Skip to content

Latest commit

 

History

History
65 lines (49 loc) · 2.65 KB

README.md

File metadata and controls

65 lines (49 loc) · 2.65 KB

Neural Fields with Thermal Activations for Arbitrary-Scale Super-Resolution

Official implementation of the paper "Neural Fields with Thermal Activations for Arbitrary-Scale Super-Resolution" by Alexander Becker*, Rodrigo Daudt*, Nando Metzger, Jan Dirk Wegner, Konrad Schindler (* equal contribution)

Paper License

teaser teaser

Setup environment

You need a Python 3.10 environment (e.g., installed via conda) on Linux as well as an NVIDIA GPU (or cloud TPU). Then install packages via pip:

> pip install --upgrade pip
> pip install -r requirements_cu11.txt  # CUDA 11
# or
> pip install -r requirements_cu12.txt  # CUDA 12
# or
> pip install -r requirements_tpu.txt  # TPU

Use with pre-trained checkpoints

Download checkpoints [here]. Super-resolve any image with, e.g.:

> ./super_resolve.py IN_FILE OUT_FILE --scale 3.14 --checkpoint checkpoints/thera-L-swin-ir.pkl --backbone swin-ir --model-size L

You can evaluate the models on datasets using the run_eval.py script, e.g.:

> python run_eval.py --checkpoint checkpoints/thera-M-edsr-baseline.pkl --data-dir path_to_data_parent_folder --eval-sets data_folder_1, data_folder_2, ...

Check the arguments in args.py (bottom of file) for all testing options.

Training

Train and evaluate using

> python run_train_and_eval.py --data-dir path_to_data_parent_folder --train-set train_data_folder --val-set val_data_folder

Check the arguments in args.py for all training options. Our implementation will automatically shard over all available devices, this can be overwritten by manually setting --n-devices or CUDA_VISIBLE_DEVICES.

Useful XLA flags

  • Disable pre-allocation of entire VRAM: XLA_PYTHON_CLIENT_PREALLOCATE=false
  • Force GPU determinism (slow): XLA_FLAGS=--xla_gpu_deterministic_ops=true
  • Disable jitting for debugging: JAX_DISABLE_JIT=1

Citation

Please cite our paper if you found our work helpful:

@article{becker2023neural,
  title={Neural Fields with Thermal Activations for Arbitrary-Scale Super-Resolution},
  author={Becker, Alexander and Daudt, Rodrigo Caye and Metzger, Nando and Wegner, Jan Dirk and Schindler, Konrad},
  journal={arXiv preprint arXiv:2311.17643},
  year={2023}
}