDw2l5GT9zNO2cZLYNdXrEfIl3c9RA3vIAAAUQCEDAFAAhQwAQAEUMgAABTQuZNu/a3u97Ttt/2nGUAAADJpG77K2/RZJZ0h6VUTssn14zlgAAAyWpnvIZ0v6aETskqSIeKL5SAAADJ6mhXyspF+wfaPtb9k+IWMoAAAGzR4PWdu+QdLyWS66sPv/l0o6UdIJkr5o+2cjImbJWSNpjSSNaUGTmQEA6Dt7LOSIOPWFLrN9tqQruwX8PdttScskbZwlZ62ktZK02EufV9gAAAyypoesvyLpLZJk+1hJo5KebJgJAMDAafpZ1hdLutj2HZLGJf3mbIerAQDA7jUq5IgYl3Rm0iwAAAwsPqkLAIACKGQAAAqgkAEAKKDpm7r6g5Oel/TjycKz1qnYNo52oXmStk1MjafkZImpXk8AHFjYQwYAoAAKGQCAAihkAAAKoJABACiAQgYAoAAKGQCAAihkAAAKoJABACiAQgYAoAAKGQCAAihkAAAKoJABACiAQgYAoAAKGQCAAihkAAAKoJABAChguNcDlJB00nvsRtI29tBQSk5MTaXkZMyTNQuAAxt7yAAAFEAhAwBQAIUMAEABFDIAAAVQyAAAFEAhAwBQAIUMAEABFDIAAAVQyAAAFEAhAwBQAIUMAEABFDIAAAVQyAAAFEAhAwBQAIUMAEABFDIAAAVQyAAAFOCI2P9Xam+U9MB+v+J/bJmkJ3s8w/7CuvafQVlPiXXtV4O2rgsj4rDdLdSTQq7A9k0RsbrXc+wPrGv/GZT1lFjXfsW6Ph+HrAEAKIBCBgCggEEu5LW9HmA/Yl37z6Csp8S69ivWdYaBfQ0ZAIBKBnkPGQCAMga6kG3/F9u3277V9nW2j+z1THPB9sdsr++u65dtH9zrmeaK7V+1fafttu2+fAen7dNs/8j2PbY/1Ot55orti20/YfuOXs8y12yvsv0N23d1b7/v7/VMc8X2mO3v2b6tu64f6fVMc8n2kO1bbF+1p2UHupAlfSwiXhkRr5Z0laQ/6PE8c+V6ScdHxCsl3S3p/B7PM5fukPQvJH2714PMBdtDkj4t6R2SjpP0HtvH9XaqOfM5Saf1eoj9ZFLSuRFxnKQTJf27Pv657pL01oh4laRXSzrN9om9HWlOvV/Sur1ZcKALOSI2T/tyoaS+fEE9Iq6LiMnul9+VtLKX88yliFgXET/q9Rxz6HWS7omIH0fEuKTLJZ3R45nmRER8W9LTvZ5jf4iIDRFxc/ffW9R5AF/R26nmRnRs7X450v3Tl4+9tldKeqekz+zN8gNdyJJk+49sPyTpverfPeTpflvSNb0eAi/aCkkPTfv6YfXpA/egsn2UpNdIurHHo8yZ7mHcWyU9Ien6iOjXdf2EpPMktfdm4b4vZNs32L5jlj9nSFJEXBgRqyRdJumc3k774u1pPbvLXKjOobHLejdpc3uzrsCByPYiSV+S9PszjuD1lYiY6r5UuFLS62wf3+OR0tk+XdITEfGDvf0/w3M4TwkRcepeLnqZpKslfXgOx5kze1pP22dJOl3SKXGA/67bPvxM+9EjklZN+3pl93s4wNkeUaeML4uIK3s9z/4QEc/a/oY67xXotzfvnSzpXbZ/SdKYpMW2L42IM1/oP/T9HvLu2D5m2pdnSFrfq1nmku3T1Dls8q6I2N7redDI9yUdY/to26OS3i3pqz2eCQ3ZtqTPSloXER/v9TxzyfZhz/2mh+35kt6mPnzsjYjzI2JlRBylzv3067srY2nAC1nSR7uHOm+X9HZ13g3Xjz4l6SBJ13d/xesvej3QXLH9z20/LOkkSV+zfW2vZ8rUfXPeOZKuVeeNP1+MiDt7O9XcsP0FSd+R9HLbD9v+nV7PNIdOlvQ+SW/t3kdv7e5Z9aMjJH2j+7j7fXVeQ97jrwQNAj6pCwCAAgZ9DxkAgBIoZAAACqCQAQAogEIGAKAAChkAgAIoZAAACqCQAQAogEIGAKCA/w9ZlujUB44xCQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1640,7 +1640,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 43, "metadata": { "pycharm": { "name": "#%%\n" @@ -1657,10 +1657,10 @@ " $$" ], "text/plain": [ - "" + "" ] }, - "execution_count": 37, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -1682,7 +1682,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 44, "metadata": { "pycharm": { "name": "#%%\n" @@ -1707,7 +1707,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 45, "metadata": { "pycharm": { "name": "#%%\n" @@ -1748,10 +1748,10 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 39, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } @@ -1785,7 +1785,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 46, "metadata": { "pycharm": { "name": "#%%\n" @@ -1798,7 +1798,7 @@ "array([-0.91893853, -1.61208571])" ] }, - "execution_count": 40, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -1820,7 +1820,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 47, "metadata": { "pycharm": { "name": "#%%\n" @@ -1833,7 +1833,7 @@ "array([-0.91893853, -1.61208571])" ] }, - "execution_count": 41, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } @@ -1855,7 +1855,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 48, "metadata": { "pycharm": { "name": "#%%\n" @@ -1899,10 +1899,10 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 42, + "execution_count": 48, "metadata": {}, "output_type": "execute_result" } @@ -1924,7 +1924,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 49, "metadata": { "pycharm": { "name": "#%%\n" @@ -1948,7 +1948,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 50, "metadata": { "pycharm": { "name": "#%%\n" @@ -1961,7 +1961,7 @@ "{'z': array([0., 0.])}" ] }, - "execution_count": 44, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -1973,7 +1973,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 51, "metadata": { "pycharm": { "name": "#%%\n" @@ -1986,7 +1986,7 @@ "[array([-0.91893853, -1.61208571])]" ] }, - "execution_count": 45, + "execution_count": 51, "metadata": {}, "output_type": "execute_result" } @@ -2010,7 +2010,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 52, "metadata": { "pycharm": { "name": "#%%\n" @@ -2020,10 +2020,10 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 46, + "execution_count": 52, "metadata": {}, "output_type": "execute_result" } @@ -2037,7 +2037,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 53, "metadata": { "pycharm": { "name": "#%%\n" @@ -2047,10 +2047,10 @@ { "data": { "text/plain": [ - "array([0.68972784, 2.21155968, 0.67678162])" + "array([-0.01634534, 0.89999837, -0.03039365])" ] }, - "execution_count": 47, + "execution_count": 53, "metadata": {}, "output_type": "execute_result" } @@ -2062,7 +2062,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 54, "metadata": { "pycharm": { "name": "#%%\n" @@ -2075,7 +2075,7 @@ "-1.7001885332046727" ] }, - "execution_count": 48, + "execution_count": 54, "metadata": {}, "output_type": "execute_result" } @@ -2098,7 +2098,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 55, "metadata": { "pycharm": { "name": "#%%\n" @@ -2125,7 +2125,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 56, "metadata": { "pycharm": { "name": "#%%\n" @@ -2138,7 +2138,7 @@ "{mu: mu, sigma: sigma_log__, x: x}" ] }, - "execution_count": 50, + "execution_count": 56, "metadata": {}, "output_type": "execute_result" } @@ -2160,7 +2160,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 57, "metadata": { "pycharm": { "name": "#%%\n" @@ -2173,7 +2173,7 @@ "[mu, sigma_log__, x]" ] }, - "execution_count": 51, + "execution_count": 57, "metadata": {}, "output_type": "execute_result" } @@ -2195,7 +2195,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 58, "metadata": { "pycharm": { "name": "#%%\n" @@ -2208,7 +2208,7 @@ "array([ -1.61208571, -11.32440364, 9.08106147])" ] }, - "execution_count": 52, + "execution_count": 58, "metadata": {}, "output_type": "execute_result" } @@ -2237,7 +2237,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 59, "metadata": { "pycharm": { "name": "#%%\n" @@ -2292,7 +2292,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 60, "metadata": { "pycharm": { "name": "#%%\n" @@ -2305,7 +2305,7 @@ "[array(-1.61208571), array(-11.32440364), array(9.08106147)]" ] }, - "execution_count": 54, + "execution_count": 60, "metadata": {}, "output_type": "execute_result" } @@ -2360,11 +2360,8 @@ "provenance": [] }, "hide_input": false, - "interpreter": { - "hash": "322221ae0b6adf1db1274c5f417c2cb5b37d259e740acb22a87dc0305ae08c77" - }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.9.13 ('website_projects-1IZj_WTw')", "language": "python", "name": "python3" }, @@ -2378,7 +2375,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.12" + "version": "3.9.13" + }, + "vscode": { + "interpreter": { + "hash": "867ba48c05011db76db56a12fb95ccd32f7ac276df8f4ae698e0d475911a6ba0" + } } }, "nbformat": 4,