-
-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathcoordinates.py
1025 lines (825 loc) · 35.7 KB
/
coordinates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import annotations
from collections.abc import Hashable, Iterator, Mapping, Sequence
from contextlib import contextmanager
from typing import (
TYPE_CHECKING,
Any,
Generic,
cast,
)
import numpy as np
import pandas as pd
from xarray.core import formatting
from xarray.core.alignment import Aligner
from xarray.core.indexes import (
Index,
Indexes,
PandasIndex,
PandasMultiIndex,
assert_no_index_corrupted,
create_default_index_implicit,
)
from xarray.core.merge import merge_coordinates_without_align, merge_coords
from xarray.core.types import DataVars, Self, T_DataArray, T_Xarray
from xarray.core.utils import (
Frozen,
ReprObject,
either_dict_or_kwargs,
emit_user_level_warning,
)
from xarray.core.variable import Variable, as_variable, calculate_dimensions
if TYPE_CHECKING:
from xarray.core.common import DataWithCoords
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
# Used as the key corresponding to a DataArray's variable when converting
# arbitrary DataArray objects to datasets
_THIS_ARRAY = ReprObject("<this-array>")
class AbstractCoordinates(Mapping[Hashable, "T_DataArray"]):
_data: DataWithCoords
__slots__ = ("_data",)
def __getitem__(self, key: Hashable) -> T_DataArray:
raise NotImplementedError()
@property
def _names(self) -> set[Hashable]:
raise NotImplementedError()
@property
def dims(self) -> Frozen[Hashable, int] | tuple[Hashable, ...]:
raise NotImplementedError()
@property
def dtypes(self) -> Frozen[Hashable, np.dtype]:
raise NotImplementedError()
@property
def indexes(self) -> Indexes[pd.Index]:
"""Mapping of pandas.Index objects used for label based indexing.
Raises an error if this Coordinates object has indexes that cannot
be coerced to pandas.Index objects.
See Also
--------
Coordinates.xindexes
"""
return self._data.indexes
@property
def xindexes(self) -> Indexes[Index]:
"""Mapping of :py:class:`~xarray.indexes.Index` objects
used for label based indexing.
"""
return self._data.xindexes
@property
def variables(self):
raise NotImplementedError()
def _update_coords(self, coords, indexes):
raise NotImplementedError()
def _drop_coords(self, coord_names):
raise NotImplementedError()
def __iter__(self) -> Iterator[Hashable]:
# needs to be in the same order as the dataset variables
for k in self.variables:
if k in self._names:
yield k
def __len__(self) -> int:
return len(self._names)
def __contains__(self, key: Hashable) -> bool:
return key in self._names
def __repr__(self) -> str:
return formatting.coords_repr(self)
def to_dataset(self) -> Dataset:
raise NotImplementedError()
def to_index(self, ordered_dims: Sequence[Hashable] | None = None) -> pd.Index:
"""Convert all index coordinates into a :py:class:`pandas.Index`.
Parameters
----------
ordered_dims : sequence of hashable, optional
Possibly reordered version of this object's dimensions indicating
the order in which dimensions should appear on the result.
Returns
-------
pandas.Index
Index subclass corresponding to the outer-product of all dimension
coordinates. This will be a MultiIndex if this object is has more
than more dimension.
"""
if ordered_dims is None:
ordered_dims = list(self.dims)
elif set(ordered_dims) != set(self.dims):
raise ValueError(
"ordered_dims must match dims, but does not: "
f"{ordered_dims} vs {self.dims}"
)
if len(ordered_dims) == 0:
raise ValueError("no valid index for a 0-dimensional object")
elif len(ordered_dims) == 1:
(dim,) = ordered_dims
return self._data.get_index(dim)
else:
indexes = [self._data.get_index(k) for k in ordered_dims]
# compute the sizes of the repeat and tile for the cartesian product
# (taken from pandas.core.reshape.util)
index_lengths = np.fromiter(
(len(index) for index in indexes), dtype=np.intp
)
cumprod_lengths = np.cumprod(index_lengths)
if cumprod_lengths[-1] == 0:
# if any factor is empty, the cartesian product is empty
repeat_counts = np.zeros_like(cumprod_lengths)
else:
# sizes of the repeats
repeat_counts = cumprod_lengths[-1] / cumprod_lengths
# sizes of the tiles
tile_counts = np.roll(cumprod_lengths, 1)
tile_counts[0] = 1
# loop over the indexes
# for each MultiIndex or Index compute the cartesian product of the codes
code_list = []
level_list = []
names = []
for i, index in enumerate(indexes):
if isinstance(index, pd.MultiIndex):
codes, levels = index.codes, index.levels
else:
code, level = pd.factorize(index)
codes = [code]
levels = [level]
# compute the cartesian product
code_list += [
np.tile(np.repeat(code, repeat_counts[i]), tile_counts[i])
for code in codes
]
level_list += levels
names += index.names
return pd.MultiIndex(level_list, code_list, names=names)
class Coordinates(AbstractCoordinates):
"""Dictionary like container for Xarray coordinates (variables + indexes).
This collection is a mapping of coordinate names to
:py:class:`~xarray.DataArray` objects.
It can be passed directly to the :py:class:`~xarray.Dataset` and
:py:class:`~xarray.DataArray` constructors via their `coords` argument. This
will add both the coordinates variables and their index.
Coordinates are either:
- returned via the :py:attr:`Dataset.coords` and :py:attr:`DataArray.coords`
properties
- built from Pandas or other index objects
(e.g., :py:meth:`Coordinates.from_pandas_multiindex`)
- built directly from coordinate data and Xarray ``Index`` objects (beware that
no consistency check is done on those inputs)
Parameters
----------
coords: dict-like, optional
Mapping where keys are coordinate names and values are objects that
can be converted into a :py:class:`~xarray.Variable` object
(see :py:func:`~xarray.as_variable`). If another
:py:class:`~xarray.Coordinates` object is passed, its indexes
will be added to the new created object.
indexes: dict-like, optional
Mapping where keys are coordinate names and values are
:py:class:`~xarray.indexes.Index` objects. If None (default),
pandas indexes will be created for each dimension coordinate.
Passing an empty dictionary will skip this default behavior.
Examples
--------
Create a dimension coordinate with a default (pandas) index:
>>> xr.Coordinates({"x": [1, 2]})
Coordinates:
* x (x) int64 16B 1 2
Create a dimension coordinate with no index:
>>> xr.Coordinates(coords={"x": [1, 2]}, indexes={})
Coordinates:
x (x) int64 16B 1 2
Create a new Coordinates object from existing dataset coordinates
(indexes are passed):
>>> ds = xr.Dataset(coords={"x": [1, 2]})
>>> xr.Coordinates(ds.coords)
Coordinates:
* x (x) int64 16B 1 2
Create indexed coordinates from a ``pandas.MultiIndex`` object:
>>> midx = pd.MultiIndex.from_product([["a", "b"], [0, 1]])
>>> xr.Coordinates.from_pandas_multiindex(midx, "x")
Coordinates:
* x (x) object 32B MultiIndex
* x_level_0 (x) object 32B 'a' 'a' 'b' 'b'
* x_level_1 (x) int64 32B 0 1 0 1
Create a new Dataset object by passing a Coordinates object:
>>> midx_coords = xr.Coordinates.from_pandas_multiindex(midx, "x")
>>> xr.Dataset(coords=midx_coords)
<xarray.Dataset> Size: 96B
Dimensions: (x: 4)
Coordinates:
* x (x) object 32B MultiIndex
* x_level_0 (x) object 32B 'a' 'a' 'b' 'b'
* x_level_1 (x) int64 32B 0 1 0 1
Data variables:
*empty*
"""
_data: DataWithCoords
__slots__ = ("_data",)
def __init__(
self,
coords: Mapping[Any, Any] | None = None,
indexes: Mapping[Any, Index] | None = None,
) -> None:
# When coordinates are constructed directly, an internal Dataset is
# created so that it is compatible with the DatasetCoordinates and
# DataArrayCoordinates classes serving as a proxy for the data.
# TODO: refactor DataArray / Dataset so that Coordinates store the data.
from xarray.core.dataset import Dataset
if coords is None:
coords = {}
variables: dict[Hashable, Variable]
default_indexes: dict[Hashable, PandasIndex] = {}
coords_obj_indexes: dict[Hashable, Index] = {}
if isinstance(coords, Coordinates):
if indexes is not None:
raise ValueError(
"passing both a ``Coordinates`` object and a mapping of indexes "
"to ``Coordinates.__init__`` is not allowed "
"(this constructor does not support merging them)"
)
variables = {k: v.copy() for k, v in coords.variables.items()}
coords_obj_indexes = dict(coords.xindexes)
else:
variables = {}
for name, data in coords.items():
var = as_variable(data, name=name, auto_convert=False)
if var.dims == (name,) and indexes is None:
index, index_vars = create_default_index_implicit(var, list(coords))
default_indexes.update({k: index for k in index_vars})
variables.update(index_vars)
else:
variables[name] = var
if indexes is None:
indexes = {}
else:
indexes = dict(indexes)
indexes.update(default_indexes)
indexes.update(coords_obj_indexes)
no_coord_index = set(indexes) - set(variables)
if no_coord_index:
raise ValueError(
f"no coordinate variables found for these indexes: {no_coord_index}"
)
for k, idx in indexes.items():
if not isinstance(idx, Index):
raise TypeError(f"'{k}' is not an `xarray.indexes.Index` object")
# maybe convert to base variable
for k, v in variables.items():
if k not in indexes:
variables[k] = v.to_base_variable()
self._data = Dataset._construct_direct(
coord_names=set(variables), variables=variables, indexes=indexes
)
@classmethod
def _construct_direct(
cls,
coords: dict[Any, Variable],
indexes: dict[Any, Index],
dims: dict[Any, int] | None = None,
) -> Self:
from xarray.core.dataset import Dataset
obj = object.__new__(cls)
obj._data = Dataset._construct_direct(
coord_names=set(coords),
variables=coords,
indexes=indexes,
dims=dims,
)
return obj
@classmethod
def from_pandas_multiindex(cls, midx: pd.MultiIndex, dim: Hashable) -> Self:
"""Wrap a pandas multi-index as Xarray coordinates (dimension + levels).
The returned coordinates can be directly assigned to a
:py:class:`~xarray.Dataset` or :py:class:`~xarray.DataArray` via the
``coords`` argument of their constructor.
Parameters
----------
midx : :py:class:`pandas.MultiIndex`
Pandas multi-index object.
dim : str
Dimension name.
Returns
-------
coords : Coordinates
A collection of Xarray indexed coordinates created from the multi-index.
"""
xr_idx = PandasMultiIndex(midx, dim)
variables = xr_idx.create_variables()
indexes = {k: xr_idx for k in variables}
return cls(coords=variables, indexes=indexes)
@property
def _names(self) -> set[Hashable]:
return self._data._coord_names
@property
def dims(self) -> Frozen[Hashable, int] | tuple[Hashable, ...]:
"""Mapping from dimension names to lengths or tuple of dimension names."""
return self._data.dims
@property
def sizes(self) -> Frozen[Hashable, int]:
"""Mapping from dimension names to lengths."""
return self._data.sizes
@property
def dtypes(self) -> Frozen[Hashable, np.dtype]:
"""Mapping from coordinate names to dtypes.
Cannot be modified directly.
See Also
--------
Dataset.dtypes
"""
return Frozen({n: v.dtype for n, v in self._data.variables.items()})
@property
def variables(self) -> Mapping[Hashable, Variable]:
"""Low level interface to Coordinates contents as dict of Variable objects.
This dictionary is frozen to prevent mutation.
"""
return self._data.variables
def to_dataset(self) -> Dataset:
"""Convert these coordinates into a new Dataset."""
names = [name for name in self._data._variables if name in self._names]
return self._data._copy_listed(names)
def __getitem__(self, key: Hashable) -> DataArray:
return self._data[key]
def __delitem__(self, key: Hashable) -> None:
# redirect to DatasetCoordinates.__delitem__
del self._data.coords[key]
def equals(self, other: Self) -> bool:
"""Two Coordinates objects are equal if they have matching variables,
all of which are equal.
See Also
--------
Coordinates.identical
"""
if not isinstance(other, Coordinates):
return False
return self.to_dataset().equals(other.to_dataset())
def identical(self, other: Self) -> bool:
"""Like equals, but also checks all variable attributes.
See Also
--------
Coordinates.equals
"""
if not isinstance(other, Coordinates):
return False
return self.to_dataset().identical(other.to_dataset())
def _update_coords(
self, coords: dict[Hashable, Variable], indexes: Mapping[Any, Index]
) -> None:
# redirect to DatasetCoordinates._update_coords
self._data.coords._update_coords(coords, indexes)
def _drop_coords(self, coord_names):
# redirect to DatasetCoordinates._drop_coords
self._data.coords._drop_coords(coord_names)
def _merge_raw(self, other, reflexive):
"""For use with binary arithmetic."""
if other is None:
variables = dict(self.variables)
indexes = dict(self.xindexes)
else:
coord_list = [self, other] if not reflexive else [other, self]
variables, indexes = merge_coordinates_without_align(coord_list)
return variables, indexes
@contextmanager
def _merge_inplace(self, other):
"""For use with in-place binary arithmetic."""
if other is None:
yield
else:
# don't include indexes in prioritized, because we didn't align
# first and we want indexes to be checked
prioritized = {
k: (v, None)
for k, v in self.variables.items()
if k not in self.xindexes
}
variables, indexes = merge_coordinates_without_align(
[self, other], prioritized
)
yield
self._update_coords(variables, indexes)
def merge(self, other: Mapping[Any, Any] | None) -> Dataset:
"""Merge two sets of coordinates to create a new Dataset
The method implements the logic used for joining coordinates in the
result of a binary operation performed on xarray objects:
- If two index coordinates conflict (are not equal), an exception is
raised. You must align your data before passing it to this method.
- If an index coordinate and a non-index coordinate conflict, the non-
index coordinate is dropped.
- If two non-index coordinates conflict, both are dropped.
Parameters
----------
other : dict-like, optional
A :py:class:`Coordinates` object or any mapping that can be turned
into coordinates.
Returns
-------
merged : Dataset
A new Dataset with merged coordinates.
"""
from xarray.core.dataset import Dataset
if other is None:
return self.to_dataset()
if not isinstance(other, Coordinates):
other = Dataset(coords=other).coords
coords, indexes = merge_coordinates_without_align([self, other])
coord_names = set(coords)
return Dataset._construct_direct(
variables=coords, coord_names=coord_names, indexes=indexes
)
def __setitem__(self, key: Hashable, value: Any) -> None:
self.update({key: value})
def update(self, other: Mapping[Any, Any]) -> None:
"""Update this Coordinates variables with other coordinate variables."""
if not len(other):
return
other_coords: Coordinates
if isinstance(other, Coordinates):
# Coordinates object: just pass it (default indexes won't be created)
other_coords = other
else:
other_coords = create_coords_with_default_indexes(
getattr(other, "variables", other)
)
# Discard original indexed coordinates prior to merge allows to:
# - fail early if the new coordinates don't preserve the integrity of existing
# multi-coordinate indexes
# - drop & replace coordinates without alignment (note: we must keep indexed
# coordinates extracted from the DataArray objects passed as values to
# `other` - if any - as those are still used for aligning the old/new coordinates)
coords_to_align = drop_indexed_coords(set(other_coords) & set(other), self)
coords, indexes = merge_coords(
[coords_to_align, other_coords],
priority_arg=1,
indexes=coords_to_align.xindexes,
)
# special case for PandasMultiIndex: updating only its dimension coordinate
# is still allowed but depreciated.
# It is the only case where we need to actually drop coordinates here (multi-index levels)
# TODO: remove when removing PandasMultiIndex's dimension coordinate.
self._drop_coords(self._names - coords_to_align._names)
self._update_coords(coords, indexes)
def assign(self, coords: Mapping | None = None, **coords_kwargs: Any) -> Self:
"""Assign new coordinates (and indexes) to a Coordinates object, returning
a new object with all the original coordinates in addition to the new ones.
Parameters
----------
coords : mapping of dim to coord, optional
A mapping whose keys are the names of the coordinates and values are the
coordinates to assign. The mapping will generally be a dict or
:class:`Coordinates`.
* If a value is a standard data value — for example, a ``DataArray``,
scalar, or array — the data is simply assigned as a coordinate.
* A coordinate can also be defined and attached to an existing dimension
using a tuple with the first element the dimension name and the second
element the values for this new coordinate.
**coords_kwargs
The keyword arguments form of ``coords``.
One of ``coords`` or ``coords_kwargs`` must be provided.
Returns
-------
new_coords : Coordinates
A new Coordinates object with the new coordinates (and indexes)
in addition to all the existing coordinates.
Examples
--------
>>> coords = xr.Coordinates()
>>> coords
Coordinates:
*empty*
>>> coords.assign(x=[1, 2])
Coordinates:
* x (x) int64 16B 1 2
>>> midx = pd.MultiIndex.from_product([["a", "b"], [0, 1]])
>>> coords.assign(xr.Coordinates.from_pandas_multiindex(midx, "y"))
Coordinates:
* y (y) object 32B MultiIndex
* y_level_0 (y) object 32B 'a' 'a' 'b' 'b'
* y_level_1 (y) int64 32B 0 1 0 1
"""
# TODO: this doesn't support a callable, which is inconsistent with `DataArray.assign_coords`
coords = either_dict_or_kwargs(coords, coords_kwargs, "assign")
new_coords = self.copy()
new_coords.update(coords)
return new_coords
def _overwrite_indexes(
self,
indexes: Mapping[Any, Index],
variables: Mapping[Any, Variable] | None = None,
) -> Self:
results = self.to_dataset()._overwrite_indexes(indexes, variables)
# TODO: remove cast once we get rid of DatasetCoordinates
# and DataArrayCoordinates (i.e., Dataset and DataArray encapsulate Coordinates)
return cast(Self, results.coords)
def _reindex_callback(
self,
aligner: Aligner,
dim_pos_indexers: dict[Hashable, Any],
variables: dict[Hashable, Variable],
indexes: dict[Hashable, Index],
fill_value: Any,
exclude_dims: frozenset[Hashable],
exclude_vars: frozenset[Hashable],
) -> Self:
"""Callback called from ``Aligner`` to create a new reindexed Coordinate."""
aligned = self.to_dataset()._reindex_callback(
aligner,
dim_pos_indexers,
variables,
indexes,
fill_value,
exclude_dims,
exclude_vars,
)
# TODO: remove cast once we get rid of DatasetCoordinates
# and DataArrayCoordinates (i.e., Dataset and DataArray encapsulate Coordinates)
return cast(Self, aligned.coords)
def _ipython_key_completions_(self):
"""Provide method for the key-autocompletions in IPython."""
return self._data._ipython_key_completions_()
def copy(
self,
deep: bool = False,
memo: dict[int, Any] | None = None,
) -> Self:
"""Return a copy of this Coordinates object."""
# do not copy indexes (may corrupt multi-coordinate indexes)
# TODO: disable variables deepcopy? it may also be problematic when they
# encapsulate index objects like pd.Index
variables = {
k: v._copy(deep=deep, memo=memo) for k, v in self.variables.items()
}
# TODO: getting an error with `self._construct_direct`, possibly because of how
# a subclass implements `_construct_direct`. (This was originally the same
# runtime code, but we switched the type definitions in #8216, which
# necessitates the cast.)
return cast(
Self,
Coordinates._construct_direct(
coords=variables, indexes=dict(self.xindexes), dims=dict(self.sizes)
),
)
class DatasetCoordinates(Coordinates):
"""Dictionary like container for Dataset coordinates (variables + indexes).
This collection can be passed directly to the :py:class:`~xarray.Dataset`
and :py:class:`~xarray.DataArray` constructors via their `coords` argument.
This will add both the coordinates variables and their index.
"""
_data: Dataset
__slots__ = ("_data",)
def __init__(self, dataset: Dataset):
self._data = dataset
@property
def _names(self) -> set[Hashable]:
return self._data._coord_names
@property
def dims(self) -> Frozen[Hashable, int]:
return self._data.dims
@property
def dtypes(self) -> Frozen[Hashable, np.dtype]:
"""Mapping from coordinate names to dtypes.
Cannot be modified directly, but is updated when adding new variables.
See Also
--------
Dataset.dtypes
"""
return Frozen(
{
n: v.dtype
for n, v in self._data._variables.items()
if n in self._data._coord_names
}
)
@property
def variables(self) -> Mapping[Hashable, Variable]:
return Frozen(
{k: v for k, v in self._data.variables.items() if k in self._names}
)
def __getitem__(self, key: Hashable) -> DataArray:
if key in self._data.data_vars:
raise KeyError(key)
return self._data[key]
def to_dataset(self) -> Dataset:
"""Convert these coordinates into a new Dataset"""
names = [name for name in self._data._variables if name in self._names]
return self._data._copy_listed(names)
def _update_coords(
self, coords: dict[Hashable, Variable], indexes: Mapping[Any, Index]
) -> None:
variables = self._data._variables.copy()
variables.update(coords)
# check for inconsistent state *before* modifying anything in-place
dims = calculate_dimensions(variables)
new_coord_names = set(coords)
for dim, size in dims.items():
if dim in variables:
new_coord_names.add(dim)
self._data._variables = variables
self._data._coord_names.update(new_coord_names)
self._data._dims = dims
# TODO(shoyer): once ._indexes is always populated by a dict, modify
# it to update inplace instead.
original_indexes = dict(self._data.xindexes)
original_indexes.update(indexes)
self._data._indexes = original_indexes
def _drop_coords(self, coord_names):
# should drop indexed coordinates only
for name in coord_names:
del self._data._variables[name]
del self._data._indexes[name]
self._data._coord_names.difference_update(coord_names)
def _drop_indexed_coords(self, coords_to_drop: set[Hashable]) -> None:
assert self._data.xindexes is not None
new_coords = drop_indexed_coords(coords_to_drop, self)
for name in self._data._coord_names - new_coords._names:
del self._data._variables[name]
self._data._indexes = dict(new_coords.xindexes)
self._data._coord_names.intersection_update(new_coords._names)
def __delitem__(self, key: Hashable) -> None:
if key in self:
del self._data[key]
else:
raise KeyError(
f"{key!r} is not in coordinate variables {tuple(self.keys())}"
)
def _ipython_key_completions_(self):
"""Provide method for the key-autocompletions in IPython."""
return [
key
for key in self._data._ipython_key_completions_()
if key not in self._data.data_vars
]
class DataArrayCoordinates(Coordinates, Generic[T_DataArray]):
"""Dictionary like container for DataArray coordinates (variables + indexes).
This collection can be passed directly to the :py:class:`~xarray.Dataset`
and :py:class:`~xarray.DataArray` constructors via their `coords` argument.
This will add both the coordinates variables and their index.
"""
_data: T_DataArray
__slots__ = ("_data",)
def __init__(self, dataarray: T_DataArray) -> None:
self._data = dataarray
@property
def dims(self) -> tuple[Hashable, ...]:
return self._data.dims
@property
def dtypes(self) -> Frozen[Hashable, np.dtype]:
"""Mapping from coordinate names to dtypes.
Cannot be modified directly, but is updated when adding new variables.
See Also
--------
DataArray.dtype
"""
return Frozen({n: v.dtype for n, v in self._data._coords.items()})
@property
def _names(self) -> set[Hashable]:
return set(self._data._coords)
def __getitem__(self, key: Hashable) -> T_DataArray:
return self._data._getitem_coord(key)
def _update_coords(
self, coords: dict[Hashable, Variable], indexes: Mapping[Any, Index]
) -> None:
coords_plus_data = coords.copy()
coords_plus_data[_THIS_ARRAY] = self._data.variable
dims = calculate_dimensions(coords_plus_data)
if not set(dims) <= set(self.dims):
raise ValueError(
"cannot add coordinates with new dimensions to a DataArray"
)
self._data._coords = coords
# TODO(shoyer): once ._indexes is always populated by a dict, modify
# it to update inplace instead.
original_indexes = dict(self._data.xindexes)
original_indexes.update(indexes)
self._data._indexes = original_indexes
def _drop_coords(self, coord_names):
# should drop indexed coordinates only
for name in coord_names:
del self._data._coords[name]
del self._data._indexes[name]
@property
def variables(self):
return Frozen(self._data._coords)
def to_dataset(self) -> Dataset:
from xarray.core.dataset import Dataset
coords = {k: v.copy(deep=False) for k, v in self._data._coords.items()}
indexes = dict(self._data.xindexes)
return Dataset._construct_direct(coords, set(coords), indexes=indexes)
def __delitem__(self, key: Hashable) -> None:
if key not in self:
raise KeyError(
f"{key!r} is not in coordinate variables {tuple(self.keys())}"
)
assert_no_index_corrupted(self._data.xindexes, {key})
del self._data._coords[key]
if self._data._indexes is not None and key in self._data._indexes:
del self._data._indexes[key]
def _ipython_key_completions_(self):
"""Provide method for the key-autocompletions in IPython."""
return self._data._ipython_key_completions_()
def drop_indexed_coords(
coords_to_drop: set[Hashable], coords: Coordinates
) -> Coordinates:
"""Drop indexed coordinates associated with coordinates in coords_to_drop.
This will raise an error in case it corrupts any passed index and its
coordinate variables.
"""
new_variables = dict(coords.variables)
new_indexes = dict(coords.xindexes)
for idx, idx_coords in coords.xindexes.group_by_index():
idx_drop_coords = set(idx_coords) & coords_to_drop
# special case for pandas multi-index: still allow but deprecate
# dropping only its dimension coordinate.
# TODO: remove when removing PandasMultiIndex's dimension coordinate.
if isinstance(idx, PandasMultiIndex) and idx_drop_coords == {idx.dim}:
idx_drop_coords.update(idx.index.names)
emit_user_level_warning(
f"updating coordinate {idx.dim!r} with a PandasMultiIndex would leave "
f"the multi-index level coordinates {list(idx.index.names)!r} in an inconsistent state. "
f"This will raise an error in the future. Use `.drop_vars({list(idx_coords)!r})` before "
"assigning new coordinate values.",
FutureWarning,
)
elif idx_drop_coords and len(idx_drop_coords) != len(idx_coords):
idx_drop_coords_str = ", ".join(f"{k!r}" for k in idx_drop_coords)
idx_coords_str = ", ".join(f"{k!r}" for k in idx_coords)
raise ValueError(
f"cannot drop or update coordinate(s) {idx_drop_coords_str}, which would corrupt "
f"the following index built from coordinates {idx_coords_str}:\n"
f"{idx}"
)
for k in idx_drop_coords:
del new_variables[k]
del new_indexes[k]
return Coordinates._construct_direct(coords=new_variables, indexes=new_indexes)
def assert_coordinate_consistent(obj: T_Xarray, coords: Mapping[Any, Variable]) -> None:
"""Make sure the dimension coordinate of obj is consistent with coords.
obj: DataArray or Dataset
coords: Dict-like of variables
"""
for k in obj.dims:
# make sure there are no conflict in dimension coordinates
if k in coords and k in obj.coords and not coords[k].equals(obj[k].variable):
raise IndexError(
f"dimension coordinate {k!r} conflicts between "
f"indexed and indexing objects:\n{obj[k]}\nvs.\n{coords[k]}"
)
def create_coords_with_default_indexes(
coords: Mapping[Any, Any], data_vars: DataVars | None = None
) -> Coordinates:
"""Returns a Coordinates object from a mapping of coordinates (arbitrary objects).
Create default (pandas) indexes for each of the input dimension coordinates.
Extract coordinates from each input DataArray.
"""
# Note: data_vars is needed here only because a pd.MultiIndex object
# can be promoted as coordinates.
# TODO: It won't be relevant anymore when this behavior will be dropped
# in favor of the more explicit ``Coordinates.from_pandas_multiindex()``.
from xarray.core.dataarray import DataArray
all_variables = dict(coords)
if data_vars is not None:
all_variables.update(data_vars)
indexes: dict[Hashable, Index] = {}
variables: dict[Hashable, Variable] = {}
# promote any pandas multi-index in data_vars as coordinates
coords_promoted: dict[Hashable, Any] = {}
pd_mindex_keys: list[Hashable] = []
for k, v in all_variables.items():
if isinstance(v, pd.MultiIndex):
coords_promoted[k] = v
pd_mindex_keys.append(k)
elif k in coords:
coords_promoted[k] = v
if pd_mindex_keys:
pd_mindex_keys_fmt = ",".join([f"'{k}'" for k in pd_mindex_keys])
emit_user_level_warning(
f"the `pandas.MultiIndex` object(s) passed as {pd_mindex_keys_fmt} coordinate(s) or "
"data variable(s) will no longer be implicitly promoted and wrapped into "
"multiple indexed coordinates in the future "
"(i.e., one coordinate for each multi-index level + one dimension coordinate). "
"If you want to keep this behavior, you need to first wrap it explicitly using "
"`mindex_coords = xarray.Coordinates.from_pandas_multiindex(mindex_obj, 'dim')` "
"and pass it as coordinates, e.g., `xarray.Dataset(coords=mindex_coords)`, "
"`dataset.assign_coords(mindex_coords)` or `dataarray.assign_coords(mindex_coords)`.",
FutureWarning,
)
dataarray_coords: list[DataArrayCoordinates] = []
for name, obj in coords_promoted.items():
if isinstance(obj, DataArray):
dataarray_coords.append(obj.coords)