-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathparse.py
204 lines (172 loc) · 6.96 KB
/
parse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
"""
The script for parsing user-provided texts
"""
import hydra
import torch
import numpy as np
import sys
from time import time
from torch.utils.data import DataLoader, Dataset
from dataloader import TOKEN_MAPPING
from omegaconf import DictConfig, OmegaConf
from models.parser import Parser
from env import Environment, EpochEnd
from transformers import AutoTokenizer
from test import restore_hyperparams
from utils import get_device, load_model
import spacy
from progressbar import ProgressBar
from typing import List, Dict, Any
import logging
log = logging.getLogger(__name__)
class UserProvidedTexts(Dataset): # type: ignore
words: List[List[str]]
tags: List[List[str]]
vocabs: Dict[str, Any]
tag_idx_map: Dict[str, int]
def __init__(
self, filename: str, language: str, vocabs: Dict[str, Any], encoder: str
) -> None:
self.words = []
self.tags = []
self.vocabs = vocabs
self.tag_idx_map = {t: i for i, t in enumerate(self.vocabs["tag"])}
spacy_model = spacy.load(
"en_core_web_sm" if language == "english" else "zh_core_web_sm"
)
bar = ProgressBar()
log.info("Loading input sentences and performing POS tagging..")
for i, line in enumerate(open(filename)):
sentence = line.strip()
assert sentence != "", "Please remove empty lines in the input file!"
words_sent = []
tags_sent = []
for t in spacy_model(sentence):
words_sent.append(t.text)
tags_sent.append(t.tag_)
self.words.append(words_sent)
self.tags.append(tags_sent)
bar.update(i)
log.info("%d input sentences loaded from %s" % (len(self.words), filename))
self.tokenizer = AutoTokenizer.from_pretrained(
encoder, do_lower_case=("-cased" not in encoder)
)
def _preprocess(self, words: List[str]) -> List[str]:
"""
Preprocess the tokens before encoding using transformers
"""
cleaned_words: List[str] = []
for w in words:
w = TOKEN_MAPPING.get(w, w)
if w == "n't" and cleaned_words != []: # e.g., wasn't -> wasn 't
cleaned_words[-1] = cleaned_words[-1] + "n"
w = "'t"
cleaned_words.append(w)
return cleaned_words
def __getitem__(self, idx: int) -> Dict[str, Any]:
cleaned_words = self._preprocess(self.words[idx])
subtokens = [self.tokenizer.cls_token]
word_end_mask = [False]
for w in cleaned_words:
subtokens_w = self.tokenizer.tokenize(w)
word_end_mask.extend([False] * (len(subtokens_w) - 1) + [True])
subtokens.extend(subtokens_w)
subtokens.append(self.tokenizer.sep_token)
word_end_mask.append(False)
tokens_idx = self.tokenizer.convert_tokens_to_ids(subtokens)
tags_idx = [self.tag_idx_map[t] for t in self.tags[idx]]
return {
"tokens_word": self.words[idx], # a list of strings
"tags": self.tags[idx], # a list of strings
"tags_idx": tags_idx, # a list of integers
"tokens_idx": tokens_idx, # a list of integers
"word_end_mask": word_end_mask, # a list of booleans
}
def __len__(self) -> int:
return len(self.words)
def form_batch(examples: List[Dict[str, Any]]) -> Dict[str, Any]:
batch_size = len(examples)
max_num_tokens: int = np.max([len(x["tokens_idx"]) for x in examples])
tokens_idx = torch.zeros(batch_size, max_num_tokens, dtype=torch.int64)
valid_tokens_mask = torch.zeros_like(tokens_idx, dtype=torch.bool)
word_end_mask = torch.zeros_like(tokens_idx, dtype=torch.bool)
max_num_tags = np.max([len(x["tags_idx"]) for x in examples])
tags_idx = torch.zeros(batch_size, max_num_tags, dtype=torch.int64)
tokens_word = []
tags = []
for i, x in enumerate(examples):
l = len(x["tokens_idx"])
tokens_idx[i, :l] = tokens_idx.new_tensor(x["tokens_idx"])
valid_tokens_mask[i, :l] = True
word_end_mask[i, :l] = word_end_mask.new_tensor(x["word_end_mask"])
tokens_word.append(x["tokens_word"])
tags.append(x["tags"])
tags_idx[i, : len(x["tags_idx"])] = tags_idx.new_tensor(x["tags_idx"])
data_batch = {
"batch_idx": list(range(batch_size)), # List[int]
"tokens_word": tokens_word, # List[List[str]]
"tokens_idx": tokens_idx, # 2-D tensor
"valid_tokens_mask": valid_tokens_mask, # 2d tensor
"tags": tags, # List[List[str]]
"tags_idx": tags_idx, # 2-D tensor
"word_end_mask": word_end_mask, # 2-D tensor
}
return data_batch
@hydra.main(config_path="conf", config_name="parse.yaml")
def main(cfg: DictConfig) -> None:
"The entry point for parsing user-provided texts"
assert cfg.model_path is not None, "Need to specify model_path for testing."
assert cfg.input is not None
assert cfg.language in ("english", "chinese")
log.info("\n" + OmegaConf.to_yaml(cfg))
# load the model checkpoint
model_path = hydra.utils.to_absolute_path(cfg.model_path)
log.info("Loading the model from %s" % model_path)
checkpoint = load_model(model_path)
restore_hyperparams(checkpoint["cfg"], cfg)
vocabs = checkpoint["vocabs"]
model = Parser(vocabs, cfg)
model.load_state_dict(checkpoint["model_state"])
device, _ = get_device()
model.to(device)
log.info("\n" + str(model))
log.info("#parameters = %d" % sum([p.numel() for p in model.parameters()]))
input_file = hydra.utils.to_absolute_path(cfg.input)
ds = UserProvidedTexts(input_file, cfg.language, vocabs, cfg.encoder)
loader = DataLoader(
ds,
batch_size=cfg.eval_batch_size,
collate_fn=form_batch,
num_workers=cfg.num_workers,
pin_memory=torch.cuda.is_available(),
)
env = Environment(loader, model.encoder, subbatch_max_tokens=9999999)
state = env.reset()
oup = (
sys.stdout
if cfg.output is None
else open(hydra.utils.to_absolute_path(cfg.output), "wt")
)
time_start = time()
with torch.no_grad():
while True:
with torch.cuda.amp.autocast(cfg.amp):
actions, _ = model(state)
state, done = env.step(actions)
if done:
for tree in env.pred_trees:
assert tree is not None
print(tree.linearize(), file=oup)
# pred_trees.extend(env.pred_trees)
# load the next batch
try:
with torch.cuda.amp.autocast(cfg.amp):
state = env.reset()
except EpochEnd:
# no next batch available (complete)
log.info("Time elapsed: %f" % (time() - time_start))
break
if cfg.output is not None:
log.info("Parse trees saved to %s" % cfg.output)
if __name__ == "__main__":
main()