Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Failure to run the C++ example of torch geometric (Aborted (Core Dumped)) #9750

Open
wu-ys opened this issue Oct 30, 2024 · 1 comment
Open
Labels

Comments

@wu-ys
Copy link

wu-ys commented Oct 30, 2024

🐛 Describe the bug

Hi all, I am trying to run the c++ example here. I have done all steps except running the final c++ program, which fails with Aborted (Core Dumped) when running the c++ loading function.

To be more specifically, when I remove the torch-geometric Modules from the model in save_mode.py, the c++ program will run smoothly without errors. So I think this is a problem regarding loading torch-geometric modules in c++.

I have checked the compilation and linking of Pytorch-sparse and Pytorch-scatter. Simple c++ test demos using features (e.g. the demo in #1718 and rusty1s/pytorch_scatter#147) from the two libraries could run successfully. How can I handle this error?

Versions

PyTorch version: 2.3.0
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.22.0-rc1
Libc version: glibc-2.39

Python version: 3.10.14 (main, May 6 2024, 19:42:50) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.4.0-190-generic-x86_64-with-glibc2.39
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA A100 80GB PCIe
Nvidia driver version: 550.54.15
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] torch==2.3.0
[pip3] torch_cluster==1.6.3+pt23cu121
[pip3] torch_geometric==2.5.3
[pip3] torch_scatter==2.1.2+pt23cu121
[pip3] torch_sparse==0.6.18+pt23cu121
[pip3] torch_spline_conv==1.2.2+pt23cu121
[pip3] torchaudio==2.3.0
[pip3] torchinfo==1.8.0
[pip3] torchvision==0.18.0
[pip3] triton==2.3.0
[conda] blas 1.0 mkl
[conda] cuda-cudart 12.1.105 0 nvidia
[conda] cuda-cupti 12.1.105 0 nvidia
[conda] cuda-libraries 12.1.0 0 nvidia
[conda] cuda-nvrtc 12.1.105 0 nvidia
[conda] cuda-nvtx 12.1.105 0 nvidia
[conda] cuda-opencl 12.4.127 0 nvidia
[conda] cuda-runtime 12.1.0 0 nvidia
[conda] ffmpeg 4.3 hf484d3e_0 pytorch
[conda] libcublas 12.1.0.26 0 nvidia
[conda] libcufft 11.0.2.4 0 nvidia
[conda] libcurand 10.3.5.147 0 nvidia
[conda] libcusolver 11.4.4.55 0 nvidia
[conda] libcusparse 12.0.2.55 0 nvidia
[conda] libjpeg-turbo 2.0.0 h9bf148f_0 pytorch
[conda] libnvjitlink 12.1.105 0 nvidia
[conda] mkl 2023.1.0 h213fc3f_46344
[conda] mkl-service 2.4.0 py310h5eee18b_1
[conda] mkl_fft 1.3.8 py310h5eee18b_0
[conda] mkl_random 1.2.4 py310hdb19cb5_0
[conda] numpy 1.26.4 py310h5f9d8c6_0
[conda] numpy-base 1.26.4 py310hb5e798b_0
[conda] pytorch 2.3.0 py3.10_cuda12.1_cudnn8.9.2_0 pytorch
[conda] pytorch-cuda 12.1 ha16c6d3_5 pytorch
[conda] pytorch-mutex 1.0 cuda pytorch
[conda] torch-cluster 1.6.3+pt23cu121 pypi_0 pypi
[conda] torch-geometric 2.5.3 pypi_0 pypi
[conda] torch-scatter 2.1.2+pt23cu121 pypi_0 pypi
[conda] torch-sparse 0.6.18+pt23cu121 pypi_0 pypi
[conda] torch-spline-conv 1.2.2+pt23cu121 pypi_0 pypi
[conda] torchaudio 2.3.0 py310_cu121 pytorch
[conda] torchinfo 1.8.0 pypi_0 pypi
[conda] torchtriton 2.3.0 py310 pytorch
[conda] torchvision 0.18.0 py310_cu121 pytorch

@wu-ys wu-ys added the bug label Oct 30, 2024
@AyushmanGarg
Copy link

@akihironitta can I be assigned this bug?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

2 participants