@@ -49,8 +49,9 @@ cdef inline bint are_diff(object left, object right):
4949
5050
5151class Infinity :
52- """ provide a positive Infinity comparison method for ranking """
53-
52+ """
53+ Provide a positive Infinity comparison method for ranking.
54+ """
5455 __lt__ = lambda self , other : False
5556 __le__ = lambda self , other : isinstance (other, Infinity)
5657 __eq__ = lambda self , other : isinstance (other, Infinity)
@@ -61,8 +62,9 @@ class Infinity:
6162
6263
6364class NegInfinity :
64- """ provide a negative Infinity comparison method for ranking """
65-
65+ """
66+ Provide a negative Infinity comparison method for ranking.
67+ """
6668 __lt__ = lambda self , other : (not isinstance (other, NegInfinity) and
6769 not missing.checknull(other))
6870 __le__ = lambda self , other : not missing.checknull(other)
@@ -158,20 +160,19 @@ def groupsort_indexer(const int64_t[:] index, Py_ssize_t ngroups):
158160 Parameters
159161 ----------
160162 index: int64 ndarray
161- mappings from group -> position
163+ Mappings from group -> position.
162164 ngroups: int64
163- number of groups
165+ Number of groups.
164166
165167 Returns
166168 -------
167169 tuple
168- 1-d indexer ordered by groups, group counts
170+ 1-d indexer ordered by groups, group counts.
169171
170172 Notes
171173 -----
172174 This is a reverse of the label factorization process.
173175 """
174-
175176 cdef:
176177 Py_ssize_t i, loc, label, n
177178 ndarray[int64_t] counts, where, result
@@ -679,7 +680,9 @@ def is_monotonic(ndarray[algos_t, ndim=1] arr, bint timelike):
679680 Returns
680681 -------
681682 tuple
682- is_monotonic_inc, is_monotonic_dec, is_unique
683+ is_monotonic_inc : bool
684+ is_monotonic_dec : bool
685+ is_unique : bool
683686 """
684687 cdef:
685688 Py_ssize_t i, n
@@ -774,9 +777,8 @@ ctypedef fused rank_t:
774777def rank_1d (rank_t[:] in_arr , ties_method = ' average' ,
775778 ascending = True , na_option = ' keep' , pct = False ):
776779 """
777- Fast NaN-friendly version of scipy.stats.rankdata
780+ Fast NaN-friendly version of `` scipy.stats.rankdata``.
778781 """
779-
780782 cdef:
781783 Py_ssize_t i, j, n, dups = 0 , total_tie_count = 0 , non_na_idx = 0
782784
@@ -995,9 +997,8 @@ def rank_1d(rank_t[:] in_arr, ties_method='average',
995997def rank_2d (rank_t[:, :] in_arr , axis = 0 , ties_method = ' average' ,
996998 ascending = True , na_option = ' keep' , pct = False ):
997999 """
998- Fast NaN-friendly version of scipy.stats.rankdata
1000+ Fast NaN-friendly version of `` scipy.stats.rankdata``.
9991001 """
1000-
10011002 cdef:
10021003 Py_ssize_t i, j, z, k, n, dups = 0 , total_tie_count = 0
10031004
0 commit comments