|
1 | 1 | import numpy as np
|
| 2 | +import pandas as pd |
2 | 3 |
|
3 | 4 | import xarray as xr
|
4 | 5 |
|
5 |
| -from . import parameterized, requires_dask |
| 6 | +from . import _skip_slow, parameterized, requires_dask |
6 | 7 |
|
7 | 8 |
|
8 | 9 | class GroupBy:
|
9 | 10 | def setup(self, *args, **kwargs):
|
10 |
| - self.ds = xr.Dataset( |
| 11 | + self.n = 100 |
| 12 | + self.ds1d = xr.Dataset( |
11 | 13 | {
|
12 |
| - "a": xr.DataArray(np.r_[np.arange(500.0), np.arange(500.0)]), |
13 |
| - "b": xr.DataArray(np.arange(1000.0)), |
| 14 | + "a": xr.DataArray(np.r_[np.repeat(1, self.n), np.repeat(2, self.n)]), |
| 15 | + "b": xr.DataArray(np.arange(2 * self.n)), |
14 | 16 | }
|
15 | 17 | )
|
| 18 | + self.ds2d = self.ds1d.expand_dims(z=10) |
16 | 19 |
|
17 |
| - @parameterized(["method"], [("sum", "mean")]) |
18 |
| - def time_agg(self, method): |
19 |
| - return getattr(self.ds.groupby("a"), method)() |
| 20 | + @parameterized(["ndim"], [(1, 2)]) |
| 21 | + def time_init(self, ndim): |
| 22 | + getattr(self, f"ds{ndim}d").groupby("b") |
| 23 | + |
| 24 | + @parameterized(["method", "ndim"], [("sum", "mean"), (1, 2)]) |
| 25 | + def time_agg_small_num_groups(self, method, ndim): |
| 26 | + ds = getattr(self, f"ds{ndim}d") |
| 27 | + getattr(ds.groupby("a"), method)() |
| 28 | + |
| 29 | + @parameterized(["method", "ndim"], [("sum", "mean"), (1, 2)]) |
| 30 | + def time_agg_large_num_groups(self, method, ndim): |
| 31 | + ds = getattr(self, f"ds{ndim}d") |
| 32 | + getattr(ds.groupby("b"), method)() |
20 | 33 |
|
21 | 34 |
|
22 | 35 | class GroupByDask(GroupBy):
|
23 | 36 | def setup(self, *args, **kwargs):
|
24 | 37 | requires_dask()
|
25 | 38 | super().setup(**kwargs)
|
26 |
| - self.ds = self.ds.chunk({"dim_0": 50}) |
| 39 | + self.ds1d = self.ds1d.sel(dim_0=slice(None, None, 2)).chunk({"dim_0": 50}) |
| 40 | + self.ds2d = self.ds2d.sel(dim_0=slice(None, None, 2)).chunk( |
| 41 | + {"dim_0": 50, "z": 5} |
| 42 | + ) |
27 | 43 |
|
28 | 44 |
|
29 |
| -class GroupByDataFrame(GroupBy): |
| 45 | +class GroupByPandasDataFrame(GroupBy): |
| 46 | + """Run groupby tests using pandas DataFrame.""" |
| 47 | + |
30 | 48 | def setup(self, *args, **kwargs):
|
| 49 | + # Skip testing in CI as it won't ever change in a commit: |
| 50 | + _skip_slow() |
| 51 | + |
31 | 52 | super().setup(**kwargs)
|
32 |
| - self.ds = self.ds.to_dataframe() |
| 53 | + self.ds1d = self.ds1d.to_dataframe() |
33 | 54 |
|
34 | 55 |
|
35 | 56 | class GroupByDaskDataFrame(GroupBy):
|
| 57 | + """Run groupby tests using dask DataFrame.""" |
| 58 | + |
| 59 | + def setup(self, *args, **kwargs): |
| 60 | + # Skip testing in CI as it won't ever change in a commit: |
| 61 | + _skip_slow() |
| 62 | + |
| 63 | + requires_dask() |
| 64 | + super().setup(**kwargs) |
| 65 | + self.ds1d = self.ds1d.chunk({"dim_0": 50}).to_dataframe() |
| 66 | + |
| 67 | + |
| 68 | +class Resample: |
| 69 | + def setup(self, *args, **kwargs): |
| 70 | + self.ds1d = xr.Dataset( |
| 71 | + { |
| 72 | + "b": ("time", np.arange(365.0 * 24)), |
| 73 | + }, |
| 74 | + coords={"time": pd.date_range("2001-01-01", freq="H", periods=365 * 24)}, |
| 75 | + ) |
| 76 | + self.ds2d = self.ds1d.expand_dims(z=10) |
| 77 | + |
| 78 | + @parameterized(["ndim"], [(1, 2)]) |
| 79 | + def time_init(self, ndim): |
| 80 | + getattr(self, f"ds{ndim}d").resample(time="D") |
| 81 | + |
| 82 | + @parameterized(["method", "ndim"], [("sum", "mean"), (1, 2)]) |
| 83 | + def time_agg_small_num_groups(self, method, ndim): |
| 84 | + ds = getattr(self, f"ds{ndim}d") |
| 85 | + getattr(ds.resample(time="3M"), method)() |
| 86 | + |
| 87 | + @parameterized(["method", "ndim"], [("sum", "mean"), (1, 2)]) |
| 88 | + def time_agg_large_num_groups(self, method, ndim): |
| 89 | + ds = getattr(self, f"ds{ndim}d") |
| 90 | + getattr(ds.resample(time="48H"), method)() |
| 91 | + |
| 92 | + |
| 93 | +class ResampleDask(Resample): |
36 | 94 | def setup(self, *args, **kwargs):
|
37 | 95 | requires_dask()
|
38 | 96 | super().setup(**kwargs)
|
39 |
| - self.ds = self.ds.chunk({"dim_0": 50}).to_dataframe() |
| 97 | + self.ds1d = self.ds1d.chunk({"time": 50}) |
| 98 | + self.ds2d = self.ds2d.chunk({"time": 50, "z": 4}) |
0 commit comments