Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ImportError: 'radius_graph' requires 'torch-cluster' after installing torch-cluster #9789

Open
susuhu opened this issue Nov 15, 2024 · 0 comments
Labels

Comments

@susuhu
Copy link

susuhu commented Nov 15, 2024

🐛 Describe the bug

I got ImportError: 'radius_graph' requires 'torch-cluster' after installing torch-cluster. And I tried uninstall and reinstall.

Versions

PyTorch version: 2.1.2.post304
Is debug build: False
CUDA used to build PyTorch: 12.0
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.30.4
Libc version: glibc-2.31

Python version: 3.9.18 | packaged by conda-forge | (main, Dec 23 2023, 16:33:10) [GCC 12.3.0] (64-bit runtime)
Python platform: Linux-5.4.0-200-generic-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA RTX A5000
GPU 1: NVIDIA RTX A5000
GPU 2: NVIDIA RTX A5000
GPU 3: NVIDIA RTX A5000

Nvidia driver version: 535.216.01
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 48 bits virtual
CPU(s): 64
On-line CPU(s) list: 0-63
Thread(s) per core: 2
Core(s) per socket: 16
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz
Stepping: 7
CPU MHz: 800.100
CPU max MHz: 3200,0000
CPU min MHz: 800,0000
BogoMIPS: 4200.00
Virtualization: VT-x
L1d cache: 1 MiB
L1i cache: 1 MiB
L2 cache: 32 MiB
L3 cache: 44 MiB
NUMA node0 CPU(s): 0-15,32-47
NUMA node1 CPU(s): 16-31,48-63
Vulnerability Gather data sampling: Mitigation; Microcode
Vulnerability Itlb multihit: KVM: Mitigation: Split huge pages
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Retbleed: Mitigation; Enhanced IBRS
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Mitigation; TSX disabled
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities

Versions of relevant libraries:
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==8.9.2.26
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvjitlink-cu12==12.5.40
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] torch==2.1.2.post304
[pip3] torch-cluster==1.6.3+pt21cu121
[pip3] torch-geometric==2.6.1
[pip3] torch-kmeans==0.2.0
[pip3] torch-scatter==2.1.2
[pip3] torch-sparse==0.6.18
[pip3] torch_spline_conv==1.2.2+pt24cu121
[pip3] torchaudio==2.1.2
[pip3] torchvision==0.15.2a0
[pip3] triton==2.3.1
[conda] blas 1.0 mkl
[conda] cuda-cudart 12.1.105 0 nvidia
[conda] cuda-cupti 12.1.105 0 nvidia
[conda] cuda-libraries 12.1.0 0 nvidia
[conda] cuda-nvrtc 12.1.105 0 nvidia
[conda] cuda-nvtx 12.1.105 0 nvidia
[conda] cuda-opencl 12.4.127 0 nvidia
[conda] cuda-runtime 12.1.0 0 nvidia
[conda] cudnn 8.9.7.29 h092f7fd_3 conda-forge
[conda] libblas 3.9.0 20_linux64_mkl conda-forge
[conda] libcblas 3.9.0 20_linux64_mkl conda-forge
[conda] libcublas 12.1.0.26 0 nvidia
[conda] libcufft 11.0.2.4 0 nvidia
[conda] libcurand 10.3.5.147 0 nvidia
[conda] libcusolver 11.4.4.55 0 nvidia
[conda] libcusparse 12.0.2.55 0 nvidia
[conda] libjpeg-turbo 2.0.0 h9bf148f_0 pytorch
[conda] liblapack 3.9.0 20_linux64_mkl conda-forge
[conda] libmagma 2.7.2 h173bb3b_2 conda-forge
[conda] libmagma_sparse 2.7.2 h173bb3b_3 conda-forge
[conda] libnvjitlink 12.1.105 0 nvidia
[conda] libtorch 2.1.2 cuda120_he0d6596_304 conda-forge
[conda] mkl 2024.1.0 pypi_0 pypi
[conda] mkl-service 2.4.0 pypi_0 pypi
[conda] mkl_fft 1.3.8 py39h5eee18b_0
[conda] mkl_random 1.2.4 py39hdb19cb5_0
[conda] nccl 2.23.4.1 h52f6c39_2 conda-forge
[conda] numpy 1.26.4 py39h5f9d8c6_0
[conda] numpy-base 1.26.4 py39hb5e798b_0
[conda] nvidia-cublas-cu12 12.1.3.1 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.1.105 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.1.105 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.1.105 pypi_0 pypi
[conda] nvidia-cudnn-cu12 8.9.2.26 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.0.2.54 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.2.106 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.4.5.107 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.1.0.106 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.20.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.5.40 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.1.105 pypi_0 pypi
[conda] pytorch 2.1.2 cuda120_py39h365aa7c_304 conda-forge
[conda] pytorch-cuda 12.1 ha16c6d3_6 pytorch
[conda] pytorch-mutex 1.0 cuda pytorch
[conda] pytorch-scatter 2.1.2 py39_torch_2.1.0_cu121 pyg
[conda] pytorch-sparse 0.6.18 py39_torch_2.1.0_cu121 pyg
[conda] torch-cluster 1.6.3+pt21cu121 pypi_0 pypi
[conda] torch-geometric 2.6.1 pypi_0 pypi
[conda] torch-kmeans 0.2.0 pypi_0 pypi
[conda] torch-spline-conv 1.2.2+pt24cu121 pypi_0 pypi
[conda] torchaudio 2.1.2 py39_cu121 pytorch
[conda] torchtriton 3.1.0 py39 pytorch
[conda] torchvision 0.15.2 cpu_py39h83e0c9b_0
[conda] triton 2.3.1 pypi_0 pypi

@susuhu susuhu added the bug label Nov 15, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

1 participant